Announcements

- First homework assignment out today!
- Due in one week, i.e., before lecture next Tuesday

Converse of a Implication

- The converse of an implication $p \rightarrow q$ is $q \rightarrow p$.
- What is the converse of "If I am a CS major, then I can program"?
- What is the converse of "If I get an A in CS311, then I am smart"?
- Question: Do an implication and its converse always have same truth value?

Inverse of an Implication

- The inverse of an implication $p \rightarrow q$ is $\neg p \rightarrow \neg q$.
- What is the inverse of "If I am a CS major, then I can program"?
- What is the inverse of "If I get an A in CS311, then I am smart"?
- Question: Do an implication and its converse always have same truth value?

Contrapositive of Implication

- The contrapositive of an implication $p \rightarrow q$ is $\neg q \rightarrow \neg p$.
- What is the contrapositive of "If I am a CS major, then I can program"?
- What is the contrapositive of "If I get an A in CS311, then I am smart"?
- Very important: An implication and its contrapositive always have the same truth value

Conditional and its Contrapositive

Prove that a conditional $p \rightarrow q$ and its contrapositive $\neg q \rightarrow \neg p$ always have the same truth value.
Question

- Given a conditional $p \rightarrow q$, is it possible that its converse is true, but inverse is false? Prove it!

Summary

- Conditional is of the form $p \rightarrow q$
- Converse: $q \rightarrow p$
- Inverse: $\neg p \rightarrow \neg q$
- Contrapositive: $\neg q \rightarrow \neg p$
- Conditional and contrapositive have same truth value
- Inverse and converse always have same truth value

Biconditionals

- A biconditional $p \leftrightarrow q$ is the proposition "p if and only if q".
- The biconditional $p \leftrightarrow q$ is true if p and q have same truth value, and false otherwise.
- Exercise: Construct a truth table for $p \leftrightarrow q$
- Question: How can we express $p \leftrightarrow q$ using the other boolean connectives?

Operator Precedence

- Negation (\neg) has higher precedence than all other connectives.
- Question: Does $\neg p \land q$ mean (i) $\neg(p \land q)$ or (ii) $(\neg p) \land q$?
- Conjunction (\land) has next highest precedence.
- Question: Does $p \land q \lor q$ mean (i) $(p \land q) \lor q$ or (ii) $p \land (q \lor r)$?
- Disjunction (\lor) has third highest precedence.
- Next highest is precedence is \rightarrow, and lowest precedence is \leftrightarrow

Operator Precedence Example

- Which is the correct interpretation of the formula $p \lor q \land r \leftrightarrow q \rightarrow \neg r$

(A) $(p \lor (q \land r)) \leftrightarrow q \rightarrow (\neg r)$
(B) $(p \lor q) \land r \leftrightarrow q \rightarrow (\neg r)$
(C) $(p \lor (q \land r)) \leftrightarrow (q \rightarrow (\neg r))$
(D) $(p \lor ((q \land r) \leftrightarrow q)) \rightarrow (\neg r)$
Validity, Unsatisfiability

- The truth value of a propositional formula depends on truth assignments to variables
- Example: \(\neg p \) evaluates to true under assignment \(p = F \) and to false under \(p = T \)
- Some formulas evaluate to true for every assignment, e.g., \(p \lor \neg p \)
- Such formulas are called tautologies or valid formulas
- Some formulas evaluate to false for every assignment, e.g., \(p \land \neg p \)
- Such formulas are called unsatisfiable formulas or contradictions

Interpretations

- To make satisfiability/validity precise, we’ll define interpretation of formula
- An interpretation \(I \) for a formula \(F \) is a mapping from each propositional variable in \(F \) to exactly one truth value, e.g., \(I: \{ p \mapsto \text{true}, q \mapsto \text{false}, \ldots \} \)
- Each interpretation corresponds to one row in the truth table, so \(2^n \) possible interpretations

Entailment

- Under an interpretation, every propositional formula evaluates to T or F
- Formula \(F \) + Interpretation \(I = \text{Truth value} \)
- We write \(I \models F \) if \(F \) evaluates to true under \(I \)
- Similarly, \(I \not\models F \) if \(F \) evaluates to false under \(I \).
- Observe: \(I \models F \) if and only if \(I \not\models \neg F \)

Examples

- Consider the formula \(F: p \land q \rightarrow \neg p \lor \neg q \)
- Let \(I_1 \) be the interpretation such that \([p \mapsto \text{true}, q \mapsto \text{false}] \)
- What does \(F \) evaluate to under \(I_1 \)?
- Thus, \(I_1 \models F \)
- Let \(I_2 \) be the interpretation such that \([p \mapsto \text{true}, q \mapsto \text{true}] \)
- What does \(F \) evaluate to under \(I_2 \)?
- Thus, \(I_2 \not\models F \)

Another Example

- Let \(F_1 \) and \(F_2 \) be two propositional formulas
- Suppose \(F_1 \) evaluates to true under interpretation \(I \)
- What does \(F_2 \land \neg F_1 \) evaluate to under \(I \)?

