CS311H: Discrete Mathematics

Introduction to Graph Theory

Instructor: Ișıl Dillig

Review

- ▶ What are properties of simple graphs?
- ▶ What is the Handshaking Theorem?
- lacktriangle What is the induced subgraph of G on vertices V?

Complete Graphs

- ► A complete graph is a simple undirected graph in which every pair of vertices is connected by one edge.
- ▶ Complete graph with n vertices denoted K_n .

▶ How many edges does a complete graph with *n* vertices have?

Bipartite graphs

lacktriangle A simple undirected graph G=(V,E) is called bipartite if Vcan be partitioned into two disjoint sets $\ensuremath{V_1}$ and $\ensuremath{V_2}$ such that every edge in ${\it E}$ connects a ${\it V}_1$ vertex to a ${\it V}_2$ vertex

Examples Bipartite and Non-Bi-partite Graphs

▶ Is this graph bipartite?

▶ What about this graph?

Questions about Bipartite Graphs

- ▶ Does there exist a complete graph that is also bipartite?
- lacktriangle Consider a graph G with 5 nodes and 7 edges. Can G be bipartite?

Graph Coloring

- A coloring of a graph is the assignment of a color to each vertex so that no two adjacent vertices are assigned the same color.
- A graph is k-colorable if it is possible to color it using \boldsymbol{k} colors.
 - e.g., graph on left is 3-colorable
 - ▶ Is it also 2-colorable?
- The chromatic number of a graph is the least number of colors needed to color it.
 - ▶ What is the chromatic number of this graph?

Question

Consider a graph G with vertices $\{v_1,v_2,v_3,v_4\}$ and edges $(v_1, v_2), (v_1, v_3), (v_2, v_3), (v_2, v_4).$

Which of the following are valid colorings for G?

1.
$$v_1 = \text{red}$$
, $v_2 = \text{green}$, $v_3 = \text{blue}$

2.
$$v_1 = \text{red}$$
, $v_2 = \text{green}$, $v_3 = \text{blue}$, $v_4 = \text{red}$

3.
$$v_1 = \text{red}$$
, $v_2 = \text{green}$, $v_3 = \text{red}$, $v_4 = \text{blue}$

Examples

What are the chromatic numbers for these graphs?

Applications of Graph Coloring

- ▶ Graph coloring has lots of applications, particularly in scheduling.
- ► Example: What's the minimum number of time slots needed so that no student is enrolled in conflicting classes?

A Scheduling Problem

- ▶ The math department has 6 committees C_1, \ldots, C_n that meet once a month.
- ▶ The committee members are:

 $C_1 = \{Allen, Brooks, Marg\}$ $C_2 = \{\text{Brooks}, \text{Jones}, \text{Morton}\}$ $C_3 = \{Allen, Marg, Morton\}$ $C_4 = \{ \text{Jones}, \text{Marg}, \text{Morton} \}$ $C_5 = \{Allen, Brooks\}$ $C_6 = \{Brooks, Marg, Morton\}$

▶ How many different meeting times must be used to guarantee that no one has conflicting meetings?

Bipartite Graphs and Colorability

Prove that a graph G=(V,E) is bipartite if and only if it is 2-colorable.

Complete graphs and Colorability

Prove that any complete graph K_n has chromatic number n.

Instructor: Isil Dillii

CS311H: Discrete Mathematics Introduction to Graph Theory

Degree and Colorability

Theorem: Every simple graph G is always $\max_degree(G) + 1$ colorable.

- ightharpoonup Proof is by induction on the number of vertices n.
- ▶ Let P(n) be the predicate "A simple graph G with n vertices is max-degree(G)-colorable"
- ▶ Base case: n = 1. If graph has only one node, then it cannot have any edges. Hence, it is 1-colorable.
- ▶ Induction: Consider a graph G = (V, E) with k + 1 vertices
- ightharpoonup Consider arbitrary $v \in V$ with neighbors v_1, \ldots, v_n

Instructor: Isil Dilli

311H: Discrete Mathematics Introduction to Graph Theory

Degree and Colorability, cont.

- ▶ Remove v and all its incident edges from G; call this G'
- ▶ By the IH, G' is max-degree(G') + 1 colorable
- ▶ Let C' be the coloring of G': Suppose C' assigns colors c_1, \ldots, c_p to v's neighbors. Clearly, $p \leq n$.
- ▶ Now, create coloring *C* for *G*:
 - C(v') = C'(v') for any $v \neq v'$
 - $C(v) = c_{p+1}$

Degree and Colorability, cont.

- ▶ Either c_{p+1} is (i) new or (ii) already used by C
- ▶ Case 1: If already used, G is $\max_degree(G') + 1$ -colorable, therefore also $\max_degree(G) + 1$ -colorable
- ▶ Case 2: Coloring C uses p+1 colors
- lacktriangle We know $p \leq n$ where n is the number of v's neighbors
- ▶ What can we say about $\max_degree(G)$?
- ▶ Thus, G is $\max_degree(G) + 1$ -colorable

Instructor: Işıl Dillig

311H: Discrete Mathematics Introduction to Graph Theory

Instructor: Ișil Dillig

16/29

Star Graphs and Colorability

- A star graph S_n is a graph with one vertex u at the center and the only edges are from u to each of v_1, \ldots, v_{n-1} .
- ▶ Draw S_2, S_3, S_4, S_5 .
- ▶ What is the chromatic number of S_n ?

