Review

- What does it mean for two ints a, b to be congruent mod m?
- What is the Division theorem?
- If $a | b$ and $a | c$, does it mean $b | c$?
- What is the Fundamental Theorem of Arithmetic?

Computing GCDs

- Simple algorithm to compute gcd of a, b:
 - Factorize a as $p_1^{a_1} p_2^{a_2} \ldots p_n^{a_n}$
 - Factorize b as $p_1^{b_1} p_2^{b_2} \ldots p_n^{b_n}$
 - $\text{gcd}(a, b) = p_1^{\min(a_1, b_1)} p_2^{\min(a_2, b_2)} \ldots p_n^{\min(a_n, b_n)}$
- But this algorithm is not good because prime factorization is computationally expensive! (not polynomial time)
- Much more efficient algorithm to compute gcd, called the Euclidian algorithm

Insight Behind Euclid’s Algorithm

- Theorem: Let $a = bq + r$. Then, $\text{gcd}(a, b) = \text{gcd}(b, r)$
 - e.g., Consider $a = 12, b = 8$ and $a = 12, b = 5$
 - Proof: We’ll show that a, b and b, r have the same common divisors – implies they have the same gcd.
 - Suppose d is a common divisor of a, b, i.e., $d | a$ and $d | b$
 - By theorem we proved earlier, this implies $d | a - bq$
 - Since $a - bq = r$, $d | r$. Hence d is common divisor of b, r.
 - Now, suppose $d | b$ and $d | r$. Then, $d | bq + r$
 - Hence, $d | a$ and d is common divisor of a, b

Using this Theorem

- Theorem: Let $a = bq + r$. Then, $\text{gcd}(a, b) = \text{gcd}(b, r)$
 - Suggests following recursive strategy to compute $\text{gcd}(a, b)$:
 - Base case: If b is 0, then gcd is a
 - Recursive case: Compute $\text{gcd}(b, a \mod b)$
 - Claim: We’ll eventually hit base case – why?

Euclidian Algorithm

- Find gcd of 72 and 20
 - $12 = 72 \div 6$
 - $8 = 20 \div 4$
 - $4 = 12 \div 3$
 - $0 = 4 \div 1$
 - gcd is 4!
GCD as Linear Combination

- \(\gcd(a, b) \) can be expressed as a linear combination of \(a \) and \(b \)
- **Theorem**: If \(a \) and \(b \) are positive integers, then there exist integers \(s \) and \(t \) such that:
 \[
 \gcd(a, b) = s \cdot a + t \cdot b
 \]
- Furthermore, Euclidean algorithm gives us a way to compute these integers \(s \) and \(t \) (known as extended Euclidean algorithm)

Example

- Express \(\gcd(72, 20) \) as a linear combination of 72 and 20
- First apply Euclid’s algorithm (write \(a = bq + r \) at each step):
 1. \(72 = 3 \cdot 20 + 12 \)
 2. \(20 = 1 \cdot 12 + 8 \)
 3. \(12 = 1 \cdot 8 + 4 \)
 4. \(8 = 2 \cdot 4 + 0 \Rightarrow \gcd \text{ is } 4 \)
- Now, using (3), write 4 as \(12 - 1 \cdot 8 \)
- Using (2), write 4 as \(12 - 1 \cdot (20 - 1 \cdot 12) = 2 \cdot 12 - 1 \cdot 20 \)
- Using (1), we have \(12 = 72 - 3 \cdot 20 \), thus:
 \[
 4 = 2 \cdot (72 - 3 \cdot 20) - 1 \cdot 20 = 2 \cdot 72 + (-7) \cdot 20
 \]

Exercise

Use the extended Euclid algorithm to compute \(\gcd(38, 16) \).

A Useful Result

- **Lemma**: If \(a, b \) are relatively prime and \(a | bc \), then \(a | c \).
- **Proof**: Since \(a, b \) are relatively prime \(\gcd(a, b) = 1 \)
 - By previous theorem, there exists \(s, t \) such that \(1 = s \cdot a + t \cdot b \)
 - Multiply both sides by \(c: c = csa + ctb \)
 - By earlier theorem, since \(a | bc, a | ctb \)
 - Also, by earlier theorem, \(a | csa \)
 - Therefore, \(a | csa + ctb \), which implies \(a | c \) since \(c = csa + ctb \)

Question

- Suppose \(ca \equiv cb \pmod{m} \). Does this imply \(a \equiv b \pmod{m} \)?
Another Useful Result

- **Theorem:** If \(ca \equiv cb \pmod{m} \) and \(\gcd(c, m) = 1 \), then \(a \equiv b \pmod{m} \).

Examples

- If \(15x \equiv 15y \pmod{4} \), is \(x \equiv y \pmod{4} \)?
- If \(8x \equiv 8y \pmod{4} \), is \(x \equiv y \pmod{4} \)?

Linear Congruences

- A congruence of the form \(ax \equiv b \pmod{m} \) where \(a, b, m \) are integers and \(x \) a variable is called a linear congruence.
- Given such a linear congruence, often need to answer:
 1. Are there any solutions?
 2. What are the solutions?
- **Example:** Does \(8x \equiv 2 \pmod{4} \) have any solutions?
- **Example:** Does \(8x \equiv 2 \pmod{7} \) have any solutions?
- **Question:** Is there a systematic way to solve linear congruences?

