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Converse of a Implication

I Recall implication p → q – when does it evaluate to false?

I The converse of an implication p → q is q → p.

I What is the converse of ”If I am a CS major, then I can
program”?

I What is the converse of ”If I get an A in CS311, then I am
smart”?

I Is it possible for a implication to be true, but its converse to
be false?
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Inverse of an Implication

I The inverse of an implication p → q is ¬p → ¬q .

I What is the inverse of ”If I am a CS major, then I can
program”?

I What is the inverse of ”If I get an A in CS311, then I am
smart”?

I Is it possible for a implication to be true, but its inverse to be
false?
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Contrapositive of Implication

I The contrapositive of an implication p → q is ¬q → ¬p.

I What is the contrapositive of ”If I am a CS major, then I can
program”?

I What is the contrapositive of ”If I get an A in CS311, then I
am smart”?

I Question: Is it possible for an implication to be true, but its
contrapositive to be false?
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Conditional and its Contrapositive

A conditional p → q and its contrapositive ¬q → ¬p always
have the same truth value.

I Prove it!
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Question

I Consider a conditional p → q

I Is it possible that its converse is true, but inverse is false?
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Summary

I Conditional is of the form p → q

I Converse: q → p

I Inverse: ¬p → ¬q

I Contrapositive: ¬q → ¬p

I Conditional and contrapositive have same truth value

I Inverse and converse always have same truth value
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Biconditionals

I A biconditional p ↔ q is the proposition ”p if and only if q”.

I The biconditional p ↔ q is true if p and q have same truth
value, and false otherwise.

I Exercise: Construct a truth table for p ↔ q

I Question: How can we express p ↔ q using the other boolean
connectives?
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Operator Precedence

I Given a formula p ∧ q ∨ r , do we parse this as (p ∧ q) ∨ r or
p ∧ (q ∨ r)?

I Without settling on a convention, formulas without explicit
paranthesization are ambiguous.

I To avoid ambiguity, we will specify precedence for logical
connectives.
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Operator Precedence, cont.

I Negation (¬) has higher precedence than all other connectives.

I Question: Does ¬p ∧ q mean (i) ¬(p ∧ q) or (ii) (¬p) ∧ q?

I Conjunction (∧) has next highest predence.

I Question: Does p ∧ q ∨ q mean (i) (p ∧ q) ∨ r or (ii)
p ∧ (q ∨ r)?

I Disjunction (∨) has third highest precedence.

I Next highest is precedence is →, and lowest precedence is ↔
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Operator Precedence Example

I Which is the correct interpretation of the formula

p ∨ q ∧ r ↔ q → ¬r

(A) ((p ∨ (q ∧ r))↔ q)→ (¬r)

(B) ((p ∨ q) ∧ r)↔ q)→ (¬r)

(C) (p ∨ (q ∧ r))↔ (q → (¬r))

(D) (p ∨ ((q ∧ r)↔ q))→ (¬r)
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Validity, Unsatisfiability

I In general, truth value of a propositional formula depends on truth
assignments to variables

I But some formulas evaluate to true for every assignment, e.g.,
p ∨ ¬p

I Such formulas are called tautologies or valid formulas

I Some formulas evaluate to false for every assignment, e.g., p ∧ ¬p

I Such formulas are called unsatisfiable formulas or contradictions
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Interpretations

I To make satisfability/validity precise, we’ll define
interpretation of formula

I An interpretation I for a formula F is a mapping from each
propositional variables in F to exactly one truth value

I : {p 7→ true, q 7→ false, · · · }

I Each interpretation corresponds to one row in the truth table,
so 2n possible interpretations
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Entailment

I Under an interpretation, every propositional formula evaluates
to T or F

Formula F + Interpretation I = Truth value

I We write I |= F if F evaluates to true under I

I Similarly, I 6|= F if F evaluates to false under I .

I Theorem: I |= F if and only if I 6|= ¬F
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Examples

I Consider the formula F : p ∧ q → ¬p ∨ ¬q

I Let I1 be the interpretation such that [p 7→ true, q 7→ false]

I What does F evaluate to under I1?

I Thus, I1 |= F

I Let I2 be the interpretation such that [p 7→ true, q 7→ true]

I What does F evaluate to under I2?

I Thus, I2 6|= F
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Another Example

I Let F1 and F2 be two propositional formulas

I Suppose F1 evaluates to true under interpretation I

I What does F2 ∧ ¬F1 evaluate to under I ?
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Satisfiability, Validity

I F is satisfiable iff there exists interpretation I s.t. I |= F

I F is valid iff for all interpretations I , I |= F

I F is unsatisfiable iff for all interpretations I , I 6|= F

I F is contingent if it is satisfiable, but not valid.
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True/False Questions

Are the following statements true or false?

I If a formula is valid, then it is also satisfiable.

I If a formula is satisfiable, then its negation is unsatisfiable.

I If F1 and F2 are satisfiable, then F1 ∧ F2 is also satisfiable.

I If F1 and F2 are satisfiable, then F1 ∨ F2 is also satisfiable.

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Propositional Logic II 18/35

3



Duality Between Validity and Unsatisfiability

F is valid if and only if ¬F is unsatisfiable

I Proof:
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Proving Validity

I Question: How can we prove that a propositional formula is a
tautology?

I Exercise: Which formulas are tautologies? Prove your answer.

