
Abstract Interpretation

Işıl Dillig

Işıl Dillig, Abstract Interpretation 1/27

Overview

I Deductive verifiers require annotations (e.g., loop invariants)
from user

I Fortunately, many techniques that can automatically learn
loop invariants

I A common framework for this purpose is Abstract
Interpretation (AI)

I Abstract interpretation forms the basis of most static analyzers

Işıl Dillig, Abstract Interpretation 2/27

Key Idea: Over-approximation

I Abstract interpretation is a framework for computing
over-approximations of program states

I Cannot reason about the exact program behavior due to
undecidability (and also for scalability reasons)

I But we can obtain a conservative over-approximation and this
can be enough to prove program correctness

Işıl Dillig, Abstract Interpretation 3/27

Motivating Example

I What does this function do?

I Annotations computed automatically using an AI tool (Apron)

Işıl Dillig, Abstract Interpretation 4/27

The AI Recipe

Abstract interpretation provides a recipe for computing
over-approximations of program behavior

1. Define abstract domain – fixes “shape” of the invariants
I e.g., c1 ≤ x ≤ c2 (intervals) or ±x ± y ≤ c (octagons)

2. Define abstract semantics (transformers)
I Define how to symbolically execute each statement in the

chosen abstract domain

I Must be sound wrt to concrete semantics

3. Iterate abstract transformers until fixed point
I The fixed-point is an over-approximation of program behavior

Işıl Dillig, Abstract Interpretation 5/27

Simple Example: Sign Domain

I Suppose we want to infer invariants of the form x on 0 where
on∈ {≥,=, >,<} (i.e., zero, non-negative, positive, negative)

I This corresponds to the following abstract domain represented
as lattice:

non-neg

neg

pos zero

Each element in
this lattice is an
"abstract value"

I Lattice is a partially ordered set (S ,v) where each pair of
elements has a least upper bound (i.e., join t) and a greatest
lower bound (i.e., meet u)

Işıl Dillig, Abstract Interpretation 6/27

1

Concretization and Abstraction Functions

I The “meaning” of abstract domain is given by abstraction
and concretization functions that relate concrete and
abstract values

I Concretization function (γ) maps each abstract value to
sets of concrete elements

I γ(pos) = {x | x ∈ Z ∧ x > 0}

I Abstraction function (α) maps sets of concrete elements to
the most precise value in the abstract domain

I α({2, 10, 0}) = non-neg

I α({3, 99}) = pos

I α({−3, 2}) = >

Işıl Dillig, Abstract Interpretation 7/27

Requirement: Galois Connection

I Important requirement: concrete domain D and abstract
domain D̂ must be related through Galois connection:

∀x ∈ D ,∀x̂ ∈ D̂ . α(x) v x̂ ⇔ x v γ(x̂)

I Intuitively, this says that α, γ respect the orderings of D , D̂

Işıl Dillig, Abstract Interpretation 8/27

Step 2: Abstract Semantics

I Given abstract domain, α, γ, need to define abstract
transformers (i.e., semantics) for each statement

I Describes how statements affect our abstraction

I Abstract counter-part of operational semantics rules

x = y op z

S: Var Concrete value

S': Var Concrete value

Operational Semantics

x = y op z

A: Var Abstract value

A': Var Abstract value

Abstract Semantics

Işıl Dillig, Abstract Interpretation 9/27

Back to Our Example

I For our sign analysis, we can define abstract transformer for
x = y+ z as follows:

pos neg zero non-neg > ⊥
pos pos > pos pos > ⊥
neg > neg neg > > ⊥
zero pos neg zero non-neg > ⊥

non-neg pos > non-neg non-neg > ⊥
> > > > > > ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Işıl Dillig, Abstract Interpretation 10/27

Soundness of Abstract Transformers

I Important requirement: Abstract semantics must be sound
wrt (i.e., faithfully models) the concrete semantics

I If F is the concrete transformer and F̂ is its abstract
counterpart, soundness of F̂ means:

∀x ∈ D ,∀x ∈ D̂ . α(x) v x̂ ⇒ α(F (x)) v F̂ (x̂)

I If x̂ is an overapproximation of x , then F̂ (x̂) is an
over-approximation of F (x)

Işıl Dillig, Abstract Interpretation 11/27

Putting It All Together

Fixed-point
 engine

Abstract domain

 Abstract
semantics

P

Işıl Dillig, Abstract Interpretation 12/27

2

Fixed-point Computations
I Fixed-point computation: Repeated symbolic execution of

the program using abstract semantics until our approximation
of the program reaches an equilibrium:

⊔

i∈N
F̂ i(⊥)

I Least fixed-point: Start with underapproximation and grow
the approximation until it stops growing

I Assuming correctness of your abstract semantics, the
least fixed point is an overapproximation of the program!

