Introduction

- Formalizing statements in logic allows formal, machine-checkable proofs
- But these kinds of proofs can be very long and tedious
- In practice, humans write slightly less formal proofs, where multiple steps are combined into one
- We’ll now move from formal proofs in logic to less formal mathematical proofs!

Some Terminology

- Important mathematical statements that can be shown to be true are theorems
- Many famous mathematical theorems, e.g., Pythagorean theorem, Fermat’s last theorem
- Pythagorean theorem: Let a, b the length of the two sides of a right triangle, and let c be the hypotenuse. Then, \(a^2 + b^2 = c^2 \)
- Fermat’s Last Theorem: For any integer \(n \) greater than 2, the equation \(a^n + b^n = c^n \) has no solutions for non-zero \(a, b, c \).

Theorems, Lemmas, and Propositions

- There are many correct mathematical statements, but not all of them called theorems
- Less important statements that can be proven to be correct are propositions
- Another variation is a lemma: minor auxiliary result which aids in the proof of a theorem/proposition
- Corollary is a result whose proof follows immediately from a theorem or proposition

Conjectures vs. Theorems

- Conjecture is a statement that is suspected to be true by experts but not yet proven
- Goldbach’s conjecture: Every even integer greater than 2 can be expressed as the sum of two prime numbers.
- This conjecture is one of the oldest unsolved problems in number theory

General Strategies for Proving Theorems

Many different strategies for proving theorems:

- Direct proof: \(p \rightarrow q \) proved by directly showing that if \(p \) is true, then \(q \) must follow
- Proof by contraposition: Prove \(p \rightarrow q \) by proving \(\neg q \rightarrow \neg p \)
- Proof by contradiction: Prove that the negation of the theorem yields a contradiction
- Proof by cases: Exhaustively enumerate different possibilities, and prove the theorem for each case

In many proofs, one needs to combine several different strategies!
Direct Proof

- To prove \(p \rightarrow q \) in a direct proof, first assume \(p \) is true.
- Then use rules of inference, axioms, previously shown theorems/lemmas to show that \(q \) is also true.
- Example: If \(n \) is an odd integer, than \(n^2 \) is also odd.
- Proof: Assume \(n \) is odd. By definition of oddness, there must exist some integer \(k \) such that \(n = 2k + 1 \). Then, \(n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1 \), which is odd. Thus, if \(n \) is odd, \(n^2 \) is also odd.

More Direct Proof Examples

- An integer \(a \) is called a perfect square if there exists an integer \(b \) such that \(a = b^2 \).
- Example: Prove that every odd number is the difference of two perfect squares.

Proof by Contraposition

- In proof by contraposition, you prove \(p \rightarrow q \) by assuming \(\neg q \) and proving that \(\neg p \) follows.
- Makes no difference logically, but sometimes the contrapositive is easier to show than the original.
- Prove: If \(n^2 \) is odd, then \(n \) is odd.
 -

Proof by Contradiction

- Proof by contradiction proves that \(p \rightarrow q \) is true by proving unsatisfiability of its negation.
- What is negation of \(p \rightarrow q \)?
- Assume both \(p \) and \(\neg q \) are true and show this yields contradiction.

Example

- Prove by contradiction that "If \(3n + 2 \) is odd, then \(n \) is odd."

Another Example

- Recall: Any rational number can be written in the form \(\frac{p}{q} \) where \(p \) and \(q \) are integers and have no common factors.
- Example: Prove by contradiction that \(\sqrt{2} \) is irrational.
 -

Instructor: Isıl Dillig, CS311H: Discrete Mathematics Mathematical Proof Techniques 7/31

More Direct Proof Examples

- An integer \(a \) is called a perfect square if there exists an integer \(b \) such that \(a = b^2 \).
- Example: Prove that every odd number is the difference of two perfect squares.

Proof by Contraposition

- In proof by contraposition, you prove \(p \rightarrow q \) by assuming \(\neg q \) and proving that \(\neg p \) follows.
- Makes no difference logically, but sometimes the contrapositive is easier to show than the original.
- Prove: If \(n^2 \) is odd, then \(n \) is odd.
 -

Proof by Contradiction

- Proof by contradiction proves that \(p \rightarrow q \) is true by proving unsatisfiability of its negation.
- What is negation of \(p \rightarrow q \)?
- Assume both \(p \) and \(\neg q \) are true and show this yields contradiction.

Example

- Prove by contradiction that "If \(3n + 2 \) is odd, then \(n \) is odd."

Another Example

- Recall: Any rational number can be written in the form \(\frac{p}{q} \) where \(p \) and \(q \) are integers and have no common factors.
- Example: Prove by contradiction that \(\sqrt{2} \) is irrational.
 -
In some cases, it is very difficult to prove a theorem by applying the same argument in all cases. For example, we might need to consider different arguments for negative and non-negative integers. Proof by cases allows us to apply different arguments in different cases and combine the results. Specifically, suppose we want to prove statement \(p \), and we know that we have either \(q \) or \(r \). If we can show \(q \rightarrow p \) and \(r \rightarrow p \), then we can conclude \(p \).

