CS311H: Discrete Mathematics

Recursive Definitions and Structural Induction

Instructor: İsıl Dillig

Example

Let \(f_n \) denote the \(n \)'th element of the Fibonacci sequence

Prove: For \(n \geq 3 \), \(f_n > \alpha^{n-2} \) where \(\alpha = \frac{1 + \sqrt{5}}{2} \)

Proof is by strong induction on \(n \) with two base cases

Intuition 1: Definition of \(f_n \) has two base cases

Intuition 2: Recursive step uses \(f_{n-1}, f_{n-2} \) ⇒ strong induction

Base case 1 (\(n=3 \)): \(f_3 = 2 \), and \(\alpha < 2 \), thus \(f_3 > \alpha \)

Base case 2 (\(n=4 \)): \(f_4 = 3 \) and \(\alpha^2 = \frac{(3 + \sqrt{5})}{2} < 3 \)

Example, cont.

\[\alpha^{k-1} = \alpha^{k-2} + \alpha^{k-3} \]

By recursive definition, we know \(f_{k+1} = f_k + f_{k-1} \)

Furthermore, by inductive hypothesis:

\[f_k > \alpha^{k-2}, \quad f_{k-1} > \alpha^{k-3} \]

Therefore, \(f_{k+1} > \alpha^{k-2} + \alpha^{k-3} = \alpha^{k-1} \)

Recursively Defined Sets and Structures

We can also define sets and other data structures recursively

Example: Consider the set \(S \) defined as:

\[3 \in S \]

If \(x \in S \) and \(y \in S \), then \(x + y \in S \)

What is the set \(S \) defined as above?

Announcements and Review

- Homework 5 due next lecture
- Review: Recursive definitions have base case and inductive step
- Typically use inductive proofs to prove properties about recursively defined sequences, functions, etc.
More Examples

- Give a recursive definition of the set E of all even integers:
 - Base case:
 - Recursive step:

- Give a recursive definition of \mathbb{N}, the set of all natural numbers:
 - Base case:
 - Recursive step:

Strings and Alphabets

- Recursive definitions play important role in study of strings
- Strings are defined over an alphabet Σ
 - Example: $\Sigma_1 = \{a, b\}$
 - Example: $\Sigma_2 = \{0\}$
- Examples of strings over Σ_1: a, b, aa, ba, bb, \ldots
- Set of all strings formed from Σ forms language called Σ^*
 - $\Sigma^* = \{\epsilon, 0, 00, 000, \ldots\}$

Recursive Definition of Strings

- The language Σ^* has natural recursive definition:
 - Base case: $\epsilon \in \Sigma^*$ (empty string)
 - Recursive step: If $w \in \Sigma^*$ and $x \in \Sigma$, then $wx \in \Sigma^*$
 - Since ϵ is the empty string, $\epsilon s = s$
 - Consider the alphabet $\Sigma = \{0, 1\}$
 - How is the string “1” formed according to this definition?
 - How is “10” formed?

Recursive Definitions of String Operations

- Many operations on strings can be defined recursively.
 - Consider function $l(w)$ which yields length of string w
 - Example: Give recursive definition of $l(w)$
 - Base case:
 - Recursive step:

Another Example

- The reverse of a string s is s written backwards.
 - Example: Reverse of “abc” is “bca”
 - Give a recursive definition of the $\text{reverse}(s)$ operation
 - Base case:
 - Recursive step:

Palindromes

- A palindrome is a string that reads the same forwards and backwards
 - Examples: “mom”, “dad”, “abba”, “Madam I’m Adam”, \ldots
 - Give a recursive definition of the set P of all palindromes over the alphabet $\Sigma = \{a, b\}$
 - Base cases:
 - Recursive step:
Structural Induction

- **Question**: How do we prove universally quantified properties about recursively-defined data (e.g., sets, strings)?
- **Structural induction** is a technique that allows us to apply induction on recursive definitions even if there is no integer
- Structural induction is also no more powerful than regular induction, but can make proofs much easier

Example 1

- Consider the following recursively defined set \(S \):
 1. \(a \in S \)
 2. If \(x \in S \), then \((x) \in S\)
- Prove by structural induction that every element in \(S \) contains an equal number of right and left parentheses.
 - **Base case**: \(a \) has 0 left and 0 right parentheses
 - **Inductive step**: By the inductive hypothesis, \(x \) has equal number, say \(n \), of right and left parentheses.
 - Thus, \((x)\) has \(n + 1 \) left and \(n + 1 \) right parentheses.

