Introduction to Mathematical Induction

- Many mathematical theorems assert that a property holds for all natural numbers, odd positive integers, etc.
- Mathematical induction: very important proof technique for proving such universally quantified statements
- Induction will come up over and over again in other classes: algorithms, programming languages, automata theory, etc.

Analogy

- Suppose we have an infinite ladder, and we know two things:
 1. We can reach the first rung of the ladder
 2. If we reach a particular rung, then we can also reach the next rung
- From these two facts, can we conclude we can reach every step of the infinite ladder?
- Answer is yes, and mathematical induction allows us to make arguments like this

Mathematical Induction

- Used to prove statements of the form \(\forall x \in \mathbb{Z}^+ \cdot P(x) \)
- An inductive proof has two steps:
 1. Base case: Prove that \(P(1) \) is true
 2. Inductive step: Prove \(\forall n \in \mathbb{Z}^+ \cdot P(n) \rightarrow P(n+1) \)
- Induction says if you can prove (1) and (2), you can conclude: \(\forall x \in \mathbb{Z}^+ \cdot P(x) \)

Example 1

- Prove the following statement by induction:
 \[\forall n \in \mathbb{Z}^+. \sum_{i=1}^{n} i = \frac{(n)(n+1)}{2} \]
- Base case: \(n = 1 \). In this case, \(\sum_{i=1}^{1} i = 1 \) and \(\frac{(1)(1+1)}{2} = 1 \); thus, the base case holds.
- Inductive step: By the inductive hypothesis, we assume \(P(k) \):
 \[\sum_{i=1}^{k} i = \frac{k(k+1)}{2} \]
 Now, we want to show \(P(k+1) \):
 \[\sum_{i=1}^{k+1} i = \frac{(k+1)(k+2)}{2} \]
Example 1, cont.

- First, observe:
 \[\sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k+1) \]

- By the inductive hypothesis, \(\sum_{i=1}^{k} i = \frac{k(k+1)}{2} \); thus:
 \[\sum_{i=1}^{k+1} i = \frac{k(k+1)}{2} + (k+1) \]

- Rewrite left hand side as:
 \[\sum_{i=1}^{k+1} i = \frac{k^2 + 3k + 2}{2} = \frac{(k+1)(k+2)}{2} \]

- Since we proved both base case and inductive step, property holds.

Example 2

- Prove the following statement for all non-negative integers \(n \):
 \[\sum_{i=0}^{n} 2^i = 2^{n+1} - 1 \]

- Since need to show for all \(n \geq 0 \), base case is \(P(0) \), not \(P(1) \)!

- Base case (\(n = 0 \)): \(2^0 = 1 = 2^1 - 1 \)

- Inductive step:
 \[\sum_{i=0}^{k+1} 2^i = \sum_{i=0}^{k} 2^i + 2^{k+1} \]

Example 3

- Prove that \(2^n < n! \) for all integers \(n \geq 4 \)

- Easy to make subtle errors when trying to prove things by induction – pay attention to details!

- Consider the statement: All horses have the same color

- What is wrong with the following \textit{bogus proof} of this statement?

- \(P(n) \): A collection of \(n \) horses have the same color

- Base case: \(P(1) \) ✓

Example 4

- Prove that \(3 \mid (n^3 - n) \) for all positive integers \(n \).
Bogus Proof, cont.

- **Induction:** Assume $P(k)$; prove $P(k + 1)$
- Consider a collection of $k + 1$ horses: $h_1, h_2, \ldots, h_{k+1}$
- By IH, h_1, h_2, \ldots, h_k have the same color; let this color be c
- By IH, h_2, \ldots, h_{k+1} have same color; call this color c'
- Since h_2 has color c and c', we have $c = c'$
- Thus, $h_3, h_2, \ldots, h_{k+1}$ also have same color
- What’s the fallacy?

Strong Induction

- Slight variation on the inductive proof technique is **strong induction**
- Regular and strong induction only differ in the inductive step
 - **Regular induction:** assume $P(k)$ holds and prove $P(k + 1)$
 - **Strong induction:** assume $P(1), P(2), \ldots, P(k)$; prove $P(k + 1)$
- Strong induction can be viewed as standard induction with strengthened inductive hypothesis!

Example, cont.

- Let’s use a stronger predicate:

 $$Q(n) = \sum_{i=1}^{n} 2i - 1 = n^2$$

 - Clearly $Q(n) \rightarrow P(n)$
 - Now, prove $\forall n \in \mathbb{Z}+. Q(n)$ using induction!

