CS311H: Discrete Mathematics

Number Theory

Instructor: Isil Dillig

Review

» What does it mean for two ints a, b to be congruent mod m?
» What is the Division theorem?
> If a|b and a|c, does it mean b|c?

» What is the Fundamental Theorem of Arithmetic?
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Computing GCDs

» Simple algorithm to compute gcd of a, b:

i,

> Factorize a as pi'py ...po

> Factorize b as pi'p* ... pl

min(iv,g1), min(iz,52)
P2 S

> ged(a, b) = py

p;lm'n(in Jn)

» But this algorithm is not good because prime factorization is
computationally expensive! (not polynomial time)

» Much more efficient algorithm to compute gcd, called the
Euclidian algorithm

Insight Behind Euclid’s Algorithm
> Theorem: Let a = bg + r. Then, ged(a, b) = ged(b, r)

» eg., Consider a =12, b=8and a=12,0=5

» Proof: We'll show that a, b and b, r have the same common
divisors — implies they have the same gcd.

= Suppose d is a common divisor of a, b, i.e., d|a and d|b
» By theorem we proved earlier, this implies d|a — bg

> Since a — bg = r, d|r. Hence d is common divisor of b, r.
< Now, suppose d|b and d|r. Then, d|bg+ r

» Hence, d|a and d is common divisor of a, b O
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Using this Theorem

Theorem: Let a = bg + r. Then, ged(a, b) = ged(b, r)
» Suggests following recursive strategy to compute ged(a, b):

> Base case: If bis 0, then ged is a
> Recursive case: Compute ged(b, a mod b)

» Claim: We'll eventually hit base case — why?

Euclidian Algorithm

» Find ged of 72 and 20
| stxa;tnvgi:h > 12 = 72%20
‘ > 8 =20%12
. y=0? > 4 =12%8
\\\
VEs > 0 =8%4

| Answeris x .
—— > gcd is 4!
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GCD as Linear Combination

» gcd(a, b) can be expressed as a linear combination of a and b

» Theorem: If a and b are positive integers, then there exist
integers s and ¢ such that:

ged(a,b) =s-a+t-b

» Furthermore, Euclidian algorithm gives us a way to compute
these integers s and ¢ (known as extended Euclidian

Example

> Express gcd(72,20) as a linear combination of 72 and 20

> First apply Euclid’s algorithm (write a = bg + r at each step):
1. 72=3-20+12
2.20=1-12+8
3.12=1-8+4
4. 8=2-440=gcdis 4

> Now, using (3), write 4 as 12 —1-8

algorithm) > Using (2), write4 as 12—1-(20—-1-12) =2-12—1-20
> Using (1), we have 12 = 72 — 3 - 20, thus:
4=2.(72-3-20)-1-20=2-72+(-7)-20
Exercise A Useful Result

Use the extended Euclid algorithm to compute ged(38, 16).

> Lemma: If a, b are relatively prime and a|bc, then alc.

> Proof: Since a, b are relatively prime ged(a, b) =1

> By previous theorem, there exists s,¢ such that 1 =s-a+¢-b
» Multiply both sides by ¢: ¢ = csa + ctb

> By earlier theorem, since a|be, a|ctb

> Also, by earlier theorem, alcsa

> Therefore, a|csa + ctb, which implies a|c since ¢ = csa + ctb O
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Example

Lemma: If a, b are relatively prime and a|bc, then a|c.

> Suppose 15 | 16 -z
> Here 15 and 16 are relatively prime

» Thus, previous theorem implies: 15|z

Question

> Suppose ca = ¢b (mod m). Does this imply a = b (mod m)?

>
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Another Useful Result

» Theorem: If ca = ¢b (mod m) and ged(c, m) =1, then
a="b (mod m)

Examples

> If 152 = 15y (mod 4), is z = y (mod 4)?

> If 82 =8y (mod 4), is = y (mod 4)?
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Linear Congruences

Determining Existence of Solutions

» A congruence of the form az = b (mod m) where a, b, m are
integers and x a variable is called a linear congruence.
> Theorem: The linear congruence az = b (mod m) has
» Given such a linear congruence, often need to answer: solutions iff ged(a, m)|b.
L. Are there any solutions? » Proof involves two steps:
ions?
2. What are the solutions? 1. If az = b (mod m) has solutions, then ged(a, m)|b.
» Example: Does 8z = 2 (mod 4) have any solutions? 2. If ged(a, m)|b, then az = b (mod m) has solutions.
» Example: Does 82 = 2 (mod 7) have any solutions? » First prove (1), then (2).
> Question: Is there a systematic way to solve linear
congruences?
srcer i O [ —— o e 1O S Do M N Treoy o
Proof, Part | Proof, Part Il
If ged(a, m)|b, then az = b (mod m) has solutions.

If az = b (mod m) has solutions, then ged(a, m)|b.

