Recursive Definitions

- Should be familiar with recursive functions from programming:

  ```java
  public int fact(int n) {
    if(n <= 1) return 1;
    return n * fact(n - 1);
  }
  ```

- Recursive definitions are also used in math for defining sets, functions, sequences etc.

Recursive Definitions in Math

- Consider the following sequence:

 \[1, 3, 9, 27, 81, \ldots \]

- This sequence can be defined recursively as follows:

 \[
 \begin{align*}
 a_0 &= 1 \\
 a_n &= 3 \cdot a_{n-1}
 \end{align*}
 \]

- First part called base case; second part called recursive step

- Very similar to induction; in fact, recursive definitions sometimes also called inductive definitions

Recursively Defined Functions

- Just like sequences, functions can also be defined recursively

- Example:

 \[
 \begin{align*}
 f(0) &= 3 \\
 f(n+1) &= 2f(n) + 3 \quad (n \geq 1)
 \end{align*}
 \]

- What is \(f(1) \)?
- What is \(f(2) \)?
- What is \(f(3) \)?

Recursive Definition Examples

- Consider \(f(n) = 2n + 1 \) where \(n \) is non-negative integer

- What’s a recursive definition for \(f \)?

- Consider the sequence \(1, 4, 9, 16, \ldots \)

- What is a recursive definition for this sequence?

- Recursive definition of function defined as \(f(n) = \sum_{i=1}^{n} i \)?

Recursive Definitions of Important Functions

- Some important functions/sequences defined recursively

- Factorial function:

 \[
 \begin{align*}
 f(1) &= 1 \\
 f(n) &= n \cdot f(n-1) \quad (n \geq 2)
 \end{align*}
 \]

- Fibonacci numbers: \(1, 1, 2, 3, 5, 8, 13, 21, \ldots \)

 \[
 \begin{align*}
 a_1 &= 1 \\
 a_2 &= 1 \\
 a_n &= a_{n-1} + a_{n-2} \quad (n \geq 3)
 \end{align*}
 \]

- Just like there can be multiple bases cases in inductive proofs, there can be multiple base cases in recursive definitions
Inductive Proofs for Recursively Defined Structures

- Recursive definitions and inductive proofs are very similar
- Natural to use induction to prove properties about recursively defined structures (sequences, functions etc.)
- Consider the recursive definition:
 \[
 f(0) = 1 \\
 f(n) = f(n-1) + 2
 \]
- Prove that \(f(n) = 2n + 1 \)

Example, cont.

Prove: For \(n \geq 3 \), \(f_n > \alpha^{n-2} \) where \(\alpha = \frac{1+\sqrt{5}}{2} \)

- Inductive step: Assuming property holds for \(f_i \) where \(3 \leq i \leq k \), need to show \(f_{k+1} > \alpha^{k-1} \)
- First, rewrite \(\alpha^{k-1} \) as \(\alpha^2 \alpha^{k-3} \)
- \(\alpha^2 = \left(\frac{1+\sqrt{5}}{2} \right)^2 = \frac{\sqrt{5}+3}{2} = \alpha + 1 \)
- Thus, \(\alpha^{k-1} = (\alpha + 1)(\alpha^{k-3}) = \alpha^{k-2} + \alpha^{k-3} \)

Example

- Let \(f_n \) be \(n \)’th element in the Fibonacci sequence \((n \geq 1) \)
- Prove: For \(n \geq 3 \), \(f_n > \alpha^{n-2} \) where \(\alpha = \frac{1+\sqrt{5}}{2} \)
- Proof is by strong induction on \(n \) with two base cases
 - Intuition 1: Definition of \(f_n \) has two base cases
 - Intuition 2: Recursive step uses \(f_{n-1}, f_{n-2} \) ⇒ strong induction
- Base case 1 \((n=3) \): \(f_3 = 2 \) and \(\alpha < 2 \), thus \(f_3 > \alpha \)
- Base case 2 \((n=4) \): \(f_4 = 3 \) and \(\alpha^2 = \frac{(3+\sqrt{5})}{2} < 3 \)

More Examples

- Give a recursive definition of the set \(E \) of all even integers:
 - Base case:
 - Recursive step:
- Give a recursive definition of the set \(I \) of inverses of \(2 \mod 5 \):
 - Base case:
 - Recursive step:
Strings and Alphabets

- Recursive definitions play an important role in the study of strings.
- Strings are defined over an alphabet \(\Sigma \).
 - Example: \(\Sigma_1 = \{a, b\} \)
 - Example: \(\Sigma_2 = \{0\} \)
- Examples of strings over \(\Sigma_1 \):
 - a, b, aa, ab, ba, bb, ...
- Set of all strings formed from \(\Sigma \) forms a language called \(\Sigma^* \).
 - \(\Sigma^*_2 = \{\epsilon, 0, 00, 000, \ldots\} \)

Recursive Definition of Strings

- The language \(\Sigma^* \) has a natural recursive definition:
 - **Base case:** \(\epsilon \in \Sigma^* \) (empty string)
 - **Recursive step:** If \(w \in \Sigma^* \) and \(x \in \Sigma \), then \(wx \in \Sigma^* \)
- Since \(\epsilon \) is the empty string, \(\epsilon s = s \)
- Consider the alphabet \(\Sigma = \{0, 1\} \)
- How is the string "1" formed according to this definition?
- How is "10" formed?

Recursive Definitions of String Operations

- Many operations on strings can be defined recursively.
- Consider function \(l(w) \) which yields the length of string \(w \).
- Example: Give a recursive definition of \(l(w) \):
 - **Base case:**
 - **Recursive step:**

Another Example

- The reverse of a string \(s \) is \(s \) written backwards.
- Example: Reverse of "abc" is "cba"
- Give a recursive definition of the reverse(\(s \)) operation:
 - **Base case:**
 - **Recursive step:**

Palindromes

- A palindrome is a string that reads the same forwards and backwards.
- Examples: "mom", "dad", "abba", "Madam I'm Adam", ...
- Give a recursive definition of the set \(P \) of all palindromes over the alphabet \(\Sigma = \{0, 1\} \):
 - **Base case:**
 - **Recursive step:**

Bitstrings

- A bitstring is a string over the alphabet \(\{0, 1\} \).
- Give a recursive definition of the set \(S \) of bitstrings that contain equal number of 0’s and 1’s.
 - **Base case:**
 - **Recursion:**