Review

- What is the fundamental theorem of arithmetic?
- Complete the following:
 - \(\gcd(a, b) \cdot \text{lcm}(a, b) = ? \)
 - \(\gcd(a, b) = \gcd(b, ?) \)
- Why is the previous equation useful?
- \(\gcd(a, b) \) can be expressed as . . . ?
- What does it mean for \(a, b \) to be relatively prime?

A Useful Result

- Suppose \(a \mid bc \). Does that mean \(a \mid c \)?
- **Lemma:** If \(a, b \) are relatively prime and \(a \mid bc \), then \(a \mid c \).
- **Proof:** Since \(a, b \) are relatively prime \(\gcd(a, b) = 1 \)
 - By previous theorem, there exists \(s, t \) such that \(1 = s \cdot a + t \cdot b \)
 - Multiply both sides by \(c \): \(c = csa + ctb \)
 - By earlier theorem, since \(a \mid bc, a \mid ctb \)
 - Also, by earlier theorem, \(a \mid csa \)
 - Therefore, \(a \mid csa + ctb \), which implies \(a \mid c \) since \(c = csa + ctb \)

Question

- Suppose \(ca \equiv cb \pmod{m} \). Does this imply \(a \equiv b \pmod{m} \)?

Example

- **Lemma:** If \(a, b \) are relatively prime and \(a \mid bc \), then \(a \mid c \).
 - Suppose \(15 \mid 16 \cdot x \)
 - Here \(15 \) and \(16 \) are relatively prime
 - Thus, previous theorem implies: \(15 \mid x \)

Another Useful Result

- **Theorem:** If \(ca \equiv cb \pmod{m} \) and \(\gcd(c, m) = 1 \), then \(a \equiv b \pmod{m} \)
Examples

- If $15x \equiv 15y \pmod{4}$, is $x \equiv y \pmod{4}$?
- If $8x \equiv 8y \pmod{4}$, is $x \equiv y \pmod{4}$?

Linear Congruences

- A congruence of the form $ax \equiv b \pmod{m}$ where a, b, m are integers and x a variable is called a linear congruence.
- Given such a linear congruence, often need to answer:
 1. Are there any solutions?
 2. What are the solutions?
- Example: Does $8x \equiv 2 \pmod{4}$ have any solutions?
- Example: Does $8x \equiv 2 \pmod{7}$ have any solutions?
- Question: Is there a systematic way to solve linear congruences?

Determining Existence of Solutions

- Theorem: The linear congruence $ax \equiv b \pmod{m}$ has solutions iff $\gcd(a, m) | b$.
- Proof involves two steps:
 1. If $ax \equiv b \pmod{m}$ has solutions, then $\gcd(a, m) | b$.
 2. If $\gcd(a, m) | b$, then $ax \equiv b \pmod{m}$ has solutions.
- First prove (1), then (2).

Proof, Part I

If $ax \equiv b \pmod{m}$ has solutions, then $\gcd(a, m) | b$.

Proof, Part II

If $\gcd(a, m) | b$, then $ax \equiv b \pmod{m}$ has solutions.

- Let $d = \gcd(a, m)$ and suppose $d | b$
- Then, there is a k such that $b = dk$
- By earlier theorem, there exist s, t such that $d = s \cdot a + t \cdot m$
- Multiply both sides by k: $dk = a \cdot (sk) + m \cdot (tk)$
- Since $b = dk$, we have $b = a \cdot (sk) + m \cdot tk$
- Thus, $b \equiv a \cdot (sk) \pmod{m}$
- Hence, sk is a solution.

Examples

- Does $5x \equiv 7 \pmod{15}$ have any solutions?
- Does $3x \equiv 4 \pmod{7}$ have any solutions?
Finding Solutions

- Can determine existence of solutions, but how to find them?
- **Theorem:** Let \(d = \gcd(a, m) = sa + tm \). If \(d | b \), then the solutions to \(ax \equiv b \pmod{m} \) are given by:
 \[
x = \frac{sb}{d} + \frac{m}{d} u \quad \text{where } u \in \mathbb{Z}
 \]

Example

Let \(d = \gcd(a, m) = sa + tm \). If \(d | b \), then the solutions to \(ax \equiv b \pmod{m} \) are given by:
 \[
x = \frac{sb}{d} + \frac{m}{d} u \quad \text{where } u \in \mathbb{Z}
 \]

What are the solutions to the linear congruence \(3x \equiv 4 \pmod{7} \)?

