CS311H: Discrete Mathematics

Propositional Logic

Instructor: Işıl Dillig

Course Staff

- **Instructor:** Prof. Işıl Dillig
- **TA:** Jessica Hoffmann
- **Proctor:** Cody Freitag
- **Class meets every Tuesday, Thursday 2:00 pm - 3:30 pm**
- **Course webpage:** http://www.cs.utexas.edu/~isil/cs311h/
- **Contains contact info, office hours, slides from lectures, homework assignments etc.**

About this Course

- Give mathematical background you need for computer science
- **Topics:** Logic, proof techniques, number theory, combinatorics, graph theory, basic complexity theory . . .
- These will come up again and again in higher-level CS courses
 - Master CS311H material if you want to do well in future courses!

Textbook

- **Textbook (optional):** Discrete Mathematics and Its Applications by Kenneth Rosen
- **Textbook not a substitute for lectures:**
 - Class presentation may not follow book
 - Skip many chapters and cover extra material

Piazza

- **Piazza page:** https://piazza.com/utexas/fall2015/cs311h/home
- If you have any questions about material or homework, please post questions on Piazza
- You are encouraged to answer each other’s questions
- Homework #0: Make sure you can access Piazza page!

Discussion Sections and Office Hours

- **Discussion sections on Mondays and Wednesdays 2-3 pm**
- Assigned to one of two sections, but can attend both
- Discussion section will answer questions, solve new problems, and go over previous homework
- Isil’s office hours: Thursdays before class (1-2 pm)
- Cody’s office hours: Mon, Wed 3-4 pm
- Jess’s office hours: Tuesday 4-6pm
Requirements

- Weekly written homework assignments
- Two midterm exams: in-class, closed-book
 - Allowed to bring 3 pages of hand-prepared notes
- Scheduled for October 6, November 12
- Final exam on December 15
- No make-up exams given unless you have serious, documented medical emergency

Grading

- Final exam: 40% of final grade
- Each midterm: 20% of final grade
- Homework: 20% of final grade
- Final grades may be curved, but lower bounds guaranteed (e.g., get at least A- if grade is 90% or higher)

Homework Policy

- Homework due at the beginning of class on due date
 - No credit unless turned in by 2 PM on due date
 - Late submissions not allowed, but lowest homework score dropped when calculating grades
- We will only give hard copies of homework solutions in class

Honor Code

- Homework write-up must be your own
- May not copy answers from on-line resources or other students
- If you discuss with others, write-up must mention their names
- May not share homework solutions on Piazza
- Honor code taken very seriously at UT
 - May be expelled for violating honor code!
 - Please read departmental guidelines (link from course webpage)

Class Participation

- Everyone expected to attend lectures
 - Key to learning material!
- Ask questions!
 - No question is a stupid question!
 - Other students also benefit from your questions
- Make class fun by participating!
 - Might win chocolate if you answer questions :)

Let's get started!
Logic

- Logic: study of valid reasoning; fundamental to CS
- Allows us to represent knowledge in precise, mathematical way
- Allows us to make valid inferences using a set of precise rules
- Many applications in CS: AI, programming languages, databases, computer architecture, automated testing and program analysis, . . .

Propositional Logic

- Simplest logic is propositional logic
- Building blocks of propositional logic are propositions
- A proposition is a statement that is either true or false
- Examples:
 - "CS311 is a course in discrete mathematics": True
 - "Austin is located in California": False
 - "Pay attention": Not a proposition
 - "x+1 = 2": Not a proposition

Propositional Variables, Truth Value

- Truth value of a proposition identifies whether a proposition is true (written T) or false (written F)
- What is truth value of "Today is Friday"? F
- Variables that represent propositions are called propositional variables
- Truth value of a propositional variable is either T or F.
- Denote propositional variables using lower-case letters, such as p, p₁, p₂, q, r, s, . . .

Conjunction

- Conjunction of two propositions p and q, written p ∧ q, is the proposition "p and q"
- p ∧ q is T if both p is true and q is true, and F otherwise.
- What is the conjunction and the truth value of p ∧ q for . . .
 - p = "It is fall semester", q = "Today is Thursday"?
 - p = "It is Thursday", q = "It is morning"?
Disjunction

- Disjunction of two propositions \(p \) and \(q \), written \(p \lor q \), is the proposition \("p or q" \).
- \(p \land q \) is \(T \) if either \(p \) is true or \(q \) is true, and \(F \) otherwise.
- What is the disjunction and the truth value of \(p \lor q \) for...
 - \(p = \text{"It is spring semester"}, q = \text{"Today is Thursday"} \)?
 - \(p = \text{"It is Friday"}, q = \text{"It is morning"} \)?

Propositional Formulas and Truth Tables

- Truth table for propositional formula \(F \) shows truth value of \(F \) for every possible value of its constituent atomic propositions.

Examples

Construct truth tables for the following formulas:

1. \((p \lor q) \land \neg p\)
2. \((p \land q) \lor (\neg p \land \neg q)\)
3. \((p \lor q \lor \neg r) \land r\)

More Logical Connectives

- \(\land, \lor, \neg\) most common boolean connectives, but there are other boolean connectives as well.
- Other connectives: exclusive or \(\oplus \), implication \(\rightarrow \), biconditional \(\leftrightarrow \)
- Exclusive or: \(p \oplus q \) is true when exactly one of \(p \) and \(q \) is true, and false otherwise

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(p \oplus q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Implication (Conditional)

- An implication (or conditional) \(p \rightarrow q \) is read "if \(p \) then \(q \)" or "\(p \) implies \(q \)"
- It is false if \(p \) is true and \(q \) is false, and true otherwise
- Observe: If \(p \) is false, \(p \rightarrow q \) is true, regardless of \(q \)'s value.
- Exercise: Draw truth table for \(p \rightarrow q \)
- In an implication \(p \rightarrow q \), \(p \) is called antecedent and \(q \) is called consequent.
Converting English into Logic

Let \(p = "I major in CS" \) and \(q = "I will find a good job". How do we translate following English sentences into logical formulas?