>

> Let d = ged(a, m) and suppose d|b

» Then, there is a k such that b = dk

> By earlier theorem, there exist s, ¢ such that d =s-a+t-m
> Multiply both sides by k: dk = a - (sk) + m - (tk)

> Since b = dk, we have b — a - (sk) = m - tk

> Thus, b = a- (sk) (mod m)

» Hence, sk is a solution.
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Examples

» Does 5z = 7 (mod 15) have any solutions?

> Does 3z =4 (mod 7) have any solutions?

Finding Solutions

» Can determine existence of solutions, but how to find them?

> Theorem: Let d = ged(a, m) = sa + tm. If d|b, then the
solutions to az = b (mod m) are given by:
sbm
z=—+ —u where u € Z

d d
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Example

Let d = ged(a, m) = sa + tm. If d
az = b (mod m) are given by:

b, then the solutions to

b
z:%+%u where u € Z

> What are the solutions to the linear congruence 3z = 4 (mod 7)?

Another Example

Let d = ged(a, m) = sa+ tm. If d|b, then the solutions to
az = b (mod m) are given by:

z=ﬁ+ﬁu where u € Z

d d

> What are the solutions to the linear congruence 3z =1 (mod 7)?

>
>
>
Inverse Modulo m Example

» The inverse of « modulo m, written @ has the property:
aa =1 (mod m)

» Theorem: Inverse of a modulo m exists if and only if ¢ and m
are relatively prime.

» Does 3 have an inverse modulo 77

v

Find an inverse of 3 modulo 7.

v

An inverse is any solution to 3z = 1 (mod 7)

v

Earlier, we already computed solutions for this equation as:

r=-24+"Tu

v

Thus, —2 is an inverse of 3 modulo 7

v

5,12,—9,... are also inverses
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Example 2

» Find inverse of 2 modulo 5.

Cryptography

» Cryptography is the study of techniques for secure
transmission of information in the presence of adversaries

i- message to Bob ;'l
Alice l
& ' S
Eve

» How can Alice send secrete messages to Bob without Eve
being able to read them?
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Private vs. Public Crypto Systems

» Two different kinds of cryptography systems:

1. Private key cryptography (also known as symmetric)
2. Public key cryptography (asymmetric)

> In private key cryptography, sender and receiver agree on
secret key that both use to encrypt/decrypt the message

> In public key crytography, a public key is used to encrypt the

Private Key Cryptography

v

Private key crypto is classical method, used since antiquity

v

Caesar's cipher is an example of private key cryptography

v

Caesar's cipher is shift cipher where f(p) = (p + k) (mod 26)

v

Both receiver and sender need to know % to encrypt/decrypt

v

Modern symmetric algorithms: RC4, DES, AES, ...

message, and private key is used to decrypt the message > Main problem: How do you exchange secret key in a secure
way?
Public Key Cryptography RSA History

» Public key cryptography is the modern method: different keys
are used to encrypt vs. decrypt message

» Most commonly used public key system is RSA

» Great application of number theory and things we've learned

» Named after its inventors Rivest, Shamir, and Adlemann, all
researchers at MIT (1978)

> Actually, similar system invented earlier by British researcher
Clifford Cocks, but classified — unknown until 90's
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RSA Overview

» Bob has two keys: public and private

Alice » Everyone knows Bob's public key, but
only he knows his private key
g;‘l:': —— Eneypt — Q=
puerey > Alice encrypts message using Bob's
------------------------- public key
By —— Decypt —— Qmr

private key

S
Bob “

ol > Bob decrypts message using private key

» Since public key cannot decrypt, noone

can read message accept Bob

High Level Math Behind RSA

> In the RSA system, private key consists of two very large
prime numbers p, ¢

» Public key consists of a number n, which is the product of
p, ¢ and another number e, which is relatively prime with

(p=1(¢=1)
» Encrypt messages using n, e, but to decrypt, must know p, g

» In theory, can extract p, ¢ from n using prime factorization,
but this is intractable for very large numbers

» Security of RSA relies on inherent computational
difficulty of prime factorization
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Encryption in RSA

> To send message to Bob, Alice first represents message as a
sequence of numbers

» Call this number representing message M
» Alice then uses Bob's public key n, e to perform encryption as:
C = M° (mod n)

» (' is called the ciphertext

RSA Decryption

> Decryption key d is the inverse of ¢ modulo (p — 1)(¢ — 1):
d-e=1 (mod(p—1)(¢g—1))
» Decryption function: C' (mod n)

> As we saw earlier, d can be computed reasonably efficiently if
we know (p —1)(¢g — 1)

» However, since adversaries do not know p, ¢, they cannot
compute d with reasonable computational effort!
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Security of RSA

» The encryption function used in RSA is a trapdoor function

» Trapdoor function is easy to compute in one direction, but
very difficult in reverse direction without additional knowledge

» Decryption without private key is very hard because requires
prime factorization (which is intractable for large enough
numbers)

> Interesting fact: There are efficient (poly-time) prime
factorization algorithms for quantum computers (e.g., Shor's
algorithm)

» If we could build quantum computers with sufficient "qubits”,
RSA would no longer be secure!
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