1. (p → q)↔ (¬q → ¬p)

2. (p ∧ q) ∨ ¬p
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Proving Satisfiability, Unsatisfiability, Contingency

I Similarly, can prove satisfiability, unsatisfiability, contingency
using truth tables:

I Satisfiable: There exists a row where formula evaluates to true

I Unsatisfiable: In all rows, formula evaluates to false

I Contingent: Exists a row where formula evaluates to true, and
another row where it evaluates to false
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Exercise

I Is (p → q)→ (q → p) valid, unsatisfiable, or contingent?
Prove your answer.
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Implication

I Formula F1 implies F2 (written F1 ⇒ F2) iff for all
interpretations I , I |= F1 → F2

F1 ⇒ F2 iff F1 → F2 is valid

I Caveat: F1 ⇒ F2 is not a propositional logic formula; ⇒ is
not part of PL syntax!

I Instead, F1 ⇒ F2 is a semantic judgment, like satisfiability!
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Example

I Does p ∨ q imply p? Prove your answer.
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Equivalence

I Two formulas F1 and F2 are equivalent if they have same
truth value for every interpretation, e.g., p ∨ p and p

I More precisely, formulas F1 and F2 are equivalent, written
F1 ≡ F2 or F1 ⇔ F2, iff:

F1 ⇔ F2 iff F1 ↔ F2 is valid

I ≡,⇔ not part of PL syntax; they are semantic judgments!
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Example

I Prove that p → q and ¬p ∨ q are equivalent
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Important Equivalences

I Some important equivalences are useful to know!

I Law of double negation: ¬¬φ ≡ φ

I Identity Laws: φ ∧ T ≡ φ φ ∨ F ≡ φ

I Domination Laws: φ ∨ T ≡ T φ ∧ F ≡ F

I Idempotent Laws: φ ∨ φ ≡ φ φ ∧ φ ≡ φ

I Negation Laws: φ ∧ ¬φ ≡ F φ ∨ ¬φ ≡ T

I Absorption Laws: φ1 ∧ (φ1 ∨ φ2) ≡ φ1 φ1 ∨ (φ1 ∧ φ2) = φ2
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Commutativity and Distributivity Laws

I Commutative Laws: φ1 ∨ φ2 ≡ φ2 ∨ φ1 φ1 ∧ φ2 ≡ φ2 ∧ φ1

I Distributivity Law #1:
(φ1 ∨ (φ2 ∧ φ3)) ≡ (φ1 ∨ φ2) ∧ (φ1 ∨ φ3)

I Distributivity Law #2:
(φ1 ∧ (φ2 ∨ φ3)) ≡ (φ1 ∧ φ2) ∨ (φ1 ∧ φ3)

I Associativity Laws: φ1 ∨ (φ2 ∨ φ3) ≡ (φ1 ∨ φ2) ∨ φ3
φ1 ∧ (φ2 ∧ φ3) ≡ (φ1 ∧ φ2) ∧ φ3
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De Morgan’s Laws

I Let cs311 be the proposition ”John took CS311” and cs314 be
the proposition ”John took CS314”

I In simple English what does ¬(cs311 ∧ cs314) mean?

I DeMorgan’s law expresses exactly this equivalence!

I De Morgan’s Law #1: ¬(p ∧ q) ≡ (¬p ∨ ¬q)

I De Morgan’s Law #2: ¬(p ∨ q) ≡ (¬p ∧ ¬q)

I When you ”push” negations in, ∧ becomes ∨ and vice versa
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Why are These Equivalences Useful?

I Use known equivalences to prove that two formulas are
equivalent

I i.e., rewrite one formula into another using known equivalences

I Examples: Prove following formulas are equivalent:

1. ¬(p ∨ (¬p ∧ q)) and ¬p ∧ ¬q

2. ¬(p → q) and p ∧ ¬q
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Formalizing English Arguments in Logic

I We can use logic to prove correctness of English arguments.

I For example, consider the argument:

I If Joe drives fast, he gets a speeding ticket.

I Joe did not get a ticket.

I Therefore, Joe did not drive fast.

I Let f be the proposition ”Joe drives fast”, and t be the
proposition ”Joe gets a ticket”

I How do we encode this argument as a logical formula?

Instructor: Işıl Dillig, CS311H: Discrete Mathematics Propositional Logic II 31/35

Example, cont

”If Joe drives fast, he gets a speeding ticket. Joe did not get a
ticket. Therefore, he did not drive fast.”: ((f → t) ∧ ¬t)→ ¬f

I How can we prove this argument is valid?

I Can do this in two ways:

1. Use truth table to show formula is tautology

2. Use known equivalences to rewrite formula to true
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Another Example

I Can also use to logic to prove an argument is not valid.

I Suppose your friend George make the following argument:

I If Jill carries an umbrella, it is raining.

I Jill is not carrying an umbrella.

I Therefore it is not raining.

I Let’s use logic to prove George’s argument doesn’t hold water.

I Let u = ”Jill is carrying an umbrella”, and r = ”It is raining”

I How do we encode this argument in logic?
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Example, cont.

”If Jill carries an umbrella, it is raining. Jill is not carrying an
umbrella. Therefore it is not raining.”: ((u → r) ∧ ¬u)→ ¬r

I How can we prove George’s argument is invalid?
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Summary

I A formula is valid if it is true for all interpretations.

I A formula is satisfiable if it is true for at least one
interpretation.

I A formula is unsatisfiable if it is false for all interpretations.

I A formula is contingent if it is true in at least one
interpretation, and false in at least one interpretation.

I Two formulas F1 and F2 are equivalent, written F1 ≡ F2, if
F1 ↔ F2 is valid
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