Question About Star Graphs

Suppose we have two star graphs S_k and S_m . Now, pick a random vertex from each graph and connect them with an edge.

Which of the following statements must be true about the resulting graph $\ensuremath{G?}$

- 1. The chromatic number of ${\it G}$ is $3\,$
- 2. G is 2-colorable.
- 3. $\max_{\text{degree}}(G) = \max(k, m)$.

Instructor: Ișil Dillig,

S311H: Discrete Mathematics Introduction to Graph Theory

Instructor: Ișil Dillig,

18/29

Connectivity in Graphs

- Typical question: Is it possible to get from some node u to another node v?
- Example: Train network if there is path from u to v, possible to take train from u to \boldsymbol{v} and vice versa.
- ▶ If it's possible to get from u to v, we say uand \boldsymbol{v} are connected and there is a path between u and v

Paths

- ightharpoonup A path between u and v is a sequence of edges that starts at vertex u, moves along adjacent edges, and ends in $\it v$.
- **Example:** u, x, y, w is a path, but u, y, v and u, a, x are not
- ▶ Length of a path is the number of edges traversed, e.g., length of u, x, y, w is 3
- ► A simple path is a path that does not repeat any edges
- ightharpoonup u, x, y, w is a simple path but u, x, u is not

Example

- ▶ Consider a graph with vertices $\{x, y, z, w\}$ and edges (x, y), (x, w), (x, z), (y, z)
- \blacktriangleright What are all the simple paths from z to w?
- \blacktriangleright What are all the simple paths from x to y?
- \blacktriangleright How many paths (can be non-simple) are there from x to y?

Connectedness

- ► A graph is connected if there is a path between every pair of vertices in the graph
- ► Example: This graph not connected; e.g., no path from x to d
- ► A connected component of a graph *G* is a maximal connected subgraph of G

Example

- ▶ Prove: Suppose graph G has exactly two vertices of odd degree, say u and v. Then G contains a path from u to v.

Circuits

- A circuit is a path that begins and ends in the same vertex.
- ightharpoonup u, x, y, x, u and u, x, y, u are both circuits
- ► A simple circuit does not contain the same edge more than once
- ightharpoonup u, x, y, u is a simple circuit, but u, x, y, x, uis not
- ▶ Length of a circuit is the number of edges it contains, e.g., length of u, x, y, u is ${\bf 3}$
- ▶ In this class, we only consider circuits of length 3 or more

Cycles

- ► A cycle is a simple circuit with no repeated vertices other than the first and last ones.
- For instance, u, x, a, b, x, y, u is a circuit but not a cycle
- However, u, x, y, u is a cycle

Instructor: Isil Dillie

S311H: Discrete Mathematics - Introduction to Graph Theory

Example

- Prove: If a graph has an odd length circuit, then it also has an odd length cycle.
- ▶ Huh? Recall that not every circuit is a a cycle.
- ► According to this theorem, if we can find an odd length circuit, we can also find odd length cycle.
- ightharpoonup Example: d,c,a,b,c,d is an odd length circuit, but graph also contains odd length cycle

nstructor: Isil Dillig.

311H: Discrete Mathematics - Introduction to Graph Theory

26/20

Proof

Prove: If a graph has an odd length circuit, then it also has an odd length cycle.

- ▶ Proof by strong induction on the length of the circuit.
- ightharpoonup Base case: Length of circuit = 3.
- \blacktriangleright Only circuit of length 3 is a triangle, which is also a cycle

Instructor: Işıl Dillig

Proof, cont.

Prove: If a graph has an odd length circuit, then it also has an odd length cycle.

- Let P(n) be the predicate "If a graph has odd length circuit of length n, it also has an odd length cycle"
- ▶ Inductive step: Assume $P(3), P(5), \dots, P(n)$ and show claim holds for P(n+2)
- ightharpoonup Now, consider a circuit of length n+2. There are two cases:
- ► Case 1: Circuit is already a cycle: done!

Instructor: Ișil Dillig

Proof, cont.

Prove: If a graph has an odd length circuit, then it also has an odd length cycle.

► Case 2: Circuit is not a cycle, so we must have a repeated vertex in the middle:

$$C = v_0, \dots u_1, v_i, u_2, \dots u_3, v_i, u_4 \dots v_0$$

▶ We know this circuit contains two nested circuits:

$$C_1 = v_0, \dots u_1, v_i, u_4, \dots v_0$$

 $C_2 = v_i, u_2 \dots u_3, v_i$

- ▶ We know that $length(C) = length(C_1) + length(C_2) = odd$
- Means either C₁ or C₂ is odd length circuit; hence, by IH, either C₁ or C₂ contains odd length cycle

Instructor: Ișil Dillig

CS311H: Discrete Mathematics Introduction to Graph Theory

29/29