Existence and Uniqueness

- Common math proofs involve showing existence and uniqueness of certain objects
- Existence proofs require showing that an object with the desired property exists
- Uniqueness proofs require showing that there is a unique object with the desired property

Existence Proofs

- One simple way to prove existence is to provide an object that has the desired property
- This sort of proof is called constructive proof

Example: Prove there exists an integer that is the sum of two perfect squares

Can also prove existence through other methods (e.g., proof by contradiction or proof by cases)

- Such indirect existence proofs called nonconstructive proofs

Proving Uniqueness

- Some statements in mathematics assert uniqueness of an object satisfying a certain property
- To prove uniqueness, must first prove existence of an object \(x \) that has the property
- Second, we must show that for any other \(y \) s.t. \(y \neq x \), then \(y \) does not have the property
- Alternatively, can show that if \(y \) has the desired property that \(x = y \)

Example of Uniqueness Proof

- Prove: "If \(a \) and \(b \) are real numbers with \(a \neq 0 \), then there exists a unique real number \(r \) such that \(ar + b = 0 \)"
 - Existence: Using a constructive proof, we can see \(r = -b/a \) satisfies \(ar + b = 0 \)
 - Uniqueness: Suppose there is another number \(s \) such that \(s \neq r \) and \(as + b = 0 \). But since \(ar + b = as + b \), we have \(ar = as \), which implies \(r = s \).
Invalid Proof Strategies

- Proof by obviousness: “The proof is so clear it need not be mentioned!”
- Proof by intimidation: “Don’t be stupid – of course it’s true!”
- Proof by mumbo-jumbo: “sdjikhiugyhjlaks??fskl; QED.”
- Proof by resource limits: “Due to lack of space, we omit this part of the proof…”
- Proof by intimidation: “Don’t use anything like these in CS311!!”

Don’t use anything like these in CS311!!

Sets and Basic Concepts

- A set is unordered collection of distinct objects
- Example: Positive even numbers less than 10: \{2, 4, 6, 8\}
- Objects in set \(S\) are called members (or elements) of that set
- If \(x\) is a member of \(S\), we write \(x \in S\)
- \# elements in a set is called its cardinality, written \(|S|\)

Sets and Basic Concepts

- A set is unordered collection of distinct objects
- Example: Positive even numbers less than 10: \{2, 4, 6, 8\}
- Objects in set \(S\) are called members (or elements) of that set
- If \(x\) is a member of \(S\), we write \(x \in S\)
- \# elements in a set is called its cardinality, written \(|S|\)

Important Sets in Mathematics

- Many sets that play fundamental role in mathematics have infinite cardinality
- Set of integers \(Z = \{-\ldots, -2, -\ldots, 0, 1, 2, \ldots\}\)
- Set of positive integers: \(Z^+ = \{1, 2, \ldots\}\)
- Natural numbers: \(N = \{0, 1, 2, 3, \ldots\}\)
- Set of real numbers: \(R = \{\pi, \ldots, -1.999, \ldots, 0, \ldots, 0.000001, \ldots\}\)

Important Sets in Mathematics

- Many sets that play fundamental role in mathematics have infinite cardinality
- Set of integers \(Z = \{-\ldots, -2, -\ldots, 0, 1, 2, \ldots\}\)
- Set of positive integers: \(Z^+ = \{1, 2, \ldots\}\)
- Natural numbers: \(N = \{0, 1, 2, 3, \ldots\}\)
- Set of real numbers: \(R = \{\pi, \ldots, -1.999, \ldots, 0, \ldots, 0.000001, \ldots\}\)

Set Builder Notation

- Infinite sets are often written using set builder notation
 \[S = \{x \mid x \text{ has property } p\} \]
- Example: \(S = \{x \mid x \in Z \land x \%2 = 0\}\)
- Which set is \(S^2\)?
- Example: \(Q = \{p/q \mid p \in Z \land q \in Z \land q \neq 0\}\)
- Which set if \(Q\)?

Special Sets

- The universal set, written \(U\), includes all objects under consideration
- The empty set, written \(\emptyset\) or \(\{}\), contains no objects
- A set containing exactly one element is called a singleton set
- What special set is \(S = \{x \mid p(x) \land \neg p(x)\}\) equal to?
- What special set is \(S = \{x \mid p(x) \lor \neg p(x)\}\) equal to?

Special Sets

- The universal set, written \(U\), includes all objects under consideration
- The empty set, written \(\emptyset\) or \(\{}\), contains no objects
- A set containing exactly one element is called a singleton set
- What special set is \(S = \{x \mid p(x) \land \neg p(x)\}\) equal to?
- What special set is \(S = \{x \mid p(x) \lor \neg p(x)\}\) equal to?

Subsets and Supersets

- A set \(A\) is a subset of set \(B\), written \(A \subseteq B\), iff every element in \(A\) is also an element of \(B\)
 \[(\forall x. x \in A \implies x \in B) \]
- If \(A \subseteq B\), then \(B\) is called a superset of \(A\), written \(B \supseteq A\)
- A set \(A\) is a proper subset of set \(B\), written \(A \subset B\), iff:
 \[(\forall x. x \in A \implies x \in B) \land (\exists x. x \in B \land x \notin A) \]
- Sets \(A\) and \(B\) are equal, written \(A = B\), if \(A \subseteq B\) and \(B \subseteq A\)
Power Set

- The **power set** of a set S, written $P(S)$, is the set of all subsets of S.
- **Example:** What is the powerset of $\{a, b, c\}$?
- **Fact:** If the cardinality of S is n, then $|P(S)| = 2^n$.
- What is the power set of \emptyset?
- What is the power set of $\{\emptyset\}$?