Motivation for Strong Induction

- Prove that if n is an integer greater than 1, then it is either a prime or can be written as the product of primes.
- Let’s first try to prove the property using regular induction.
 - **Base case ($n=2$):** Since 2 is a prime number, $P(2)$ holds.
 - **Inductive step:** Assume k is either a prime or the product of primes.
 - But this doesn’t really help us prove the property about $k + 1$
 - Claim is proven much easier using strong induction!

Strengthening the Inductive Hypothesis

- Suppose we want to prove $\forall x \in \mathbb{Z}^+. P(x)$, but proof doesn’t go through
 - **Common trick:** Prove a stronger property $Q(x)$
 - If $\forall x \in \mathbb{Z}^+. Q(x) \rightarrow P(x)$ and $\forall x \in \mathbb{Z}^+. Q(x)$ is provable, this implies $\forall x \in \mathbb{Z}^+. P(x)$
 - In many situations, strengthening inductive hypothesis allows proof to go through!

Example

- Prove the following theorem: “For all $n \geq 1$, the sum of the first n odd numbers is a perfect square.”
- We want to prove $\forall x \in \mathbb{Z}+. P(x)$ where:

 $$P(n) = \sum_{i=1}^{n} 2i - 1 = k^2$$

 for some integer k

 - Try to prove this using induction...

Claim is proven much easier using strong induction!
Proof Using Strong Induction

Prove that if \(n \) is an integer greater than 1, then it is either a prime or can be written as the product of primes.

▶ Base case: same as before.
▶ Inductive step: Assume each of 2, 3, \ldots, \(k \) is either prime or product of primes.
▶ Now, we want to prove the same thing about \(k+1 \)
▶ Two cases: \(k \) is either (i) prime or (ii) composite
▶ If it is prime, property holds.

Proof, cont.

▶ If composite, \(k+1 \) can be written as \(pq \) where \(2 \leq p, q \leq k \)
▶ By the IH, \(p, q \) are either primes or product of primes.
▶ Thus, \(k+1 \) can also be written as product of primes
▶ Observe: Much easier to prove this property using strong induction!

A Word about Base Cases

▶ In all examples so far, we had only one base case
▶ i.e., only proved the base case for one integer
▶ In some inductive proofs, there may be multiple base cases
▶ i.e., prove base case for the first \(k \) numbers
▶ In the latter case, inductive step only needs to consider numbers greater than \(k \)

Example

▶ Prove that every integer \(n \geq 12 \) can be written as \(n = 4a + 5b \) for some non-negative integers \(a, b \).
▶ Proof by strong induction on \(n \) and consider 4 base cases
▶ Base case 1 (\(n=12 \)): \(12 = 3 \cdot 4 + 0 \cdot 5 \)
▶ Base case 2 (\(n=13 \)): \(13 = 2 \cdot 4 + 1 \cdot 5 \)
▶ Base case 3 (\(n=14 \)): \(14 = 1 \cdot 4 + 2 \cdot 5 \)
▶ Base case 4 (\(n=15 \)): \(15 = 0 \cdot 4 + 3 \cdot 5 \)

Example, cont.

Prove that every integer \(n \geq 12 \) can be written as \(n = 4a + 5b \) for some non-negative integers \(a, b \).

▶ Inductive hypothesis: Suppose every \(12 \leq i \leq k \) can be written as \(i = 4a + 5b \).
▶ Inductive step: We want to show \(k+1 \) can also be written this way for \(k + 1 \geq 16 \)
▶ Observe: \(k + 1 = (k - 3) + 4 \)
▶ By the inductive hypothesis, \(k - 3 = 4a + 5b \) for some \(a, b \) because \(k - 3 \geq 12 \)
▶ But then, \(k + 1 \) can be written as \(4(a + 1) + 5b \)

Matchstick Example

▶ The Matchstick game: There are two piles with same number of matches initially
▶ Two players take turns removing any positive number of matches from one of the two piles
▶ Player who removes the last match wins the game
▶ Prove: Second player always has a winning strategy.
Matchstick Proof

- $P(n)$: Player 2 has winning strategy if initially n matches in each pile
- Base case:
- Induction: Assume $\forall j. 1 \leq j \leq k \rightarrow P(j)$; show $P(k + 1)$
- Inductive hypothesis:
- Prove Player 2 wins if each pile contains $k + 1$ matches

Matchstick Proof, cont.

- Case 1: Player 1 takes $k + 1$ matches from one of the piles.
- What is winning strategy for player 2
- Case 2: Player 1 takes r matches from one pile, where $1 \leq r \leq k$
- Now, player 2 takes r matches from other pile
- Now, the inductive hypothesis applies \Rightarrow player 2 has winning strategy for rest of the game