Işıl Dillig, Abstract Interpretation 13/27

Performing Least Fixed Point Computation

I Represent program as a control-flow
graph

I Want to compute abstract values at
every program point

I Initialize all abstract states to ⊥

I Repeat until no abstract state changes
at any program point:

I Compute abstract state on entry to a
basic block B by taking the join of
B’s predecessors

I Symbolically execute each basic
block using abstract semantics

x =0

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

y = y+1

x =0

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

y = y+1

x =0

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

y = y+1

Işıl Dillig, Abstract Interpretation 14/27

An Example

x = 0;
y =0;

while(y <= n)
{
 if (z == 0) {
 x = x+1;
 }
 else {
 x = x + y;
 }
 y = y+1
}

Is x always
non-negative

inside the loop?

x =0

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

y = y+1

Işıl Dillig, Abstract Interpretation 15/27

Fixed-Point Computation

x =0

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

y = y+1

x =0

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

y = y+1

x = , y =

x = , y =
x = , y =

x = , y =

x = , y =

x = , y =

x = , y =

x = , y =

x = , y =

x = , y =

x = , y =

x = , y =

x =0

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

y = y+1

x = , y =

x = Z , y =
x = , y =

x = , y =

x = , y =

x = , y =

x = , y =

x = , y =

x = , y =

x = , y =

x = , y =

x = , y =

x =0

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

x = Z , y = P

y = y+1

x = , y =

x = Z , y =

x = , y =

x = , y =

x = , y =

x = , y =

x = , y =

x = , y =

x = , y =

x = , y =

x = , y =

x =0

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

x = Z , y = P

y = y+1

x = , y =

x = Z , y =

x = , y =

x = , y =

x = , y =

x = , y =

x = , y =

x = , y =

x = , y =

x = , y =

x = , y =

x = Z , y = P

x =0

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

x = Z , y = P

y = y+1

x = , y =

x = Z , y =

x = , y =

x = , y =

x = , y =

x = , y =

x = , y =

x = Z , y = P

x = Z , y = P x = Z , y = P

x = Z , y = P x = Z , y = P

x =0

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

x = Z , y = P

y = y+1

x = , y =

x = Z , y =

x = , y =

x = , y =

x = , y =

x = , y =

x = Z , y = P

x = Z , y = P x = Z , y = P

x = Z , y = P x = Z , y = P

x = P , y = P

x =0

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

x = Z , y = P

y = y+1

x = , y =

x = Z , y =

x = , y =

x = , y =

x = , y =

x = Z , y = P

x = Z , y = P x = Z , y = P

x = Z , y = P x = Z , y = P

x = P , y = P x = P , y = P

x =0

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

x = Z , y = P

y = y+1

x = , y =

x = Z , y =

x = , y =

x = , y =

x = Z , y = P

x = Z , y = P x = Z , y = P

x = Z , y = P x = Z , y = P

x = P , y = P x = P , y = P

x = P , y = P

x =0

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

x = Z , y = P

y = y+1

x = , y =

x = Z , y =

x = Z , y = P

x = Z , y = P x = Z , y = P

x = Z , y = P x = Z , y = P

x = P , y = P x = P , y = P

x = P , y = P

x = P , y = P

x = P , y = P

x =0

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

x = Z , y = P

y = y+1

x = , y =

x = Z , y =

x = Z , y = P x = Z , y = P

x = Z , y = P x = Z , y = P

x = P , y = P x = P , y = P

x = P , y = P

x = P , y = P

x = P , y = P

x = NN , y = P

x =0

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

x = Z , y = P

y = y+1

x = , y =

x = Z , y =

x = P , y = P x = P , y = P

x = P , y = P

x = P , y = P

x = P , y = P

x = NN , y = P

