Announcements

- First homework assignment out today!
- Due in one week, i.e., before lecture next Wed 09/13
- Remember: Due before lecture starts!

Converse of an Implication

- Recall implication $p \implies q$ – when does it evaluate to false?
- The converse of an implication $p \implies q$ is $q \implies p$.
- What is the converse of "If I am a CS major, then I can program"?
- What is the converse of "If I get an A in CS311, then I am smart"?
- Note: It is possible for an implication to be true, but its converse to be false, e.g., $F \implies T$ is true, but converse false

Inverse of an Implication

- The inverse of an implication $p \implies q$ is $\neg p \implies \neg q$.
- What is the inverse of "If I am a CS major, then I can program"?
- What is the inverse of "If I get an A in CS311, then I am smart"?
- Note: It is possible for a implication to be true, but its inverse to be false. $F \implies T$ is true, but inverse is false

Contrapositive of Implication

- The contrapositive of an implication $p \implies q$ is $\neg q \implies \neg p$.
- What is the contrapositive of "If I am a CS major, then I can program"?
- What is the contrapositive of "If I get an A in CS311, then I am smart"?
- Question: Is it possible for an implication to be true, but its contrapositive to be false?

Conditional and its Contrapositive

A conditional $p \implies q$ and its contrapositive $\neg q \implies \neg p$ always have the same truth value.

- Proof: We consider all four possible cases:
 - $p = T, q = T$: Both $T \implies T$ and $F \implies F$ are true
 - $p = T, q = F$: Both $T \implies F$ and $T \implies F$ are false
 - $p = F, q = T$: Both $F \implies T$ and $F \implies T$ are true
 - $p = F, q = F$: Both $F \implies F$ and $T \implies T$ are true
Question

- Consider a conditional \(p \rightarrow q \)
- Is it possible that its converse is true, but inverse is false?

Summary

- Conditional is of the form \(p \rightarrow q \)
- Converse: \(q \rightarrow p \)
- Inverse: \(\neg p \rightarrow \neg q \)
- Contrapositive: \(\neg q \rightarrow \neg p \)
- Conditional and contrapositive have same truth value
- Inverse and converse always have same truth value

Biconditionals

- A biconditional \(p \leftrightarrow q \) is the proposition "p if and only if q”.
- The biconditional \(p \leftrightarrow q \) is true if \(p \) and \(q \) have same truth value, and false otherwise.
- Exercise: Construct a truth table for \(p \leftrightarrow q \)
- Question: How can we express \(p \leftrightarrow q \) using the other boolean connectives?

Operator Precedence

- Given a formula \(p \land q \lor r \), do we parse this as \((p \land q) \lor r \) or \(p \land (q \lor r) \)?
- Without settling on a convention, formulas without explicit paranthesization are ambiguous.
- To avoid ambiguity, we will specify precedence for logical connectives.

Operator Precedence, cont.

- Negation (\(\neg \)) has higher precedence than all other connectives.
- Question: Does \(\neg p \land q \) mean (i) \(\neg (p \land q) \) or (ii) \(\neg p \land q \)?
- Conjunction (\(\land \)) has next highest precedence.
- Question: Does \(p \land q \lor q \) mean (i) \((p \land q) \lor r \) or (ii) \(p \land (q \lor r) \)?
- Disjunction (\(\lor \)) has third highest precedence.
- Next highest is precedence is \(\rightarrow \), and lowest precedence is \(\leftrightarrow \)

Operator Precedence Example

- Which is the correct interpretation of the formula \(p \lor q \land r \leftrightarrow q \rightarrow \neg r \)?

 (A) \((p \lor (q \land r)) \leftrightarrow q \rightarrow (\neg r) \)
 (B) \((p \lor q \land r) \leftrightarrow q \rightarrow (\neg r) \)
 (C) \((p \lor (q \land r)) \leftrightarrow (q \rightarrow (\neg r)) \)
 (D) \((p \lor ((q \land r) \leftrightarrow q)) \rightarrow (\neg r) \)
Validity, Unsatisfiability

