Divide-and-Conquer Algorithms and The Master Theorem

Instructor: İsıl Dillig

Divide-and-Conquer Algorithms

▶ Divide-and-conquer algorithms are recursive algorithms that:
1. Divide problem into \(k \) smaller subproblems of the same form
2. Solve the subproblems
3. Conquer the original problem by combining solutions of subproblems

Example I: Binary Search

▶ Problem: Given sorted array of integers, is \(i \) in the array?
▶ Binary search algorithm:
1. Compare \(i \) with middle element \(m \) of array
2. If \(i > m \), then recursively search right half
3. Otherwise, recursively search left half
▶ Classic divide-and-conquer algorithm

Solving Recurrence for Binary Search

\[
T(n) = T\left(\frac{n}{2}\right) + 1 \quad T(1) = 1
\]
▶ Not in a form we can immediately solve, but can massage it!
▶ Let \(n = 2^k \): \(T(2^k) = T(2^{k-1}) + 1 \)
▶ Now, let \(\alpha_k = T(2^k) \): \(\alpha_k = \alpha_{k-1} + 1 \) \(\alpha_0 = 1 \)
▶ What’s the solution for this recurrence?
▶ Since \(n = 2^k \), this implies \(T(n) = \log_2 n + 1 \)
▶ Hence, complexity of binary search: \(\Theta(\log n) \)

Example II: Merge Sort

▶ Problem: Sort elements in array
▶ Merge sort solution:
1. Recursively sort left half of array
2. Recursively sort right half of array
3. Merge the two sorted arrays
How to Merge Two Sorted Arrays?

- **Input:** Two sorted arrays \(A_1, A_2 \)
- **Output:** New sorted array that includes all elements in \(A_1, A_2 \)
- **Idea:** Pointers to current elements in \(A_1, A_2 \) (initially first)
- **Copy smaller element to output array and advance pointer**
- If combined size of \(A_1, A_2 \) is \(n \), merging takes \(4n \) steps

Recurrence Relation for Merge Sort

- What is worst-case complexity of Merge Sort?
- Let \(T(n) \) be \(\# \) operations performed to sort array of length \(n \)
- What is a recurrence relation for \(T(n) \)?
- As before, let \(n = 2^k \):

Solving Recurrence Relation

- \(a_k = 2 \cdot a_{k-1} + 4 \cdot 2^k \) \(a_0 = 1 \)
- **Particular solution form:**
- **Particular solution:**
- **Solution for homogeneous recurrence:**
- **Solve for \(\alpha \):** \(\alpha \cdot 2^0 + 0 \cdot 2^1 = 1 \Rightarrow \alpha = 1 \)
- **Solution:**
- **Plug in \(k = \log_2 n \):**
- **Hence, algorithm is \(\Theta(n \cdot \log n) \)**

The Master Theorem

Consider the recurrence \(T(n) = a \cdot T(\frac{n}{b}) + f(n) \) where \(a, c \geq 1 \), \(d \geq 0 \), and \(b > 1 \). Then:

1. **If \(c \cdot b^d \) \(\leq a \)**, then \(T(n) = \Theta(n^d) \)
2. **If \(c \cdot b^d \) \(= a \)**, then \(T(n) = \Theta(n \cdot \log(n)) \)
3. **If \(c \cdot b^d \) \(> a \)**, then \(T(n) = \Theta(n^{\log_b(a)}) \)

Revisiting Examples

- **Example 1:** Recurrence for binary search: \(T(n) = T(\frac{n}{2}) + 1 \)
 - Here, \(a = 1, b = 2, d = 0 \), Hence \(a = b^d \)
 - By Case 2 of Master Thm, \(T(n) = \Theta(n^{0} \log n) = \Theta(\log n) \)
- **Example 2:** Recurrence for merge sort: \(T(n) = 2 \cdot T(\frac{n}{2}) + 4n \)
 - Here, \(a = 2, b = 2, d = 1 \), Hence \(a = b^d \)
 - By Case 2 of Master Thm, \(T(n) = \Theta(n \cdot \log n) \)
Why is the Master Theorem True?

Consider the recurrence $T(n) = a \cdot T(\frac{n}{b}) + c \cdot n^d$

- At every level of recursion, # subproblems multiplied by a
- But size of subproblem divided by b

Total Cost

$T(n) = \Theta(n^{\log_b a}) + \sum_{i=0}^{\log_b n-1} a^i \cdot c \cdot (\frac{n}{b^i})^d$

Can be rewritten as:

$T(n) = \Theta(n^{\log_b a}) + \sum_{i=0}^{\log_b n-1} a^i \cdot c \cdot (\frac{n}{b^i})^d$

Proof of Master Theorem, cont.

- Total amount of work:

$T(n) = \Theta(n^{\log_b a}) + \sum_{i=0}^{\log_b n-1} c \cdot (\frac{n}{b^i})^d$
Proof of Master Theorem, cont.

\[T(n) = \Theta(n^{\log_b a}) + \sum_{i=0}^{\log_b n - 1} c \cdot \left(\frac{a}{b^d} \right)^i \cdot n^d \]

- **Case 3:** \(a > b^d \). In this case, \(n^{\log_b a} > n^d \).
- Use closed formula for geometric series to expand summation:
 \[c \cdot n^d \cdot \frac{1 - \left(\frac{a}{b^d} \right)^{\log_b n - 1}}{1 - \frac{a}{b^d}} \]
- This can be rewritten to \(c' \left(a^{\log_b n} - n^d \right) \) for some constant \(c' \)
- Since, \(a^{\log_b n} = n^{\log_b a} \), \(T(n) \) is \(\Theta(n^{\log_b a}) \)

Final Logistics

- Final exam: 9 am to noon on Tuesday, December 15.
- Final is cumulative!
- Allowed to bring up to 10 cheat sheets
- Good luck on finals and have a wonderful winter break!