CS311H: Discrete Mathematics
More Number Theory
Instructor: İsıl Dillig

Announcements
- Homework 4 out today – due on Thursday, Oct 13
- Midterm 1 grades on Canvas – check for discrepancies!
- Mean: 79%
- Plan for today: Finish number theory, talk about crypto

A Useful Result
- **Lemma:** If a, b are relatively prime and $a|bc$, then $a|c$.
- **Proof:** Since a, b are relatively prime $\gcd(a, b) = 1$
 - By previous theorem, there exists s, t such that $1 = s \cdot a + t \cdot b$
 - Multiply both sides by c: $c = csa + ctb$
 - By earlier theorem, since $a|bc$, $a|ctb$
 - Also, by earlier theorem, $a|csa$
 - Therefore, $a|csa + ctb$, which implies $a|c$ since $c = csa + ctb$

Example
- **Lemma:** If a, b are relatively prime and $a|bc$, then $a|c$.
 - Suppose $15 | 16 \cdot x$
 - Here 15 and 16 are relatively prime
 - Thus, previous theorem implies: $15|x$

Question
- Suppose $ca \equiv cb \pmod{m}$. Does this imply $a \equiv b \pmod{m}$?

Another Useful Result
- **Theorem:** If $ca \equiv cb \pmod{m}$ and $\gcd(c, m) = 1$, then $a \equiv b \pmod{m}$
 -
 -
 -
 -
 -
 -
 -
 -
 -

1
Proof, Part II
If $\gcd(a, m) | b$, then $ax \equiv b \pmod{m}$ has solutions.

- Let $d = \gcd(a, m)$ and suppose $d | b$
- Then, there is a k such that $b = dk$
- By earlier theorem, there exist s, t such that $d = s \cdot a + t \cdot m$
- Multiply both sides by k: $dk = a \cdot (sk) + m \cdot (tk)$
- Since $b = dk$, we have $b - a \cdot (sk) = m \cdot tk$
- Thus, $b \equiv a \cdot (sk) \pmod{m}$
- Hence, sk is a solution.

Examples
- If $15x \equiv 15y \pmod{4}$, is $x \equiv y \pmod{4}$?
- If $8x \equiv 8y \pmod{4}$, is $x \equiv y \pmod{4}$?

Linear Congruences
- A congruence of the form $ax \equiv b \pmod{m}$ where a, b, m are integers and x a variable is called a linear congruence.
- Given such a linear congruence, often need to answer:
 1. Are there any solutions?
 2. What are the solutions?
- Example: Does $8x \equiv 2 \pmod{4}$ have any solutions?
- Example: Does $8x \equiv 2 \pmod{7}$ have any solutions?
- Question: Is there a systematic way to solve linear congruences?
Examples

- Does $77x + 42y = 35$ have integer solutions?
- Does $6x + 9y + 12z = 7$ have integer solutions?

Finding Solutions

- Can determine existence of solutions, but how to find them?
- Theorem: Let $d = \gcd(a, m) = sa + tm$. If $d|b$, then the solutions to $ax \equiv b \pmod{m}$ are given by:

$$x = \frac{sb}{d} + \frac{m}{d}u \text{ where } u \in \mathbb{Z}$$

Example

- Let $d = \gcd(a, m) = sa + tm$. If $d|b$, then the solutions to $ax \equiv b \pmod{m}$ are given by:

$$x = \frac{sb}{d} + \frac{m}{d}u \text{ where } u \in \mathbb{Z}$$

- What are the solutions to the linear congruence $3x \equiv 4 \pmod{7}$?
- $\\\$
- $\\$
- $\\$
- $\\$

Inverse Modulo m

- The inverse of a modulo m, written a^{-1} has the property:

$$a a^{-1} \equiv 1 \pmod{m}$$

- Theorem: Inverse of a modulo m exists if and only if a and m are relatively prime.