Example 2

- Consider the set \(S \) defined recursively as follows:
 - **Base case**: \(3 \in S \)
 - **Recursive step**: If \(x \in S \) and \(y \in S \), then \(x + y \in S \)
- Prove \(S \) is set of all positive integers that are multiples of 3

Proof, Part I

Consider the set \(S \) defined recursively as follows: \(3 \in S \) and if \(x \in S \) and \(y \in S \), then \(x + y \in S \)

Proof, Part II

- }
- }
- }
- }
- }
- }
- }
- }
- }
Proving Correctness of Reverse

- Earlier, we defined a \(\text{reverse}(w) \) function for length of strings:
 - **Base case:** \(\text{reverse}(\epsilon) = \epsilon \)
 - **Recursive step:** \(\text{reverse}(wx) = x \cdot \text{reverse}(w) \) where \(w \in \Sigma^* \) and \(x \in \Sigma \)
- Prove \(\forall x, y \in \Sigma^*. \text{reverse(xy)} = \text{reverse}(y) \cdot \text{reverse}(x) \)
- Let \(P(y) \) be the property \(\forall x \in \Sigma^*. \text{reverse(xy)} = \text{reverse}(y) \cdot \text{reverse}(x) \)
- We’ll prove by structural induction that \(\forall y \in \Sigma^*. P(y) \) holds, which is the desired property

Proof of Correctness of Reverse, cont.

- \(P(y) : \forall x \in \Sigma^*. \text{reverse(xy)} = \text{reverse}(y) \cdot \text{reverse}(x) \)

One More Reverse Example

- **Inductive step:** \(s = wx \) where \(w \in \Sigma^*, x \in \Sigma \)
 - Want to show:
 - Using previously shown lemma, \(\text{reverse}(\text{reverse}(wx)) = \text{reverse}(x) \cdot \text{reverse}(w) \)
 - Again, using previous lemma, \(\text{reverse}(\text{reverse}(x) \cdot \text{reverse}(w)) = \)
 - By inductive hypothesis, \(\text{reverse}(\text{reverse}(w)) = \)
 - Also by \(\text{IH} \), \(\text{reverse}(\text{reverse}(x)) = \)
 - Thus, \(\text{reverse}(\text{reverse}(w)) \cdot \text{reverse}(\text{reverse}(x)) = \text{wx} \)

Structural vs. Strong Induction

- Structural induction may look different from other forms of induction, but it is an implicit form of **strong induction**
- **Intuition:** We can define an integer \(k \) that represents how many times we need to use the recursive step in the definition
 - For base case, \(k = 0 \); if we use recursive step once, \(k = 1 \) etc.
General Induction and Well-Ordered Sets

- Inductive proofs can be used for any well-ordered set:
 1. have a least element
 2. total order between elements: either \(a \leq b \) or \(b \leq a \)
- Can use induction to prove properties of any well-ordered set:
 - Base case: Prove property about least element in set
 - Inductive step: To prove \(P(e) \), assume \(P(e') \) for all \(e' < e \)

Ordered Pairs of Natural Numbers

- Consider the set \(\mathbb{N} \times \mathbb{N} \), pairs of non-negative integers
- Let’s define the following order \(\leq \) on this set:
 \[
 (x_1, y_1) \leq (x_2, y_2) \text{ if } \begin{cases}
 x_1 < x_2 \\
 x_1 = x_2 \land y_1 \leq y_2
 \end{cases}
 \]
- This is an example of lexicographic order, which is a kind of total order; hence \((\mathbb{N} \times \mathbb{N}, \leq) \) is a well-ordered set
- Question: What is the least element of this set?

Generalized Induction Example

- Suppose that \(a_{m,n} \) is defined recursively for \((m,n) \in \mathbb{N} \times \mathbb{N} \):
 \[
 a_{0,0} = 0 \\
 a_{m,n} = \begin{cases}
 a_{m-1,n} + 1 & \text{if } n = 0 \text{ and } m > 0 \\
 a_{m,n-1} + n & \text{if } n > 0
 \end{cases}
 \]
- Show that \(a_{m,n} = m + n(n+1)/2 \)
- Proof is by induction on \((m,n)\) where \((m,n) \in (\mathbb{N} \times \mathbb{N}, \leq)\)

Example, cont.

Show \(a_{m,n} = m + n(n+1)/2 \) for:

\[
\begin{align*}
 a_{0,0} &= 0 \\
 a_{m,n} &= \begin{cases}
 a_{m-1,n} + 1 & \text{if } n = 0 \text{ and } m > 0 \\
 a_{m,n-1} + n & \text{if } n > 0
 \end{cases}
\end{align*}
\]
Example, cont.

Show \(a_{m,n} = m + n(n+1)/2\) for:

\[
\begin{align*}
 a_{0,0} &= 0 \\
 a_{m,n} &= \begin{cases}
 a_{m-1,n} + 1 & \text{if } n = 0 \text{ and } m > 0 \\
 a_{m,n-1} + n & \text{if } n > 0
 \end{cases}
\end{align*}
\]