- "If I major in CS, then I will find a good job":
 \(p \rightarrow q \)
- "I will not find a good job unless I major in CS":
 \(
eg q \rightarrow
eg p \)
- "It is sufficient for me to major in CS to find a good job":
 \(p \rightarrow q \)
- "It is necessary for me to major in CS to find a good job":
 \(q \rightarrow p \)

More English - Logic Conversions

Let \(p = "I major in CS" \), \(q = "I will find a good job" \), and \(r = "I can program" \). How do we translate following English sentences into logical formulas?

- "I will not find a good job unless I major in CS or I can program":
 \(
eg q \rightarrow (p \lor r) \)
- "I will not find a good job unless I major in CS and I can program":
 \(
eg q \rightarrow (p \land r) \)
- "A prerequisite for finding a good job is that I can program":
 \(r \rightarrow q \)
- "If I major in CS, then I will be able to program and I can find a good job":
 \(p \rightarrow (r \land q) \)

Converse of a Implication

- The converse of an implication \(p \rightarrow q \) is \(q \rightarrow p \).
- What is the converse of "If I am a CS major, then I can program"?
- What is the converse of "If I get an A in CS311, then I am smart"?
- **Note:** It is possible for a implication to be true, but its converse to be false, e.g., \(F \rightarrow T \) is true, but converse false

Inverse of an Implication

- The inverse of an implication \(p \rightarrow q \) is \(\neg p \rightarrow \neg q \).
- What is the inverse of "If I am a CS major, then I can program"?
- What is the inverse of "If I get an A in CS311, then I am smart"?
- **Note:** It is possible for a implication to be true, but its inverse to be false. \(F \rightarrow T \) is true, but inverse is false

Contrapositive of Implication

- The contrapositive of an implication \(p \rightarrow q \) is \(\neg q \rightarrow \neg p \).
- What is the contrapositive of "If I am a CS major, then I can program"?
- What is the contrapositive of "If I get an A in CS311, then I am smart"?
- **Question:** Is it possible for an implication to be true, but its contrapositive to be false?

Conditional and its Contrapositive

A conditional \(p \rightarrow q \) and its **contrapositive** \(\neg q \rightarrow \neg p \) always have the same truth value.

- **Proof:** We consider all four possible cases:
 - \(p = T, q = T \): Both \(T \rightarrow T \) and \(T \rightarrow T \) are true
 - \(p = T, q = F \): Both \(T \rightarrow F \) and \(T \rightarrow F \) are false
 - \(p = F, q = T \): Both \(F \rightarrow T \) and \(F \rightarrow T \) are true
 - \(p = F, q = F \): Both \(F \rightarrow F \) and \(F \rightarrow F \) are true
Consider a conditional $p \rightarrow q$

Is it possible that its converse is true, but inverse is false?

Conditional is of the form $p \rightarrow q$

Converse: $q \rightarrow p$

Inverse: $\neg p \rightarrow \neg q$

Contrapositive: $\neg q \rightarrow \neg p$

Conditional and contrapositive have same truth value

Inverse and converse always have same truth value

A biconditional $p \leftrightarrow q$ is the proposition “p if and only if q”.

The biconditional $p \leftrightarrow q$ is true if p and q have same truth value, and false otherwise.

Exercise: Construct a truth table for $p \leftrightarrow q$

Question: How can we express $p \leftrightarrow q$ using the other boolean connectives?

Given a formula $p \land q \lor r$, do we parse this as $(p \land q) \lor r$ or $p \land (q \lor r)$?

Without settling on a convention, formulas without explicit parantheses are ambiguous.

To avoid ambiguity, we will specify precedence for logical connectives.

Negation (\neg) has higher precedence than all other connectives.

Question: Does $\neg p \land q$ mean (i) $\neg(p \land q)$ or (ii) $(\neg p) \land q$?

Conjunction (\land) has next highest precedence.

Question: Does $p \land q \lor q$ mean (i) $(p \land q) \lor q$ or (ii) $p \land (q \lor q)$?

Disjunction (\lor) has third highest precedence.

Next highest is precedence is \rightarrow, and lowest precedence is \leftrightarrow

Which is the correct interpretation of the formula

$p \lor q \land r \leftrightarrow q \rightarrow \neg r$

(A) $(p \lor (q \land r)) \leftrightarrow q \rightarrow (\neg r)$

(B) $(p \lor q) \land r \leftrightarrow q \rightarrow (\neg r)$

(C) $(p \lor (q \land r)) \leftrightarrow (q \rightarrow (\neg r))$

(D) $(p \lor ((q \land r) \leftrightarrow q)) \rightarrow (\neg r)$
Summary

- Formulas in propositional logic are formed using propositional variables and boolean connectives.
- Connectives: negation \neg, conjunction \land, disjunction \lor, conditional \rightarrow, biconditional \leftrightarrow.
- Truth table shows truth value of formula under all possible assignments to variables.