CS311H: Discrete Mathematics

Number Theory

Instructor: İslil Dillig

Announcements

- Midterm grades posted on Canvas
- Mean: 47/65 (72%)
- Standard deviation: 9
- Talk with me if you are concerned about grade!

Number Theory Review

- What does it mean for two ints a, b to be congruent mod m?
- What is the Division theorem?
- If $a | b$ and $a | c$, does it mean $b | c$?

Prime Numbers

- A positive integer p that is greater than 1 and divisible only by 1 and itself is called a prime number.
- First few primes: 2, 3, 5, 7, 11,
- A positive integer that is greater than 1 and that is not prime is called a composite number
- Example: 4, 6, 8, 9,

Fundamental Theorem of Arithmetic

- Fundamental Thm: Every positive integer greater than 1 is either prime or can be written uniquely as a product of primes.
- This unique product of prime numbers for x is called the prime factorization of x
- Examples:
 - $12 =$
 - $21 =$
 - $99 =$

Determining Prime-ness

- Theorem: If n is composite, then it has a prime divisor less than or equal to \sqrt{n}
-
-
-

Consequence of This Theorem

Theorem: If \(n \) is composite, then it has a prime divisor \(\leq \sqrt{n} \)

- Thus, to determine if \(n \) is prime, only need to check if it is divisible by primes \(\leq \sqrt{n} \)
- **Example:** Show that 101 is prime
 - Since \(\sqrt{101} < 11 \), only need to check if it is divisible by \(2, 3, 5, 7 \).
 - Since it is not divisible by any of these, we know it is prime.

Infinitely Many Primes

Theorem: There are infinitely many prime numbers.

- Proof: (by contradiction) Suppose there are finitely many primes: \(p_1, p_2, ..., p_n \)
 - Now consider the number \(Q = p_1 p_2 ... p_n + 1 \). \(Q \) is either prime or composite
 - **Case 1:** \(Q \) is prime. We get a contradiction, because we assumed only prime numbers are \(p_1, ..., p_n \)
 - **Case 2:** \(Q \) is composite. In this case, \(Q \) can be written as product of primes.
 - But \(Q \) is not divisible by any of \(p_1, p_2, ..., p_n \)
 - Hence, by Fundamental Thm, not composite ⇒ \(\bot \)

A Word about Prime Numbers and Cryptography

- Prime numbers play a key role in modern cryptography – rely on prime numbers to encrypt messages
- Security of encryption relies on prime factorization being intractable for sufficiently large numbers
- More on this later!

Greatest Common Divisors

- Suppose \(a \) and \(b \) are integers, not both 0.
 - Then, the largest integer \(d \) such that \(d | a \) and \(d | b \) is called **greatest common divisor** of \(a \) and \(b \), written \(\gcd(a, b) \).
 - **Example:** \(\gcd(24, 36) = 12 \)
 - **Example:** \(\gcd(2^35^2, 2^33) = 8 \)
 - **Example:** \(\gcd(14, 25) = 1 \)
 - Two numbers whose gcd is 1 are called **relatively prime**
 - **Example:** 14 and 25 are relatively prime

Least Common Multiple

- The least common multiple of \(a \) and \(b \), written \(\lcm(a, b) \), is the smallest integer \(c \) such that \(a | c \) and \(b | c \).
- **Example:** \(\lcm(9, 12) = 36 \)
 - **Example:** \(\lcm(2^33^57^2, 2^33^3) = 936 \)

Theorem about LCM and GCD

- **Theorem:** Let \(a \) and \(b \) be positive integers. Then, \(ab = \gcd(a, b) \cdot \lcm(a, b) \)
 - Proof: Let \(a = p_1^{i_1}p_2^{i_2}...p_k^{i_k} \) and \(b = p_1^{j_1}p_2^{j_2}...p_k^{j_k} \)
 - Then, \(ab = p_1^{i_1+j_1}p_2^{i_2+j_2}...p_k^{i_k+j_k} \)
 - \(\gcd(a, b) = p_1^{\min(i_1,j_1)}p_2^{\min(i_2,j_2)}...p_k^{\min(i_k,j_k)} \)
 - \(\lcm(a, b) = p_1^{\max(i_1,j_1)}p_2^{\max(i_2,j_2)}...p_k^{\max(i_k,j_k)} \)
 - Thus, we need to show \(i_k + j_k = \min(i_k, j_k) + \max(i_k, j_k) \)
Proof, cont.

