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Sets and Basic Concepts

I A set is unordered collection of distinct objects

I Example: Positive even numbers less than 10: {2, 4, 6, 8}

I Objects in set S are called members (or elements) of that set

I If x is a member of S , we write x ∈ S

I # elements in a set is called its cardinality, written |S |
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Important Sets in Mathematics

I Many sets that play fundamental role in mathematics have
infinite cardinality

I Set of integers Z = {. . . ,−2,−1, 0, 1, 2, . . .}

I Set of positive integers: Z+ = {1, 2, . . .}

I Natural numbers: N = {0, 1, 2, 3, ...}

I Set of real numbers:
R = {π, . . . ,−1.999, . . . , 0, . . . , 0.000001, . . .}
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Set Builder Notation

I Infinite sets are often written using set builder notation

S = {x | x has property p}

I Example: S = {x | x ∈ Z ∧ x%2 = 0}

I Which set is S?

I Example: Q = {p/q | p ∈ Z ∧ q ∈ Z ∧ q 6= 0}

I Which set if Q?
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Special Sets

I The universal set, written U , includes all objects under
consideration

I The empty set, written ∅ or {}, contains no objects

I A set containing exacly one element is called a singleton set

I What special set is S = {x | p(x ) ∧ ¬p(x )} equal to?

I What special set is S = {x | p(x ) ∨ ¬p(x )} equal to?
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Subsets and Supersets

I A set A is a subset of set B , written A ⊆ B , iff every element
in A is also an element of B (∀x . x ∈ A⇒ x ∈ B)

U

B
A

I If A ⊆ B , then B is called a superset of A, written B ⊇ A

I A set A is a proper subset of set B , written A ⊂ B , iff:

(∀x . x ∈ A⇒ x ∈ B) ∧ (∃x . x ∈ B ∧ x 6∈ A)

I Sets A and B are equal, written A = B , if A ⊆ B and B ⊆ A
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Power Set

I The power set of a set S , written P(S ), is the set of all
subsets of S .

I Example: What is the powerset of {a, b, c}?

I Fact: If cardinality of S is n, then |P(S )| = 2n

I What is the power set of ∅?

I What is the power set of {∅}?

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Sets, Russell’s Paradox, and Halting Problem 7/25

Ordered Tuples

I An important operation on sets is called Cartesian product

I To define Cartesian product, need ordered tuples

I An ordered n-tuple (a1, a2, . . . , an) is the ordered collection
with a1 as its first element, a2 as its second element, . . . , and
an as its last element.

I Observe: (1, 2) and (2, 1) are not the same!

I Tuple of two elements called pair (3 elements called triple)
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Cartesian Product

I The Cartesian product of two sets A and B , written A×B , is
the set of all ordered pairs (a, b) where a ∈ A and b ∈ B

A× B = {(a, b) | a ∈ A ∧ b ∈ B}

I Example: Let A = {1, 2} and B = {a, b, c}. What is A× B?

I Example: What is B ×A?

I Observe: A× B 6= B ×A in general!

I Observe: If |A| = n and |B | = m, |A× B | is nm.

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Sets, Russell’s Paradox, and Halting Problem 9/25

More on Cartesian Products

I Cartesian product generalizes to more than two sets

I Cartesian product of A1 ×A2 . . .×An is the set of all ordered
n-tuples (a1, a2, . . . , an) where ai ∈ Ai

I Example: If A = {1, 2},B = {a, b},C = {?, ◦}, what is
A× B × C ?
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Set Operations

I Set union:
A ∪ B = {x | x ∈ A ∨ x ∈ B}

I Intersection:

A ∩ B = {x | x ∈ A ∧ x ∈ B}

I Difference:

A− B = {x | x ∈ A ∧ x 6∈ B}

I Complement:
A = {x | x 6∈ A}
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Disjoint Sets

I Two set A and B are called disjoint if A ∩ B = ∅

U

A B
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Exercise

Prove De Morgan’s law for sets: A ∪ B = A ∩ B
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Naive Set Theory and Russell’s Paradox