- Proof: Inverse must satisfy $ax \equiv 1 \pmod{m}$

- Does 3 have an inverse modulo 7?

Example

- Find an inverse of 3 modulo 7.

- An inverse is any solution to $3x \equiv 1 \pmod{7}$

- Earlier, we already computed solutions for this equation as:

$$x = -2 + 7u$$

- Thus, -2 is an inverse of 3 modulo 7

- $5, 12, -9, \ldots$ are also inverses

Another Example

- Let $d = \gcd(a, m) = sa + tm$. If $d|b$, then the solutions to $ax \equiv b \pmod{m}$ are given by:

$$x = \frac{sb}{d} + \frac{m}{d}u \text{ where } u \in \mathbb{Z}$$

- What are the solutions to the linear congruence $3x \equiv 1 \pmod{7}$?
- $\\$
- $\\$
- $\\$
Example 2

- Find inverse of 2 modulo 5.
- Need to solve the congruence $2x \equiv 1 \pmod{5}$
- What are s, t such that $2s + 5t = 1$?

Cryptography

- Cryptography is the study of techniques for secure transmission of information in the presence of adversaries
- How can Alice send secret messages to Bob without Eve being able to read them?

Private vs. Public Crypto Systems

- Two different kinds of cryptography systems:
 1. Private key cryptography (also known as symmetric)
 2. Public key cryptography (asymmetric)
- In private key cryptography, sender and receiver agree on secret key that both use to encrypt/decrypt the message
- In public key cryptography, a public key is used to encrypt the message, and private key is used to decrypt the message

Public Key Cryptography

- Public key cryptography is the modern method: different keys are used to encrypt vs. decrypt message
- Most commonly used public key system is RSA
- Great application of number theory and things we’ve learned

RSA History

- Named after its inventors Rivest, Shamir, and Adleman, all researchers at MIT (1978)
- Actually, similar system invented earlier by British researcher Clifford Cocks, but classified – unknown until 90’s
RSA Overview

- Bob has two keys: public and private
- Everyone knows Bob’s public key, but only he knows his private key
- Alice encrypts message using Bob’s public key
- Bob decrypts message using private key
- Since public key cannot decrypt, no one can read message except Bob

High Level Math Behind RSA

- In the RSA system, private key consists of two very large prime numbers, p, q
- Public key consists of a number n, which is the product of p, q and another number e, which is relatively prime with \((p - 1)(q - 1)\)
- Encrypt messages using n, e, but to decrypt, must know p, q
- In theory, can extract p, q from n using prime factorization, but this is intractable for very large numbers
- Security of RSA relies on inherent computational difficulty of prime factorization

Encryption in RSA

- To send message to Bob, Alice first represents message as a sequence of numbers
- Call this number representing message M
- Alice then uses Bob’s public key n, e to perform encryption as:
 \[C = M^e \pmod{n} \]
- C is called the ciphertext

RSA Decryption

- How do we decrypt cipher text using private keys p, q?
- Decryption function:
 \[C^d \pmod{n} \]
- Decryption key d is the inverse of e modulo \((p - 1)(q - 1)\):
 \[d \cdot e \equiv 1 \pmod{(p - 1)(q - 1)} \]
- As we saw earlier, d can be computed reasonably efficiently if we know \((p - 1)(q - 1)\)
- However, since adversaries do not know p, q, they cannot compute d with reasonable computational effort!

Security of RSA

- The encryption function used in RSA is a trapdoor function
- Trapdoor function is easy to compute in one direction, but very difficult in reverse direction without additional knowledge
- Decryption without private key is very hard because requires prime factorization (which is intractable for large enough numbers)
- Interesting fact: There are efficient (poly-time) prime factorization algorithms for quantum computers (e.g., Shor’s algorithm)
- If we could build quantum computers with sufficient “qubits”, RSA would no longer be secure!

Book Recommendation

If you are interested in (history of) cryptography, read “The Code Book” by Simon Singh!