Announcements, Review

- Homework 7 due on Thursday
- Midterm next Thursday
- Review: What is the handshaking theorem?
- What can we say about chromatic number of bipartite graph?
- What is chromatic number of K_n?

Degree and Colorability

Theorem: Every simple graph G is $\max_{\text{degree}}(G) + 1$-colorable.

Star Graphs and Colorability

- A star graph S_n is a graph with one vertex u at the center and the only edges are from u to each of v_1, \ldots, v_{n-1}.
- Draw S_2, S_3, S_4, S_5.
- What is the chromatic number of S_n?
Question About Star Graphs

Suppose we have two star graphs S_k and S_m. Now, pick a random vertex from each graph and connect them with an edge.

Which of the following statements must be true about the resulting graph G?

1. The chromatic number of G is 3
2. G is 2-colorable.
3. $\max\deg(G) = \max(k, m)$.

Connectivity in Graphs

- Typical question: Is it possible to get from some node u to another node v?
- Example: Train network – if there is a path from u to v, possible to take train from u to v and vice versa.
- If it’s possible to get from u to v, we say u and v are connected and there is a path between u and v.

Paths

- A path between u and v is a sequence of edges that starts at vertex u, moves along adjacent edges, and ends in v.
- Example: u, x, y, w is a path, but u, y, v and u, a, x are not.
- Length of a path is the number of edges traversed, e.g., length of u, x, y, w is 3.
- A simple path is a path that does not repeat any edges.
- u, x, y, w is a simple path but u, x, u is not.
Circuits

- A circuit is a path that begins and ends in the same vertex.
- u, x, y, z, u and u, x, y, u are both circuits.
- A simple circuit does not contain the same edge more than once.
- u, x, y, w is a simple circuit, but u, x, y, z, u is not.
- Length of a circuit is the number of edges it contains, e.g., length of u, x, y, u is 3.
- In this class, we only consider circuits of length 3 or more.

Proof

Prove: If a graph has an odd length circuit, then it also has an odd length cycle.

- **Proof by strong induction on the length of the circuit.**

Proof, cont.

Prove: If a graph has an odd length circuit, then it also has an odd length cycle.

Example

- **Prove:** If a graph has an odd length circuit, then it also has an odd length cycle.
 - **Huh?** Recall that not every circuit is a cycle.
 - According to this theorem, if we can find an odd length circuit, we can also find odd length cycle.
 - **Example:** d, c, a, b, c, d is an odd length circuit, but graph also contains odd length cycle.

Cycles

- A cycle is a simple circuit with no repeated vertices other than the first and last ones.
- For instance, u, x, a, b, x, y, u is a circuit but not a cycle.
- However, u, x, y, u is a cycle.

Proof, cont.

Prove: If a graph has an odd length circuit, then it also has an odd length cycle.
Colorability and Cycles

Prove: If a graph is 2-colorable, then all cycles are of even length.

Example

Is this graph 2-colorable?

Distance Between Vertices

- The distance between two vertices \(u \) and \(v \) is the length of the shortest path between \(u \) and \(v \).
- What is the distance between \(u \) and \(b \)?
- What is the distance between \(u \) and \(x \)?
- What is the distance between \(x \) and \(w \)?

More Colorability and Cycles

Prove: If graph has no odd length cycles, then graph is 2-colorable.

The Algorithm

- Pick any vertex \(v \) in the graph.
- If a vertex \(u \) has odd distance from \(v \), color it blue.
- Otherwise, color it red.

Proof

- We will now prove: "If the graph does not have odd length cycles, the algorithm is correct."
- Correctness of the algorithm implies graph is 2-colorable.
- Proof by contradiction.
- Suppose graph does not have odd length cycles, but the algorithm produces an invalid coloring.
- Means there exist two vertices \(x \) and \(y \) that are assigned the same color.
Proof, cont.

- **Case 1**: They are both assigned red
 - We know n, m are both even
 - This means we now have an odd-length circuit involving n, m
 - By theorem from earlier, this implies that graph has odd length cycle, i.e., contradiction
 - Case 2 is exactly the same.

Putting It All Together

- **Theorem**: A graph is 2-colorable if and only if it does not have odd-length cycles
- **Corollary**: A graph is bipartite if and only if it does not have odd-length cycles
- **Example**: Consider a graph G with vertices a, b, c, d, e, f
 - Is G bipartite if its edges are $(a, b), (a, c), (a, d), (a, e), (a, f)$?
 - What about if its edges are $(a, f), (e, f), (e, d), (e, c), (a, c)$?