Satisfiability, Validity

- \(F \) is satisfiable iff there exists interpretation \(I \) s.t. \(I \models F \)
- \(F \) is valid iff for all interpretations \(I \), \(I \models F \)
- \(F \) is unsatisfiable iff for all interpretations \(I \), \(I \not\models F \)
- \(F \) is contingent if it is satisfiable, but not valid.
True/False Questions

Are the following statements true or false?

- If a formula is valid, then it is also satisfiable.
- If a formula is satisfiable, then its negation is unsatisfiable.
- If F_1 and F_2 are satisfiable, then $F_1 \land F_2$ is also satisfiable.
- If F_1 and F_2 are satisfiable, then $F_1 \lor F_2$ is also satisfiable.

Duality Between Validity and Unsatisfiability

F is valid if and only if $\neg F$ is unsatisfiable.

- Proof:

Proving Validity

- **Question:** How can we prove that a propositional formula is a tautology?
- **Exercise:** Which formulas are tautologies? Prove your answer.
 1. $(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$
 2. $(p \land q) \lor \neg p$

Proving Satisfiability, Unsatisfiability, Contingency

- Similarly, can prove satisfiability, unsatisfiability, contingency using truth tables:
 - **Satisfiable:** There exists a row where formula evaluates to true
 - **Unsatisfiable:** In all rows, formula evaluates to false
 - **Contingent:** Exists a row where formula evaluates to true, and another row where it evaluates to false

Exercise

- Is $(p \rightarrow q) \rightarrow (q \rightarrow p)$ valid, unsatisfiable, or contingent? Prove your answer.

Implication

- **Formula F_1 implies F_2** (written $F_1 \Rightarrow F_2$) iff for all interpretations I, $I \models F_1 \rightarrow F_2$

 $F_1 \Rightarrow F_2$ iff $F_1 \rightarrow F_2$ is valid

- **Caveat:** $F_1 \Rightarrow F_2$ is not a propositional logic formula; \Rightarrow is not part of PL syntax!
Example

- Does \(p \lor q \) imply \(p \)? Prove your answer.

Equivalence

- Two formulas \(F_1 \) and \(F_2 \) are equivalent if they have same truth value for every interpretation, e.g., \(p \lor p \) and \(p \)

Example

- Prove that \(p \to q \) and \(\neg p \lor q \) are equivalent

Important Equivalences

- Some important equivalences are useful to know!

Commutativity and Distributivity Laws

- Commutative Laws: \(p \lor q \equiv q \lor p \) \(p \land q \equiv q \land p \)

De Morgan’s Laws

- Let \(cs311 \) be the proposition “John took CS311” and \(cs312 \) be the proposition “John took CS312”

- In simple English what does \(\neg(cs311 \land cs312) \) mean?

- DeMorgan’s law expresses exactly this equivalence!

- De Morgan’s Law #1: \(\neg(p \land q) \equiv (\neg p \lor \neg q) \)

- De Morgan’s Law #2: \(\neg(p \lor q) \equiv (\neg p \land \neg q) \)

- When you “push” negations in, \(\land \) becomes \(\lor \) and vice versa
Why are These Equivalences Useful?

- Use known equivalences to prove that two formulas are equivalent
- Examples: Prove following formulas are equivalent:
 1. \(\neg(p \lor (\neg p \land q)) \) and \(\neg p \land \neg q \)
 2. \(\neg(p \rightarrow q) \) and \(p \land \neg q \)

Instructor: İsıl Dillig, CS311H: Discrete Mathematics Propositional Logic II 31/35

Formalizing English Arguments in Logic

- We can use logic to prove/disprove arguments.
- For example, consider the argument:
 - If Joe drives fast, he gets a speeding ticket.
 - Joe did not get a ticket.
 - Therefore, Joe did not drive fast.
- Let \(f \) be the proposition "Joe drives fast", and \(t \) be the proposition "Joe gets a ticket"
- How do you prove using logic that above argument is valid?

Instructor: İsıl Dillig, CS311H: Discrete Mathematics Propositional Logic II 32/35

Another Example

- Suppose your friend George make the following argument:
 - If Jill carries an umbrella, it is raining.
 - Jill is not carrying an umbrella.
 - Therefore it is not raining.
- Is this argument valid? Prove/disprove using logic!
- Let \(u = "Jill is carrying an umbrella" \), and \(r = "It is raining" \)
- How do we encode this argument in logic?

Instructor: İsıl Dillig, CS311H: Discrete Mathematics Propositional Logic II 33/35

Example, cont.

"If Jill carries an umbrella, it is raining. Jill is not carrying an umbrella. Therefore it is not raining." \(((u \rightarrow r) \land \neg u) \rightarrow \neg r \)
- How can we prove George’s argument is invalid?

Instructor: İsıl Dillig, CS311H: Discrete Mathematics Propositional Logic II 34/35

Summary

- A formula is valid if it is true for all interpretations.
- A formula is satisfiable if it is true for at least one interpretation.
- A formula is unsatisfiable if it is false for all interpretations.
- A formula is contingent if it is true in at least one interpretation, and false in at least one interpretation.
- Two formulas \(F_1 \) and \(F_2 \) are equivalent, written \(F_1 \equiv F_2 \), if \(F_1 \leftrightarrow F_2 \) is valid

Instructor: İsıl Dillig, CS311H: Discrete Mathematics Propositional Logic II 35/35