Abstract Interpretation

Isil Dillig

Overview

v

Deductive verifiers require annotations (e.g., loop invariants)
from user

v

Fortunately, many techniques that can automatically learn
loop invariants

» A common framework for this purpose is Abstract
Interpretation (Al)

v

Abstract interpretation forms the basis of most static analyzers

Isil Dillig, Abstract Interpretation

Isil Dillg, Abstract Interpretation 221

Key Idea: Over-approximation

» Abstract interpretation is a framework for computing
over-approximations of program states

» Cannot reason about the exact program behavior due to
undecidability (and also for scalability reasons)

» But we can obtain a conservative over-approximation and this
can be enough to prove program correctness

Motivating Example

Invariants per program point
proc MC(n:int) returns (r:int) (automatically computed):

var tl:int, t2:int;

begin S — |

if (n>100) then

-101 2 0
r = n-10; ——{n-o 20
else -n+r+10 = 0; n-101 > 0
5 . _\

e w

t2 = MC(tl);

r = MC (tz); -n+tl-11 = 0; -n+100 2 0
endif; \ -n+£1-11 =0; -n+100 2 0;
end -n+t2-1 2 0; £2-91 20

-n+t1-11=0;-n+100 > 0;-n+t2-1 > 0;
[[£2791 2 07 =z=t2+10 2 0; =-91 2 0

-n+r+10 > 0; r-91 > 0

T top

T -a+b+10 2 0; b-91 > 0

var a:int, b:int;
begin

h = MC(a)_\
=

» What does this function do?

» Annotations computed automatically using an Al tool (Apron)

Isil Dillig, Abstract Interpretation

Isil Dillg, Abstract Interpretation 421

The Al Recipe

Abstract interpretation provides a recipe for computing
over-approximations of program behavior

1. Define abstract domain — fixes “shape” of the invariants
> eg., ¢ <z < ¢ (intervals) or £z £ y < ¢ (octagons)

2. Define abstract semantics (transformers)
> Define how to symbolically execute each statement in the
chosen abstract domain

» Must be sound wrt to concrete semantics

3. lterate abstract transformers until fixed point
» The fixed-point is an over-approximation of program behavior

Simple Example: Sign Domain
» Suppose we want to infer invariants of the form z x 0 where

xE {>,=,>,<} (i.e., zero, non-negative, positive, negative)

» This corresponds to the following abstract domain represented
as lattice:

TQ—Z

non-neg \
{z|z€Zrz> 0}
pos ze.i /

> Lattice is a partially ordered set (S, C) where each pair of
elements has a least upper bound (i.e., join L) and a greatest
lower bound (i.e., meet M)

Each element in
this lattice is an
‘abstract value’,

Isil Dillig, Abstract Intery

5/27

il Dillg, Abstract Interpretation 6/27

Concretization and Abstraction Functions

» The “meaning” of abstract domain is given by abstraction
and concretization functions that relate concrete and
abstract values

» Concretization function () maps each abstract value to
sets of concrete elements
> y(pos) ={z |z €ZANz >0}

» Abstraction function («) maps sets of concrete elements to
the most precise value in the abstract domain
» a({2,10,0}) = non-neg
> a({3,99}) = pos

> a({-3,2) =T

Requirement: Galois Connection

> Important requirement: concrete domain D and abstract
domain D must be related through Galois connection:

VeeDVieD. ax)CiezCy(%)

D v

> Intuitively, this says that «,~ respect the orderings of D, D

Isil Dillig, Abstract Interpretation

Isil Dillg, Abstract Interpretation 8/27

Step 2: Abstract Semantics

» Given abstract domain, «,~, need to define abstract
transformers (i.e., semantics) for each statement

» Describes how statements affect our abstraction

» Abstract counter-part of operational semantics rules

Back to Our Example

» For our sign analysis, we can define abstract transformer for
x =y + z as follows:

pos | neg zero non-neg | T | L
Operational Semantics Abstract Semantics
pos pos | T pos pos T L
S: Var—Concrete value A: Var—+Abstract value neg T neg neg T T L
zero pos | neg zero non-neg | T | L
| x=yopz | x=yopz non-neg | pos | T | non-neg | non-neg | T | L
; T T T T T T L
S': Var—$Concrete value A': Var—$ Abstract value
1 1 1 1 1 1L
Soundness of Abstract Transformers Putting It All Together
» Important requirement: Abstract semantics must be sound
wrt (i.e., faithfully models) the concrete semantics P
» If F is the concrete transformer and F' is its abstract
counterpart, soundness of F' means: Absy,
ractdo
~ ~ Maj, - -
Ve € D,Vz € D. az) C & = o(F(z)) C F(2) N Fixed-point
Abstract engine

» If & is an overapproximation of z, then F'(%) is an
over-approximation of F(z)

Isil Dillig, Abstract Interpretation

11/27

il Dillg, Abstract Interpretation 12/27

Fixed-point Computations

» Fixed-point computation: Repeated symbolic execution of
the program using abstract semantics until our approximation
of the program reaches an equilibrium:

|] (1)
ieN

> Least fixed-point: Start with underapproximation and grow
the approximation until it stops growing