- Show $i_k + j_k = \min(i_k, j_k) + \max(i_k, j_k)$

Computing GCDs

- Simple algorithm to compute gcd of a, b:
 - Factorize a as $p_1^{i_1} p_2^{i_2} \ldots p_n^{i_n}$
 - Factorize b as $p_1^{j_1} p_2^{j_2} \ldots p_n^{j_n}$
 - $\gcd(a, b) = p_1^{\min(i_1, j_1)} p_2^{\min(i_2, j_2)} \ldots p_n^{\min(i_n, j_n)}$
 - But this algorithm is not good because prime factorization is computationally expensive! (not polynomial time)
 - Much more efficient algorithm to compute gcd, called the Euclidian algorithm

Insight Behind Euclid’s Algorithm

- Theorem: Let $a = bq + r$. Then, $\gcd(a, b) = \gcd(b, r)$
 - e.g., Consider $a = 12, b = 8$ and $a = 12, b = 5$
 - Proof: We’ll show that a, b and b, r have the same common divisors – implies they have the same gcd.
 - Suppose d is a common divisor of a, b, i.e., $d | a$ and $d | b$
 - By theorem we proved earlier, this implies $d | a - bq$
 - Since $a - bq = r$, $d | r$. Hence d is common divisor of b, r.
 - Now, suppose $d | b$ and $d | r$. Then, $d | bq + r$
 - Hence, $d | a$ and d is common divisor of a, b

Using this Theorem

- Theorem: Let $a = bq + r$. Then, $\gcd(a, b) = \gcd(b, r)$
 - Suggests following recursive strategy to compute $\gcd(a, b)$:
 - Base case: If b is 0, then gcd is a
 - Recursive case: Compute $\gcd(b, a \mod b)$
 - Claim: We’ll eventually hit base case – why?

Euclidian Algorithm

- Find gcd of 72 and 20
 - $12 = 72 \% 20$
 - $8 = 20 \% 12$
 - $4 = 12 \% 8$
 - $0 = 8 \% 4$
 - gcd is 4!

Euclidian Algorithm Example

- Find gcd of 662 and 414
 - $248 = 662 \% 414$
 - $166 = 414 \% 248$
 - $82 = 248 \% 166$
 - $2 = 166 \% 82$
 - $0 = 82 \% 2$
 - gcd is 2!
GCD as Linear Combination

- \(\gcd(a, b) \) can be expressed as a linear combination of \(a \) and \(b \).
- **Theorem:** If \(a \) and \(b \) are positive integers, then there exist integers \(s \) and \(t \) such that:
 \[
 \gcd(a, b) = s \cdot a + t \cdot b
 \]
- Furthermore, Euclidean algorithm gives us a way to compute these integers \(s \) and \(t \) (known as extended Euclidean algorithm).

Example

- **Express** \(\gcd(72, 20) \) as a linear combination of 72 and 20.
- **First apply Euclid’s algorithm** (write \(a = bq + r \) at each step):
 1. \(72 = 3 \cdot 20 + 12 \)
 2. \(20 = 1 \cdot 12 + 8 \)
 3. \(12 = 1 \cdot 8 + 4 \)
 4. \(8 = 2 \cdot 4 + 0 \Rightarrow \gcd \) is \(4 \)
- **Now, using (3), write** \(4 \) as \(12 - 1 \cdot 8 \).
- **Using (2), write** \(4 \) as \(12 - 1 \cdot (20 - 1 \cdot 12) = 2 \cdot 12 - 1 \cdot 20 \).
- **Using (1), we have** \(12 = 72 - 3 \cdot 20 \), thus:
 \[
 4 = 2 \cdot (72 - 3 \cdot 20) - 1 \cdot 20 = 2 \cdot 72 + (-7) \cdot 20
 \]

Exercise

Use the extended Euclid algorithm to compute \(\gcd(38, 16) \).

A Useful Result

- **Lemma:** If \(a, b \) are relatively prime and \(a \mid bc \), then \(a \mid c \).
- **Proof:** Since \(a, b \) are relatively prime \(\gcd(a, b) = 1 \)
 - By previous theorem, there exists \(s, t \) such that \(1 = s \cdot a + t \cdot b \)
 - Multiply both sides by \(c \): \(c = csa + ctb \)
 - By earlier theorem, since \(a \mid bc, a \mid cb \)
 - Also, by earlier theorem, \(a \mid csa \)
 - Therefore, \(a \mid csa + ctb \), which implies \(a \mid c \) since \(c = csa + ctb \)

Question

- **Suppose** \(ca \equiv cb \pmod{m} \). Does this imply \(a \equiv b \pmod{m} \)?
 - ▶
Another Useful Result

- **Theorem:** If \(ca \equiv cb \pmod{m} \) and \(\gcd(c, m) = 1 \), then \(a \equiv b \pmod{m} \)

Examples

- If \(15x \equiv 15y \pmod{4} \), is \(x \equiv y \pmod{4} \)?
- If \(8x \equiv 8y \pmod{4} \), is \(x \equiv y \pmod{4} \)?