- The truth value of a propositional formula depends on truth assignments to variables
- Example: \(\neg p \) evaluates to true under the assignment \(p = F \) and to false under \(p = T \)
- Some formulas evaluate to true for every assignment, e.g., \(p \lor \neg p \)
- Such formulas are called tautologies or valid formulas
- Some formulas evaluate to false for every assignment, e.g., \(p \land \neg p \)
- Such formulas are called unsatisfiable formulas or contradictions

Interpretations

- To make satisfiability/validity precise, we’ll define interpretation of formula
- An interpretation \(I \) for a formula \(F \) is a mapping from each propositional variable in \(F \) to exactly one truth value \(I: \{ p \mapsto \text{true}, q \mapsto \text{false}, \ldots \} \)
- Each interpretation corresponds to one row in the truth table, so \(2^n \) possible interpretations

Entailment

- Under an interpretation, every propositional formula evaluates to \(T \) or \(F \)

 Formula \(F \) + Interpretation \(I = \text{Truth value} \)

- We write \(I \models F \) if \(F \) evaluates to true under \(I \)
- Similarly, \(I \not\models F \) if \(F \) evaluates to false under \(I \)
- Theorem: \(I \models F \) if and only if \(I \not\models \neg F \)

Examples

- Consider the formula \(F : p \land q \rightarrow \neg p \lor \neg q \)
- Let \(I_1 \) be the interpretation such that \(\{ p \mapsto \text{true}, q \mapsto \text{false} \} \)
- What does \(F \) evaluate to under \(I_1 \)?
- Thus, \(I_1 \models F \)
- Let \(I_2 \) be the interpretation such that \(\{ p \mapsto \text{true}, q \mapsto \text{true} \} \)
- What does \(F \) evaluate to under \(I_2 \)?
- Thus, \(I_2 \not\models F \)

Another Example

- Let \(F_1 \) and \(F_2 \) be two propositional formulas
- Suppose \(F_1 \) evaluates to true under interpretation \(I \)
- What does \(F_2 \land \neg F_1 \) evaluate to under \(I \)?

Satisfiability, Validity

- \(F \) is satisfiable iff there exists interpretation \(I \) s.t. \(I \models F \)
- \(F \) is valid iff for all interpretations \(I, I \models F \)
- \(F \) is unsatisfiable iff for all interpretations \(I, I \not\models F \)
- \(F \) is contingent if it is satisfiable, but not valid.
True/False Questions

Are the following statements true or false?

▶ If a formula is valid, then it is also satisfiable.
▶ If a formula is satisfiable, then its negation is unsatisfiable.
▶ If F_1 and F_2 are satisfiable, then $F_1 \land F_2$ is also satisfiable.
▶ If F_1 and F_2 are satisfiable, then $F_1 \lor F_2$ is also satisfiable.

Duality Between Validity and Unsatisfiability

F is valid if and only if $\neg F$ is unsatisfiable

▶ Proof:

Proving Validity

▶ Question: How can we prove that a propositional formula is a tautology?
▶ Exercise: Which formulas are tautologies? Prove your answer.
1. $(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$
2. $(p \land q) \lor \neg p$

Proving Satisfiability, Unsatisfiability, Contingency

▶ Similarly, can prove satisfiability, unsatisfiability, contingency using truth tables:
 ▶ Satisfiable: There exists a row where formula evaluates to true
 ▶ Unsatisfiable: In all rows, formula evaluates to false
 ▶ Contingent: Exists a row where formula evaluates to true, and another row where it evaluates to false

Exercise

▶ Is $(p \rightarrow q) \rightarrow (q \rightarrow p)$ valid, unsatisfiable, or contingent? Prove your answer.

Implication

▶ Formula F_1 implies F_2 (written $F_1 \Rightarrow F_2$) iff for all interpretations I, $I \models F_1 \Rightarrow F_2$

$F_1 \Rightarrow F_2$ iff $F_1 \Rightarrow F_2$ is valid

▶ Caveat: $F_1 \Rightarrow F_2$ is not a propositional logic formula; \Rightarrow is not part of PL syntax!
▶ Instead, $F_1 \Rightarrow F_2$ is a semantic judgment, like satisfiability!
Example

- Does \(p \lor q \) imply \(p \)? Prove your answer.