Ordered Tuples

- An important operation on sets is called **Cartesian product**.
- To define Cartesian product, need ordered tuples.
- An ordered n-tuple (a_1, a_2, \ldots, a_n) is the ordered collection with a_1 as its first element, a_2 as its second element, ..., and a_n as its last element.
- **Observe:** $(1, 2)$ and $(2, 1)$ are not the same!
- Tuple of two elements called **pair** (3 elements called **triple**).

Cartesian Product

- The **Cartesian product** of two sets A and B, written $A \times B$, is the set of all ordered pairs (a, b) where $a \in A$ and $b \in B$.
 \[A \times B = \{(a, b) \mid a \in A \land b \in B\} \]
- **Example:** Let $A = \{1, 2\}$ and $B = \{a, b, c\}$. What is $A \times B$?
- **Example:** What is $B \times A$?
- **Observe:** $A \times B \neq B \times A$ in general!
- **Observe:** If $|A| = n$ and $|B| = m$, $|A \times B|$ is nm.

More on Cartesian Products

- Cartesian product generalizes to more than two sets.
- Cartesian product of $A_1 \times A_2 \times \ldots \times A_n$ is the set of all ordered n-tuples (a_1, a_2, \ldots, a_n) where $a_i \in A_i$.
- **Example:** If $A = \{1, 2\}$, $B = \{a, b\}$, $C = \{\ast, \circ\}$, what is $A \times B \times C$?

Set Operations

- Set union:
 \[A \cup B = \{x \mid x \in A \lor x \in B\} \]
- Intersection:
 \[A \cap B = \{x \mid x \in A \land x \in B\} \]
- Difference:
 \[A - B = \{x \mid x \in A \land x \notin B\} \]
- Complement:
 \[\overline{A} = \{x \mid x \notin A\} \]

Disjoint Sets

- Two set A and B are called **disjoint** if $A \cap B = \emptyset$.
Naive Set Theory and Russell’s Paradox

- Intuitive formulation of sets is called **naive set theory** – goes back to German mathematician George Cantor (1800’s)
- In naive set theory, any definable collection is a set (axiom of unrestricted comprehension)
- In other words, unrestricted comprehension says that \(\{ x \mid F(x) \} \) is a set, for any formula \(F \)
- In 1901, Bertrand Russell showed that Cantor’s set theory is inconsistent
- This can be shown using so-called Russell’s paradox

Russell’s Paradox

- Let \(R \) be the set of sets that are not members of themselves:
 \[R = \{ S \mid S \not\in S \} \]
- Two possibilities: Either \(R \in R \) or \(R \not\in R \)
- Suppose \(R \in R \).
- But by definition of \(R \), \(R \) does not have itself as a member, i.e., \(R \not\in R \)
- But this contradicts \(R \in R \)

Russell’s Paradox, cont.

- Now suppose \(R \not\in R \) (i.e., \(R \) not a member of itself)
- But since \(R \) is the set of sets that are not members of themselves, \(R \) must be a member of \(R \)!
- This shows that \(R \) cannot exist, contradicting the axiom of unrestricted comprehension!!
- Since we have a contradiction, one can prove any nonsense using naive set theory!
- Much research on consistent versions of set theory ⇒ Zermelo’s ZFC, Russell’s type theory etc.

Illustration of Russell’s Paradox

- Russell’s paradox and other similar paradoxes inspired artists at the turn of the century, esp. Escher and Magritte
- Belgian painter Rene Magritte made a graphical illustration of Russell’s paradox:

![Lecu n’est pas une pipe.](image)

Undecidability

- A proof similar to Russell’s paradox can be used to show **undecidability** of the famous Halting problem
- A **decision problem** is a question of a formal system that has a yes or no answer
- Example: satisfiability/valid in FOL or propositional logic
- A decision problem is **undecidable** if it is not possible to have algorithm that always terminates and gives correct answer
The Halting Problem

- The famous Halting problem in CS undecidable.
- **Halting problem:** Given a program P' and an input w, does P' terminate on w?
- What does it mean for this problem to be (un)decidable?

![Diagram of the Halting Problem]

- Important: For this problem to be decidable, P' should terminate on all inputs and give correct yes/no answer.

Undecidability of Halting Problem

- Undecidability of Halting Problem proved by Alan Turing in 1936.
- Proof is quite similar to Russell’s paradox.

Proof of Undecidability of Halting Problem

- Assume such a program P exists.
- Now, construct program P' such that P' halts iff its input does not halt on itself:

![Diagram of the Proof of Undecidability]

- Two possibilities:
 1. P' halts on itself: P must answer yes \Rightarrow P' loops forever on P', i.e., \bot.
 2. P' does not halt on P': P must answer no \Rightarrow P' halts on itself, i.e., \bot.

- Hence, such a program P cannot exist, i.e., Halting problem is undecidable!

Proof of Undecidability, cont.

- Now, consider running P' on itself:

![Diagram of the Proof of Undecidability, cont.]

Other Famous Undecidable Problems

- Validity in first-order logic: Given an arbitrary first order logic formula F, is F valid? (Hilbert’s Entscheidungsproblem)
- Program verification: Given a program P and a non-trivial property Q, does P satisfy property Q? (Rice’s theorem)
- Hilbert’s 10th problem: Does a diophantine equation $p(x_1, \ldots, x_n) = 0$ have solutions? (i.e., integer solutions)

Provability and Computability

- If paradoxes and computability/provability proofs interest you...
 - Take theory of computation and mathematical logic courses.
 - Book recommendation: “Godel, Escher, Bach” by Douglas Hofstadter.

5
Exercise: Barber’s paradox

- According to an ancient Sicilian legend, a remote town can only be reached by traveling a dangerous mountain road.
- The barber of this town shaves all those people, and only those people, who do not shave themselves.
- Can such a barber exist?