I Intuitive formulation of sets is called naive set theory – goes
back to German mathematician George Cantor (1800’s)

I In naive set theory, any definable collection is a set (axiom of
unrestricted comprehension)

I In other words, unrestricted comprehension says that
{x | F (x )} is a set, for any formula F

I In 1901, Bertrand Russell showed that Cantor’s set theory is
inconsistent

I This can be shown using so-called Russell’s paradox
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Russell’s Paradox

I Let R be the set of sets that are not members of themselves:

R = {S | S 6∈ S}

I Two possibilities: Either R ∈ R or R 6∈ R

I Suppose R ∈ R.

I But by definition of R, R does not have itself as a member,
i.e., R 6∈ R

I But this contradicts R ∈ R
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Russell’s Paradox, cont.

I Now suppose R 6∈ R (i.e., R not a member of itself)

I But since R is the set of sets that are not members of
themselves, R must be a member of R!

I This shows that set R cannot exist, contradicting the axiom
of unrestricted comprehension!!

I Since we have a contradiction, one can prove any nonsense
using naive set theory!

I Much research on consistent versions of set theory ⇒
Zermelo’s ZFC, Russell’s type theory etc.
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Illustration of Russell’s Paradox

I Russell’s paradox and other similar paradoxes inspired artists
at the turn of the century, esp. Escher and Magritte

I Belgian painter Rene Magritte made a graphical illustration of
Russell’s paradox:
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Undecidability

I A proof similar to Russell’s paradox can be used to show
undecidability of the famous Halting problem

I A decision problem is a question of a formal system that has a
yes or no answer

I Example: satisfiability/valid in FOL or propositional logic

I A decision problem is undecidable if it is not possible to have
algorithm that always terminates and gives correct answer
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The Halting Problem

I The famous Halting problem in CS undecidable.

I Halting problem: Given a program P ′ and an input w , does
P ′ terminate on w?

I What does it mean for this problem to be (un)decidable?

P
P' YES

NO

P' halts 
on w

P' does not
halt on w

Input w

I Important: For this problem to be decidable, P should
terminate on all inputs and give correct yes/no answer
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Undecidability of Halting Problem

I Undecidability of Halting Problem
proved by Alan Turing in 1936

I Proof is quite similar to Russell’s
paradox
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Proof of Undecidability of Halting Problem

I Assume such a program P exists

I Now, construct program P ′ such that P ′ halts iff its input
does not halt on itself:

P''

YES

NO

P'
P

LOOP 
FOREVER

HALT
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Proof of Undecidability, cont.

I Now, consider running P ′ on itself:

P'

YES

NO

P'
P

LOOP 
FOREVER

HALT

I Two possibilities:

1. P’ halts on itself: P must answer yes ⇒ P ′ loops forever on
P ′, i.e., ⊥

2. P’ does not halt on P’: P must answer no ⇒ P ′ halts on itself,
i.e., ⊥

I Hence, such a program P cannot exist, i.e., Halting problem is
undecidable!
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Other Famous Undecidable Problems

I Validity in first-order logic: Given an arbitrary first order logic
formula F , is F valid? (Hilbert’s Entscheidungsproblem)

I Program verification: Given a program P and a non-trivial
property Q , does P satisfy property Q? (Rice’s theorem)

I Hilbert’s 10th problem: Does a diophantine equation
p(x1, . . . , xn) = 0 have solutions? (i.e., integer solutions)
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Provability and Computability

I If paradoxes and computability/provability proofs interest
you...

I Take theory of computation and mathematical logic courses

I Book recommendation: ”Godel, Escher, Bach”
by Douglas Hofstadter
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Exercise: Barber’s paradox

I According to an ancient
Sicilian legend, a remote
town can only be reached by
traveling a dangerous
mountain road.

I The barber of this town
shaves all those people, and
only those people, who do
not shave themselves.

I Can such a barber exist?
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