In general, there may be more than two cases to consider. Proof by cases says that to show \((p_1 \vee p_2 \ldots \vee p_k) \rightarrow q\) it suffices to show:
- \(p_1 \rightarrow q \)
- \(p_2 \rightarrow q \)
- \(\ldots \)
- \(p_k \rightarrow q \)

Caveat: Your cases must cover all possibilities; otherwise, the proof is not valid!

So far, our proofs used a single strategy, but often it’s necessary to combine multiple strategies in one proof.

Example: Prove that every rational number can be expressed as a product of two irrational numbers.

Proof: Let’s first employ direct proof.

Observe that any rational number \(r \) can be written as \(\sqrt{2} \frac{x}{y} \).

We already proved \(\sqrt{2} \) is irrational.

If we can show that \(\frac{x}{y} \) is also irrational, we have a direct proof.
Combining Proofs, cont.

Lesson from Example

- In this proof, we combined direct and proof-by-contradiction strategies
- In more complex proofs, it might be necessary to combine two or even more strategies and prove helper lemmas
- It is often a good idea to think about how to decompose your proof, what strategies to use in different subgoals, and what helper lemmas could be useful

If and Only if Proofs

- Some theorems are of the form “P if and only if Q” (P ↔ Q)
- The easiest way to prove such statements is to show P → Q and Q → P
- Therefore, such proofs correspond to two subproofs
- One shows P → Q (typically labeled ⇒)
- Another subproof shows Q → P (typically labeled ⇐)

Example

- Prove “A positive integer n is odd if and only if n^2 is odd.”
 - ⇒ We have already shown this using a direct proof earlier.
 - ⇐ We have already shown this by a proof by contraposition.
 - Since we have proved both directions, the proof is complete.

Counterexamples

- So far, we have learned about how to prove statements are true using various strategies
- But how to prove a statement is false?
- What is a counterexample for the claim “The product of two irrational numbers is irrational”?

Prove or Disprove

Which of the statements below are true, which are false? Prove your answer.

- For all integers n, if n^2 is positive, n is also positive.
- For all integers n, if n^1 is positive, n is also positive.
- For all integers n such that n ≥ 0, n^2 ≥ 2n
Existence and Uniqueness

- Common math proofs involve showing existence and uniqueness of certain objects
- Existence proofs require showing that an object with the desired property exists
- Uniqueness proofs require showing that there is a unique object with the desired property

Existence Proofs

- One simple way to prove existence is to provide an object that has the desired property
- This sort of proof is called constructive proof
- Example: Prove there exists an integer that is the sum of two perfect squares
- But not all existence proofs are constructive – can prove existence through other methods (e.g., proof by contradiction or proof by cases)
- Such indirect existence proofs called nonconstructive proofs

Non-Constructive Proof Example

- Prove: "There exist irrational numbers x, y s.t. x^y is rational"
- We’ll prove this using a non-constructive proof (by cases), without providing irrational x, y
- Consider $\sqrt{2}^{\sqrt{2}}$. Either (i) it is rational or (ii) it is irrational
- Case 1: We have $x = y = \sqrt{2}$ s.t. x^y is rational
- Case 2: Let $x = \sqrt{2}^{\sqrt{2}}$ and $y = \sqrt{2}$, so both are irrational. Then, $\sqrt{2}^{\sqrt{2} \cdot \sqrt{2}} = \sqrt{2}^2 = 2$. Thus, x^y is rational

Proving Uniqueness

- Some statements in mathematics assert uniqueness of an object satisfying a certain property
- To prove uniqueness, must first prove existence of an object x that has the property
- Second, we must show that for any other y s.t. $y \neq x$, then y does not have the property
- Alternatively, can show that if y has the desired property that $x = y$

Example of Uniqueness Proof

- Prove: "If a and b are real numbers with $a \neq 0$, then there exists a unique real number r such that $ar + b = 0$"
- Existence: Using a constructive proof, we can see $r = -b/a$ satisfies $ar + b = 0$
- Uniqueness: Suppose there is another number s such that $s \neq r$ and $as + b = 0$. But since $ar + b = as + b$, we have $ar = as$, which implies $r = s$.

Summary of Proof Strategies

- Direct proof: $p \rightarrow q$ proved by directly showing that if p is true, then q must follow
- Proof by contraposition: Prove $p \rightarrow q$ by proving $\neg q \rightarrow \neg p$
- Proof by contradiction: Prove that the negation of the theorem yields a contradiction
- Proof by cases: Exhaustively enumerate different possibilities, and prove the theorem for each case
Invalid Proof Strategies

- **Proof by obviousness:** “The proof is so clear it need not be mentioned!”
- **Proof by intimidation:** “Don’t be stupid – of course it’s true!”
- **Proof by mumbo-jumbo:** \(\forall \alpha \in \theta \exists \beta \in \alpha \circ \beta \approx \gamma \)
- **Proof by intuition:** “I have this gut feeling..”
- **Proof by resource limits:** “Due to lack of space, we omit this part of the proof...”
- **Proof by illegibility:** “sdjkfiugyhlaks?fskl; QED.”

Don’t use anything like these in CS311!!