Determining Existence of Solutions

- **Theorem:** The linear congruence \(ax \equiv b \pmod{m} \) has solutions iff \(\gcd(a, m) \mid b \).
- **Proof involves two steps:**
 1. If \(ax \equiv b \pmod{m} \) has solutions, then \(\gcd(a, m) \mid b \).
 2. If \(\gcd(a, m) \mid b \), then \(ax \equiv b \pmod{m} \) has solutions.
- **First prove (1), then (2).**

Proof, Part I

If \(ax \equiv b \pmod{m} \) has solutions, then \(\gcd(a, m) \mid b \).

Proof, Part II

If \(\gcd(a, m) \mid b \), then \(ax \equiv b \pmod{m} \) has solutions.

- Let \(d = \gcd(a, m) \) and suppose \(d \mid b \).
- Then, there is a \(k \) such that \(b = dk \).
- By earlier theorem, there exist \(s, t \) such that \(d = s \cdot a + t \cdot m \).
- Multiply both sides by \(k \): \(dk = a \cdot (sk) + m \cdot (tk) \).
- Since \(b = dk \), we have \(b \equiv a \cdot (sk) \pmod{m} \).
- Thus, \(b \equiv a \cdot (sk) \pmod{m} \).
- Hence, \(sk \) is a solution. \(\Box \)
Examples

- Does $5x \equiv 7 \pmod{15}$ have any solutions?
- Does $3x \equiv 4 \pmod{7}$ have any solutions?

Finding Solutions

- Can determine existence of solutions, but how to find them?
- Theorem: Let $d = \gcd(a, m) = sa + tm$. If $d | b$, then the solutions to $ax \equiv b \pmod{m}$ are given by:

 $x = \frac{sb}{d} + \frac{m}{d} u$ where $u \in \mathbb{Z}$

Example

Let $d = \gcd(a, m) = sa + tm$. If $d | b$, then the solutions to $ax \equiv b \pmod{m}$ are given by:

$x = \frac{sb}{d} + \frac{m}{d} u$ where $u \in \mathbb{Z}$

- What are the solutions to the linear congruence $3x \equiv 4 \pmod{7}$?

Another Example

Let $d = \gcd(a, m) = sa + tm$. If $d | b$, then the solutions to $ax \equiv b \pmod{m}$ are given by:

$x = \frac{sb}{d} + \frac{m}{d} u$ where $u \in \mathbb{Z}$

- What are the solutions to the linear congruence $3x \equiv 1 \pmod{7}$?

Inverse Modulo m

- The inverse of a modulo m, written \overline{a} has the property:

 $a\overline{a} \equiv 1 \pmod{m}$

- Theorem: Inverse of a modulo m exists if and only if a and m are relatively prime.

- Does 3 have an inverse modulo 7?

Example

- Find an inverse of 3 modulo 7.

An inverse is any solution to $3x \equiv 1 \pmod{7}$

Earlier, we already computed solutions for this equation as:

$x = -2 + 7u$

Thus, -2 is an inverse of 3 modulo 7

5, 12, -9, . . . are also inverses
Example 2

- Find inverse of 2 modulo 5.

Cryptography

- Cryptography is the study of techniques for secure transmission of information in the presence of adversaries.

Private vs. Public Crypto Systems

- Two different kinds of cryptography systems:
 1. Private key cryptography (also known as symmetric)
 2. Public key cryptography (asymmetric)

Private Key Cryptography

- Public key cryptography is the modern method: different keys are used to encrypt vs. decrypt message
- Most commonly used public key system is RSA
- Great application of number theory and things we’ve learned

RSA History

- Named after its inventors Rivest, Shamir, and Adleman, all researchers at MIT (1978)
- Actually, similar system invented earlier by British researcher Clifford Cocks, but classified – unknown until 90’s
RSA Overview

- Bob has two keys: public and private
- Everyone knows Bob’s public key, but only he knows his private key
- Alice encrypts message using Bob’s public key
- Bob decrypts message using private key
- Since public key cannot decrypt, no one can read message except Bob

High Level Math Behind RSA

- In the RSA system, private key consists of two very large prime numbers \(p, q \)
- Public key consists of a number \(n \), which is the product of \(p, q \) and another number \(e \), which is relatively prime with \((p - 1)(q - 1)\)
- Encrypt messages using \(n, e \), but to decrypt, must know \(p, q \)
- In theory, can extract \(p, q \) from \(n \) using prime factorization, but this is intractable for very large numbers
- Security of RSA relies on inherent computational difficulty of prime factorization

Encryption in RSA

- To send message to Bob, Alice first represents message as a sequence of numbers
- Call this number representing message \(M \)
- Alice then uses Bob’s public key \(n, e \) to perform encryption as:
 \[C = M^e \mod n \]
- \(C \) is called the ciphertext

RSA Decryption

- Decryption key \(d \) is the inverse of \(e \) modulo \((p - 1)(q - 1)\):
 \[d \cdot e \equiv 1 \mod((p - 1)(q - 1)) \]
- Decryption function: \(C^d \mod n \)
- As we saw earlier, \(d \) can be computed reasonably efficiently if we know \((p - 1)(q - 1)\)
- However, since adversaries do not know \(p, q \), they cannot compute \(d \) with reasonable computational effort!

Security of RSA

- The encryption function used in RSA is a trapdoor function
- Trapdoor function is easy to compute in one direction, but very difficult in reverse direction without additional knowledge
- Decryption without private key is very hard because requires prime factorization (which is intractable for large enough numbers)
- Interesting fact: There are efficient (poly-time) prime factorization algorithms for quantum computers (e.g., Shor’s algorithm)
- If we could build quantum computers with sufficient “qubits”, RSA would no longer be secure!