Review

- What does it mean for a graph to be bipartite?
- What is the chromatic number of a graph?
- How do you prove that the chromatic number is n?

Bipartite Graphs and Colorability

Prove that a graph $G = (V,E)$ is bipartite if and only if it is 2-colorable.

Complete graphs and Colorability

Prove that any complete graph K_n has chromatic number n.

Degree and Colorability

Theorem: Let G be a simple graph such that $\max\deg(G) = n$. Then, G is $n + 1$-colorable.
Example

Consider a graph with vertices \(\{x, y, z, w\} \) and edges \((x, y), (x, w), (x, z), (y, z)\).

- What are all the simple paths from \(z \) to \(w \)?
- What are all the simple paths from \(x \) to \(y \)?
- How many paths (can be non-simple) are there from \(x \) to \(y \)?

Question About Star Graphs

Suppose we have two star graphs \(S_k \) and \(S_m \). Now, pick a random vertex from each graph and connect them with an edge.

Which of the following statements must be true about the resulting graph \(G \)?

1. The chromatic number of \(G \) is 3.
2. \(G \) is 2-colorable.
3. \(\text{max degree}(G) = \max(k, m) \).

Star Graphs and Colorability

- A star graph \(S_n \) is a graph with one vertex \(u \) at the center and the only edges are from \(u \) to each of \(v_1, \ldots, v_n \).
- Draw \(S_2, S_3, S_4, S_5 \).
- What is the chromatic number of \(S_n \)?

Connectivity in Graphs

- Typical question: Is it possible to get from some node \(u \) to another node \(v \)?
- Example: Train network – if there is path from \(u \) to \(v \), possible to take train from \(u \) to \(v \) and vice versa.
- If it’s possible to get from \(u \) to \(v \), we say \(u \) and \(v \) are connected and there is a path between \(u \) and \(v \).

Paths

- A path between \(u \) and \(v \) is a sequence of edges that starts at vertex \(u \), moves along adjacent edges, and ends in \(v \).
- Example: \(u, x, y, w \) is a path, but \(u, y, v \) and \(u, a, x \) are not.
- Length of a path is the number of edges traversed, e.g., length of \(u, x, y, w \) is 3.
- A simple path is a path that does not repeat any edges.
- \(u, x, y, w \) is a simple path but \(u, x, x \) is not.

Connectedness

- A graph is connected if there is a path between every pair of vertices in the graph.
- Example: This graph not connected; e.g., no path from \(x \) to \(d \).
- A connected component of a graph \(G \) is a maximal connected subgraph of \(G \).
Example

- **Prove:** Suppose graph G has exactly two vertices of odd degree, say u and v. Then G contains a path from u to v.

Example

- **Prove:** If a graph has an odd length circuit, then it also has an odd length cycle.
 - **Huh?** Recall that not every circuit is a cycle.
 - **According to this theorem,** if we can find an odd length circuit, we can also find odd length cycle.
 - **Example:** d, c, a, b, c, d is an odd length circuit, but graph also contains odd length cycle.

Proof

Prove: If a graph has an odd length circuit, then it also has an odd length cycle.

- **Proof by strong induction on the length of the circuit.**

Proof, cont.

Prove: If a graph has an odd length circuit, then it also has an odd length cycle.

- **In this class, we only consider circuits of length 3 or more.**

Cycles

- **A cycle** is a simple circuit with no repeated vertices other than the first and last ones.
 - **For instance,** u, x, a, b, x, u is a circuit but not a cycle.
 - **However,** u, x, y, u is a cycle.

Circuits

- **A circuit** is a path that begins and ends in the same vertex.
 - u, x, y, x, u and u, x, y, u are both circuits.
 - **A simple circuit** does not contain the same edge more than once.
 - u, x, y, u is a simple circuit, but u, x, y, x, u is not.
 - Length of a circuit is the number of edges it contains, e.g., length of u, x, y, u is 3.
 - In this class, we only consider circuits of length 3 or more.
Proof, cont.

Prove: If a graph has an odd length circuit, then it also has an odd length cycle.

Example

Is this graph 2-colorable?

More Colorability and Cycles

Prove: If graph has no odd length cycles, then graph is 2-colorable.

The Algorithm

Pick any vertex \(v \) in the graph.

If a vertex \(u \) has odd distance from \(v \), color it blue.

Otherwise, color it red.

Colorability and Cycles

Prove: If a graph is 2-colorable, then all cycles are of even length.

Distance Between Vertices

The distance between two vertices \(u \) and \(v \) is the length of the shortest path between \(u \) and \(v \).

What is the distance between \(u \) and \(b \)?

What is the distance between \(u \) and \(x \)?

What is the distance between \(x \) and \(w \)?
Proof

- We will now prove: “If the graph does not have odd length cycles, the algorithm is correct.”
- Correctness of the algorithm implies graph is 2-colorable.
- Proof by contradiction.
- Suppose graph does not have odd length cycles, but the algorithm produces an invalid coloring.
- Means there exist two vertices x and y that are assigned the same color.

Proof, cont.

- Case 1: They are both assigned red

- We know n, m are both even
- This means we now have an odd-length circuit involving n, m
- By theorem from earlier, this implies that graph has odd length cycle, i.e., contradiction
- Case 2 is exactly the same.

Putting It All Together

- Theorem: A graph is 2-colorable if and only if it does not have odd-length cycles
- Corollary: A graph is bipartite if and only if it does not have odd-length cycles
- Example: Consider a graph G with vertices a, b, c, d, e, f
 - Is G partite if its edges are $(a, f), (e, f), (e, d), (e, d), (a, e)$?