Equivalence

- Two formulas \(F_1 \) and \(F_2 \) are equivalent if they have same truth value for every interpretation, e.g., \(p \lor p \) and \(p \)
- More precisely, formulas \(F_1 \) and \(F_2 \) are equivalent, written \(F_1 \equiv F_2 \) or \(F_1 \Leftrightarrow F_2 \), iff:
 \[
 F_1 \Leftrightarrow F_2 \text{ iff } F_1 \leftrightarrow F_2 \text{ is valid}
 \]
- \(\equiv, \Leftrightarrow \) not part of PL syntax; they are semantic judgments!

Example

- Prove that \(p \rightarrow q \) and \(\neg p \lor q \) are equivalent

Important Equivalences

- Some important equivalences are useful to know!
- Law of double negation: \(\neg\neg p \equiv p \)
- Identity Laws: \(p \land T \equiv p \) \(p \lor F \equiv p \)
- Domination Laws: \(p \lor T \equiv T \) \(p \land F \equiv F \)
- Idempotent Laws: \(p \lor p \equiv p \) \(p \land p \equiv p \)
- Negation Laws: \(p \land \neg p \equiv F \) \(p \lor \neg p \equiv T \)

Commutativity and Distributivity Laws

- Commutative Laws: \(p \lor q \equiv q \lor p \) \(p \land q \equiv q \land p \)
- Distributivity Law #1: \((p \lor (q \land r)) \equiv (p \lor q) \land (p \lor r) \)
- Distributivity Law #2: \((p \land (q \lor r)) \equiv (p \land q) \lor (p \land r) \)
- Associativity Laws: \(p \lor (q \lor r) \equiv (p \lor q) \lor r \) \(p \land (q \land r) \equiv (p \land q) \land r \)

De Morgan’s Laws

- Let \(cs311 \) be the proposition “John took CS311” and \(cs312 \) be the proposition “John took CS312”
- In simple English what does \(\neg(\neg cs311 \land cs312) \) mean?
- DeMorgan’s law expresses exactly this equivalence!
- De Morgan’s Law #1: \(\neg(p \land q) \equiv (\neg p \lor \neg q) \)
- De Morgan’s Law #2: \(\neg(p \lor q) \equiv (\neg p \land \neg q) \)
- When you “push” negations in, \(\land \) becomes \(\lor \) and vice versa
Why are These Equivalences Useful?

- Use known equivalences to prove that two formulas are equivalent
- i.e., rewrite one formula into another using known equivalences
- Examples: Prove following formulas are equivalent:
 1. \(\neg(p \lor (\neg p \land q)) \) and \(\neg p \land \neg q \)
 2. \(\neg(p \rightarrow q) \) and \(p \land \neg q \)

Formalizing English Arguments in Logic

- We can use logic to prove correctness of English arguments.
- For example, consider the argument:
 - If Joe drives fast, he gets a speeding ticket.
 - Joe did not get a ticket.
 - Therefore, Joe did not drive fast.
- Let \(f \) be the proposition "Joe drives fast", and \(t \) be the proposition "Joe gets a ticket"
- How do we encode this argument as a logical formula?

Example, cont.

"If Joe drives fast, he gets a speeding ticket. Joe did not get a ticket. Therefore, he did not drive fast."

- How can we prove this argument is valid?
- Can do this in two ways:
 1. Use truth table to show formula is tautology
 2. Use known equivalences to rewrite formula to true

Another Example

- Can also use to logic to prove an argument is not valid.
- Suppose your friend George make the following argument:
 - If Jill carries an umbrella, it is raining.
 - Jill is not carrying an umbrella.
 - Therefore it is not raining.
- Let \(u \) = "Jill is carrying an umbrella", and \(r \) = "It is raining"
- How do we encode this argument in logic?

Example, cont.

"If Jill carries an umbrella, it is raining. Jill is not carrying an umbrella. Therefore it is not raining."

- How can we prove George’s argument is invalid?

Summary

- A formula is **valid** if it is true for all interpretations.
- A formula is **satisfiable** if it is true for at least one interpretation.
- A formula is **unsatisfiable** if it is false for all interpretations.
- A formula is **contingent** if it is true in at least one interpretation, and false in at least one interpretation.
- Two formulas \(F_1 \) and \(F_2 \) are equivalent, written \(F_1 \equiv F_2 \), if \(F_1 \leftrightarrow F_2 \) is valid