Connectivity in Graphs

Typical question: Is it possible to get from some node \(u \) to another node \(v \)?

Example: Train network – if there is path from \(u \) to \(v \), possible to take train from \(u \) to \(v \) and vice versa.

If it’s possible to get from \(u \) to \(v \), we say \(u \) and \(v \) are connected and there is a path between \(u \) and \(v \).

Paths

- A path between \(u \) and \(v \) is a sequence of edges that starts at vertex \(u \), moves along adjacent edges, and ends in \(v \).
- Example: \(u, x, y, w \) is a path, but \(u, y, v \) and \(u, a, x \) are not.
- Length of a path is the number of edges traversed, e.g., length of \(u, x, y, w \) is 3.
- A simple path is a path that does not repeat any edges.
- \(u, x, y, w \) is a simple path but \(u, x, u \) is not.

Connectedness

- A graph is connected if there is a path between every pair of vertices in the graph.
- Example: This graph not connected; e.g., no path from \(x \) to \(d \).
- A connected component of a graph \(G \) is a maximal connected subgraph of \(G \).

Example

- Prove: Suppose graph \(G \) has exactly two vertices of odd degree, say \(u \) and \(v \). Then \(G \) contains a path from \(u \) to \(v \).
Circuits

- A circuit is a path that begins and ends in the same vertex.
- u, x, y, z, u and u, x, y, u are both circuits.
- A simple circuit does not contain the same edge more than once.
- u, x, y, w is a simple circuit, but u, x, y, u is not.
- Length of a circuit is the number of edges it contains, e.g., length of u, x, y, u is 3.
- In this class, we only consider circuits of length 3 or more.

Cycles

- A cycle is a simple circuit with no repeated vertices other than the first and last ones.
- For instance, u, x, a, b, x, y, u is a circuit but not a cycle.
- However, u, x, y, u is a cycle.

Example

- Prove: If a graph has an odd length circuit, then it also has an odd length cycle.
- Huh? Recall that not every circuit is a cycle.
- According to this theorem, if we can find an odd length circuit, we can also find odd length cycle.
- Example: d, c, a, b, c, d is an odd length circuit, but graph also contains odd length cycle.

Proof

- Prove: If a graph has an odd length circuit, then it also has an odd length cycle.
- Proof by strong induction on the length of the circuit.
- Example: a, b, c is a cycle.
Colorability and Cycles

Prove: If a graph is 2-colorable, then all cycles are of even length.

Example

- Is this graph 2-colorable?

Distance Between Vertices

The distance between two vertices \(u \) and \(v \) is the length of the shortest path between \(u \) and \(v \).

- What is the distance between \(u \) and \(b \)?
- What is the distance between \(u \) and \(x \)?
- What is the distance between \(x \) and \(w \)?

More Colorability and Cycles

Prove: If graph has no odd length cycles, then graph is 2-colorable.

The Algorithm

- Pick any vertex \(v \) in the graph.
- If a vertex \(u \) has odd distance from \(v \), color it blue.
- Otherwise, color it red.

Proof

- We will now prove: "If the graph does not have odd length cycles, the algorithm is correct."
- Correctness of the algorithm implies graph is 2-colorable.
- Proof by contradiction.
- Suppose graph does not have odd length cycles, but the algorithm produces an invalid coloring.
- Means there exist two vertices \(x \) and \(y \) that are assigned the same color.
Proof, cont.

- Case 1: They are both assigned red

- We know \(n, m \) are both even
- This means we now have an odd-length circuit involving \(n, m \)
- By theorem from earlier, this implies that graph has odd length cycle, i.e., contradiction
- Case 2 is exactly the same.

Putting It All Together

- Theorem: A graph is 2-colorable if and only if it does not have odd-length cycles
- Corollary: A graph is bipartite if and only if it does not have odd-length cycles
- Example: Consider a graph \(G \) with vertices \(a, b, c, d, e, f \)
 - Is \(G \) bipartite if its edges are \((a, f), (e, f), (e, d), (c, d), (a, c)\)?

Trees

- A tree is a connected undirected graph with no cycles.
- Examples and non-examples:

- An undirected graph with no cycles is a forest.

Fact About Trees

Theorem: An undirected graph \(G \) is a tree if and only if there is a unique simple path between any two of its vertices.

Leaves of a Tree

- Given a tree, a vertex of degree 1 is called a leaf.

- Important fact: Every tree with more than 2 nodes has at least two leaves.

Why is this true?
Number of Edges in a Tree

Theorem: A tree with n vertices has $n - 1$ edges.

- **Proof is by induction on n**
 - **Base case:** $n = 1 \, \checkmark$
 - **Induction:** Assume property for tree with n vertices, and show tree T with $n + 1$ vertices has n edges
 - Construct T' by removing a leaf from T; T' is a tree with n vertices (tree because connected and no cycles)
 - By IH, T' has $n - 1$ edges
 - Add leaf back: $n + 1$ vertices and n edges

Rooted Trees

- A rooted tree has a designated root vertex and every edge is directed away from the root.
- Vertex u is a parent of vertex v if there is an edge from v to u; and u is called a child of v
- Vertices with the same parent are called siblings
- Vertex v is an ancestor of u if v is u’s parent or an ancestor of u’s parent.
- Vertex v is a descendant of u if u is v’s ancestor

Questions about Rooted Trees

- Suppose that vertices u and v are siblings in a rooted tree.
- Which statements about u and v are true?
 1. They must have the same ancestors
 2. They can have a common descendant
 3. If u is a leaf, then v must also be a leaf

Subtrees

- Given a rooted tree and a node v, the subtree rooted at v includes v and its descendants.
- **Level** of vertex v is the length of the path from the root to v.
- **Height** of a tree is the maximum level of its vertices.

True-False Questions

1. Two siblings u and v must be at the same level.
2. A leaf vertex does not have a subtree.
3. The subtrees rooted at u and v can have the same height only if u and v are siblings.
4. The level of the root vertex is 1.

m-ary Trees

- A rooted tree is called an m-ary tree if every vertex has no more than m children.
- An m-ary tree where $m = 2$ is called a binary tree.
- A full m-ary tree is a tree where every internal node has exactly m children.
- Which are full binary trees?
Useful Theorem

Theorem: An \(m \)-ary tree of height \(h \geq 1 \) contains at most \(m^h \) leaves.

- Proof is by induction on height \(h \).

Corollary

Corollary: If \(m \)-ary tree has height \(h \) and \(n \) leaves, then \(h \geq \lceil \log_m n \rceil \)

Questions

- What is maximum number of leaves in binary tree of height 5?
- If binary tree has 100 leaves, what is a lower bound on its height?
- If binary tree has 2 leaves, what is an upper bound on its height?

Balanced Trees

- An \(m \)-ary tree is balanced if all leaves are at levels \(h \) or \(h - 1 \)

- "Every full tree must be balanced." – true or false?
- "Every balanced tree must be full." – true or false?