An Example

Let \(d = \gcd(a, m) = sa + tm \). If \(d | b \), then the solutions to \(ax \equiv b \pmod{m} \) are given by:
 \[
x = \frac{sb}{d} + \frac{m}{d} u \quad \text{where } u \in \mathbb{Z}
 \]

What are the solutions to the linear congruence \(3x \equiv 1 \pmod{7} \)?

Inverse Modulo \(m \)

- The inverse of \(a \) modulo \(m \), written \(a^{-1} \) has the property:
 \[
a a^{-1} \equiv 1 \pmod{m}
 \]
- **Theorem:** Inverse of \(a \) modulo \(m \) exists if and only if \(a \) and \(m \) are relatively prime.
- **Proof:** Inverse must satisfy \(ax \equiv 1 \pmod{m} \)

Does 3 have an inverse modulo 7?

Example

- Find an inverse of 3 modulo 7.
- An inverse is any solution to \(3x \equiv 1 \pmod{7} \)
- Earlier, we already computed solutions for this equation as:
 \[
x = -2 + 7u
 \]
- Thus, \(-2\) is an inverse of 3 modulo 7
- 5, 12, \(-9\), ... are also inverses

Cryptography

- Cryptography is the study of techniques for secure transmission of information in the presence of adversaries

How can Alice send secret messages to Bob without Eve being able to read them?
Private vs. Public Crypto Systems

- Two different kinds of cryptography systems:
 1. Private key cryptography (also known as symmetric)
 2. Public key cryptography (asymmetric)

- In private key cryptography, sender and receiver agree on secret key that both use to encrypt/decrypt the message
- In public key cryptography, a public key is used to encrypt the message, and private key is used to decrypt the message

Private Key Cryptography

- Private key crypto is classical method, used since antiquity
- Caesar’s cipher is an example of private key cryptography
- Caesar’s cipher is shift cipher where \(f(p) = (p + k) \mod 26 \)
- Both receiver and sender need to know \(k \) to encrypt/decrypt
- Modern symmetric algorithms: RC4, DES, AES, ...
- Main problem: How do you exchange secret key in a secure way?

Public Key Cryptography

- Public key cryptography is the modern method: different keys are used to encrypt vs. decrypt message
- Most commonly used public key system is RSA
- Great application of number theory and things we’ve learned

RSA History

- Named after its inventors Rivest, Shamir, and Adlemann, all researchers at MIT (1978)
- Actually, similar system invented earlier by British researcher Clifford Cocks, but classified – unknown until 90’s

RSA Overview

- Bob has two keys: public and private
- Everyone knows Bob’s public key, but only he knows his private key
- Alice encrypts message using Bob’s public key
- Bob decrypts message using private key
- Since public key cannot decrypt, no one can read message except Bob

High Level Math Behind RSA

- In the RSA system, private key consists of two very large prime numbers \(p, q \)
- Public key consists of a number \(n \), which is the product of \(p, q \) and another number \(e \), which is relatively prime with \((p - 1)(q - 1) \)
- Encrypt messages using \(n, e \), but to decrypt, must know \(p, q \)
- In theory, can extract \(p, q \) from \(n \) using prime factorization, but this is intractable for very large numbers
- Security of RSA relies on inherent computational difficulty of prime factorization
Encryption in RSA

- To send message to Bob, Alice first represents message as a sequence of numbers
- Call this number representing message M
- Alice then uses Bob’s public key n, e to perform encryption as:
 \[C = M^e \pmod{n} \]
- C is called the ciphertext

RSA Decryption

- Decryption key d is the inverse of e modulo $(p−1)(q−1)$:
 \[d \cdot e \equiv 1 \pmod{(p−1)(q−1)} \]
- Decryption function: $C^d \pmod{n}$
- As we saw earlier, d can be computed reasonably efficiently if we know $(p−1)(q−1)$
- However, since adversaries do not know p, q, they cannot compute d with reasonable computational effort!

Security of RSA

- The encryption function used in RSA is a trapdoor function
- Trapdoor function is easy to compute in one direction, but very difficult in reverse direction without additional knowledge
- Decryption without private key is very hard because requires prime factorization (which is intractable for large enough numbers)
- Interesting fact: There are efficient (poly-time) prime factorization algorithms for quantum computers (e.g., Shor’s algorithm)
- If we could build quantum computers with sufficient “qubits”, RSA would no longer be secure!