Divide-and-Conquer Algorithms

Divide-and-Conquer algorithms are recursive algorithms that:

1. **Divide** problem into \(k \) smaller subproblems of the same form
2. **Solve** the subproblems
3. **Conquer** the original problem by combining solutions of subproblems

Example I: Binary Search

- **Problem:** Given sorted array of integers, is \(i \) in the array?
- **Binary search algorithm:**
 1. Compare \(i \) with middle element \(m \) of array
 2. If \(i > m \), then recursively search right half
 3. Otherwise, recursively search left half
- **Classic divide-and-conquer algorithm**

Example II: Merge Sort

- **Problem:** Sort elements in array
- **Merge sort solution:**
 1. Recursively sort left half of array
 2. Recursively sort right half of array
 3. Merge the two sorted arrays

Solving Recurrence for Binary Search

\[T(n) = T\left(\frac{n}{2}\right) + 1 \quad T(1) = 1 \]

- Not in a form we can immediately solve, but can massage it!
- Let \(n = 2^k \):
 \[T(2^k) = T(2^{k-1}) + 1 \]
- Now, let \(a_k = T(2^k) \): \(a_k = a_{k-1} + 1 \) \(a_0 = 1 \)
- What’s the solution for this recurrence?
- Since \(n = 2^k \), this implies \(T(n) = \log_2 n + 1 \)
- Hence, complexity of binary search: \(\Theta(\log n) \)
How to Merge Two Sorted Arrays?

- **Input:** Two sorted arrays A_1, A_2
- **Output:** New sorted array that includes all elements in A_1, A_2
- **Idea:** Pointers to current elements in A_1, A_2 (initially first)
- **Copy smaller element to output array and advance pointer**
- If combined size of A_1, A_2 is n, merging takes $4n$ steps (compare, advance two pointers, copy)

Recurrence Relation for Merge Sort

- What is worst-case complexity of Merge Sort?
- Let $T(n)$ be $\#$ operations performed to sort array of length n
- What is a recurrence relation for $T(n)$?
- As before, let $n = 2^k$:

Solving Recurrence Relation

$$a_k = 2 \cdot a_{k-1} + 4 \cdot 2^k \quad a_0 = 1$$

- Particular solution form:
- Particular solution:
- Solution for homogeneous recurrence:
- Solve for α: $\alpha \cdot 2^0 + 0 \cdot 2^1 = 1 \Rightarrow \alpha = 1$
- Solution:
- Plug in $k = \log_2 n$:
- Hence, algorithm is $\Theta(n \cdot \log n)$

The Master Theorem

Consider the recurrence $T(n) = a \cdot T(\frac{n}{b}) + c \cdot n^d$ where $a, c \geq 1, d \geq 0$, and $b > 1$. Then:

1. $T(n)$ is $\Theta(n^d)$ if $a < b^d$
2. $T(n)$ is $\Theta(n^d \log n)$ if $a = b^d$
3. $T(n)$ is $\Theta(n^{\log_b a})$ if $a > b^d$

Revisiting Examples

- **Example 1:** Recurrence for binary search: $T(n) = T(\frac{n}{2}) + 1$
 - Here, $a = 1, b = 2, d = 0$, Hence $a = b^d$
 - By Case 2 of Master Thm, $T(n) = \Theta(n^{\log n}) = \Theta(\log n)$

- **Example 2:** Recurrence for merge sort: $T(n) = 2 \cdot T(\frac{n}{2}) + 4n$
 - Here, $a = 2, b = 2, d = 1$, Hence $a = b^d$
 - By Case 2 of Master Thm, $T(n) = \Theta(n \cdot \log n)$
More Examples

- Example 3: Consider recurrence \(T(n) = 2 \cdot T\left(\frac{n}{2}\right) + 3 \)
- Example 4: Consider recurrence \(T(n) = T\left(\frac{n}{2}\right) + n^2 \)

Proof of Master Theorem

- What is the height \(h \) of this tree?
- Since problem size is 1 in base case, \(\frac{n}{b} = 1 \Rightarrow h = \log_b n \)
- At the \(i \)'th level, we have \(a^i \) subproblems, hence \(a^{\log_b n} \) leaves
- Equal to \(n^{\log_b a} \) - verify by taking \(\log_b \) of both sides

Proof of Master Theorem, cont.

\[T(n) = \Theta(n^{\log_b a}) + \sum_{i=0}^{\log_b n-1} c \cdot \left(\frac{a}{b}\right)^i \cdot n^d \]

- Case 1: \(\frac{a}{b} < 1 \). In this case, \(T(n) \) is of the form:
 \[T(n) = \Theta(n^{\log_b a}) + c \cdot n^d \cdot \sum_{i=0}^{\log_b n-1} r^i \quad \text{for} \quad |r| < 1 \]
- Hence: \(T(n) = \Theta(n^{\log_b a}) + \Theta(n^d) \)
- Since \(\frac{a}{b} < 1 \), we have \(\log_b a - d < 1 \). Thus \(T(n) = \Theta(n^d) \)

Why is the Master Theorem True?

Consider the recurrence \(T(n) = a \cdot T\left(\frac{n}{b}\right) + c \cdot n^d \)

- At every level of recursion, \# subproblems multiplied by \(a \)
- But size of subproblem divided by \(b \)
- Let \(f(n) \) be \(c \cdot n^d \)

Total amount of work:

\[T(n) = \Theta(n^{\log_b a}) + \sum_{i=0}^{\log_b n-1} a^i \cdot c \cdot \left(\frac{n}{b}\right)^i \cdot n^d \]

Can be rewritten as:

\[T(n) = \Theta(n^{\log_b a}) + \sum_{i=0}^{\log_b n-1} c \cdot \left(\frac{a}{b}\right)^i \cdot n^d \]
Proof of Master Theorem, cont.

\[T(n) = \Theta(n^{\log_b a}) + \sum_{i=0}^{\log_b n - 1} c \cdot \left(\frac{a}{b^d} \right)^i \cdot n^d \]

- **Case 3**: \(a > b^d \). In this case, \(n^{\log_b a} > n^d \).

 - Use closed formula for geometric series to expand summation:

 \[c \cdot n^d \cdot \frac{a}{b^d} \cdot \frac{1 - \left(\frac{a}{b^d} \right)^{\log_b n - 1}}{1 - \frac{a}{b^d}} \]

 - This can be rewritten to \(c_1 a^{\log_b n} + c_2 n^d \) for some constants \(c_1, c_2 \).

 - Since \(a^{\log_b n} = n^{\log_b a} \), \(T(n) \) is \(\Theta(n^{\log_b a}) \).