Performing Least Fixed Point Computation

> Represent program as a control-flow
graph

» Want to compute abstract values at
every program point

» Initialize all abstract states to |

> Repeat until no abstract state changes
at any program point:

» Compute abstract state on entry to a
basic block B by taking the join of
B's predecessors

loop end

y=y+l
» Assuming correctness of your abstract semantics, the » Symbolically execute each basic
least fixed point is an overapproximation of the program! block using abstract semantics
1 il [E— w2 o il Jp— o
An Example Fixed-Point Computation
x=1,y=1 —~
=0 =0
;=1 "=J-'V=J-_—';=1
x=1l,y=1 —>
X =0;
y =0; loop head loop head
x=1,y=L1
while(y <= n) Is x always
non-negative y<=n
if(z==0){ inside the loop?,
X = x+1;
else { x=1,y=1
X=X+Yy;
y=y+l
L x=1,y=1
loop end x=1,y=1
y=y+l
loop end
y=y+1

Isil Dillig, Abstract Interpretation

15/27

il Dillg,

Termination of Fixed Point Computation

» In this example, we quickly reached least fixed point — but
does this computation always terminate?

> Yes if the lattice has finite height; otherwise, it might not

» Unfortunately, many interesting domains do not have this
property, so we need widening operators for convergence.

Interval Analysis

> In the interval domain, abstract values are of the form [ci, ¢2]
where ¢ is a lower bound and c¢» has an upper bound

> If the abstract value for z is [1, 3] at some program point P,
this means 1 < x < 3 is an invariant of P

Does not have

et “] finite-height
F=2g o2~ property!
(01l ¢ T et el
[-=0lg ‘e 121 ol12 0 (07
[ty ... 201 o111 . a1 el
g ez e eon epa U

T lza e el o1 00221

~

Isil Dillig, Abstract Interpretation

17/21

il Dillg,

18/27

Widening

» |If abstract domain does not have this property, we need a
widening V operator that forces convergence

» Conditions on V:

1. Va,beD. aUbC aVbh

2. For all increasing chains dy C d; C ..., the ascending chaing
dy T dY C ... eventually stabilizes where dy = dy and

A = dY Vi

» Overapproximate Ifp by using widening operator rather than
join = sound and guaranteed to terminate

> This is called post-fixed-point

Widening in Interval Domain

> For the interval domain, we can define the following simple
widening operator:

[a,b]VL

1Vl[a,b] =
[a,b]V[c,d] =

[a, b]
[a, b]
[(c<a?—o00:a),(b<d?+o0:b)

v

[1,2]V[0,2] =

v

0,2]V]1,2] =

v

[1,5]V[1,5] =

v

[2,3]V[2,4] =

Isil Dillig, Abstract Interpretation

10/27

Isil Dillg, Abstract Interpretation

2027

Example with Widening

[
~No ¥

< x =

~—— z=1[5,5],y =[7,7],4 = [~00,0]

loop head
z=1l,y=1,i=1

i<0
exit block

o= ly=li=1

Motivation for Narrowing

> In many cases, widening overshoots and generates imprecise
results

» Consider this example:

x=1;

while(*) {
X = 2;

}

> After widening, z's abstract value will be [1, co] after the
loop; but more precise value is [1, 2]

Isil Dillig, Abstract Interpretation

21/27

Isil Dillg, Abstract Interpretation

227

Narrowing

> ldea: After finding a post-fixed-point (using widening), have
a second pass using a narrowing operator
» Narrowing operator A must satisfy the following conditions:

1. Ve,yeD. (yCz) = yC(zAy)Ca

2. For all decreasing chains 29 J z; J ..., the sequence

Yo = To, - - - Yi+1 = Yi & Tiy1 converges

» For interval domain, we can define A\ as follows:
[a,b] A L

1 AJa,b]
[a, b] A [c, d]

1
1
[(a=—00?c:a),(b=00?d:b)

Example with Narrowing

~— z=[11]

loop head

= [1,00]

= [1,00]

Isil Dillig, Abstract Interpretation

23/27

il Dillg, Abstract Interpretation

24/27

Relational Abstract Domains Examples of Relational Domains

» Both the sign and interval domain are non-relational

domains (i.e., do not relate different program variables) » Karr’s domain: Tracks equalities between variables (e.g.,
z=2y+2z)
» Relational domains track relationships between variables and
are more powerful > Octagon domain: Constraints of the form £z +y < ¢
> A motivating example: » Polyhedra domain: Constraints of the form
cx +...cpry < C
x=0; y=0;
while(x) { » Polyhedra domain most precise among these, but can be
X = x+l; y = y+1; expensive (exponential complexity)
}
assert (x=y); » Octagons less precise but cubic time complexity

» Cannot prove this assertion using interval domain

Isil Dillig, Abstract Interpretation 25/27 Isil Dillg, Abstract Interpretation 26/27

Message from Patrick Cousot

Ct interpretation

Isil Dillig, Abstract Interpretation 27/27