x = NN , y = P x = NN , y = P

x = NN , y = P x = NN , y = P

x =0

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

x = Z , y = P

y = y+1

x = , y =

x = Z , y =

x = P , y = P x = P , y = P

x = P , y = P

x = P , y = P

x = P , y = P

x = NN , y = P

x = NN , y = P x = NN , y = P

x = NN , y = P x = NN , y = P

x =0

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

x = Z , y = P

y = y+1

x = , y =

x = Z , y =

x = P , y = P x = P , y = P

x = P , y = P

x = P , y = P

x = P , y = P

x = NN , y = P

x = NN , y = P x = NN , y = P

x = NN , y = P x = NN , y = P

x =0

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

x = Z , y = P

y = y+1

x = , y =

x = Z , y =

x = P , y = P x = P , y = P

x = P , y = P

x = P , y = P

x = P , y = P

x = NN , y = P

x = NN , y = P x = NN , y = P

x = NN , y = P x = NN , y = P

x =0

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

x = Z , y = P Fixed point!

y = y+1

x = , y =

x = Z , y =

x = P , y = P x = P , y = P

x = P , y = P

x = P , y = P

x = P , y = P

x = NN , y = P

x = NN , y = P x = NN , y = P

x = NN , y = P x = NN , y = P

Işıl Dillig, Abstract Interpretation 16/27

Termination of Fixed Point Computation

I In this example, we quickly reached least fixed point – but
does this computation always terminate?

I Yes if the lattice has finite height; otherwise, it might not

I Unfortunately, many interesting domains do not have this
property, so we need widening operators for convergence.

Işıl Dillig, Abstract Interpretation 17/27

Interval Analysis

I In the interval domain, abstract values are of the form [c1, c2]
where c1 is a lower bound and c2 has an upper bound

I If the abstract value for x is [1, 3] at some program point P ,
this means 1 ≤ x ≤ 3 is an invariant of P

Does not have
finite-height
property!

Işıl Dillig, Abstract Interpretation 18/27

3

Widening

I If abstract domain does not have this property, we need a
widening ∇ operator that forces convergence

I Conditions on ∇:

1. ∀a, b ∈ D̂ . a t b v a∇b

2. For all increasing chains d0 v d1 v . . ., the ascending chaing
d∇
0 v d∇

1 v . . . eventually stabilizes where d∇
0 = d0 and

d∇
i+1 = d∇

i ∇di+1

I Overapproximate lfp by using widening operator rather than
join ⇒ sound and guaranteed to terminate

I This is called post-fixed-point

Işıl Dillig, Abstract Interpretation 19/27

Widening in Interval Domain

I For the interval domain, we can define the following simple
widening operator:

[a, b]∇⊥ = [a, b]
⊥∇[a, b] = [a, b]

[a, b]∇[c, d] = [(c < a?−∞ : a), (b < d? +∞ : b)]

I [1, 2]∇[0, 2] =

I [0, 2]∇[1, 2] =

I [1, 5]∇[1, 5] =

I [2, 3]∇[2, 4] =

Işıl Dillig, Abstract Interpretation 20/27

Example with Widening

x =5
y =7

loop head

exit block

i = *

y = y+1
i = i-1

i >=0i <0

x =5
y =7

loop head

exit block

i = *

y = y+1
i = i-1

i >=0i <0

x =5
y =7

loop head

exit block

i = *

y = y+1
i = i-1

i >=0i <0

x =5
y =7

loop head

exit block

i = *

y = y+1
i = i-1

i >=0i <0

x =5
y =7

loop head

exit block

i = *

y = y+1
i = i-1

i >=0i <0

x =5
y =7

loop head

exit block

i = *

y = y+1
i = i-1

i >=0i <0

x =5
y =7

loop head

exit block

i = *

y = y+1
i = i-1

i >=0i <0

x =5
y =7

loop head

exit block

i = *

y = y+1
i = i-1

i >=0i <0

x =5
y =7

loop head

exit block

i = *

y = y+1
i = i-1

i >=0i <0

x =5
y =7

loop head

exit block

i = *

y = y+1
i = i-1

i >=0i <0

x =5
y =7

loop head

exit block

Fixed point!

i = *

y = y+1
i = i-1

i >=0i <0

Işıl Dillig, Abstract Interpretation 21/27

Motivation for Narrowing

I In many cases, widening overshoots and generates imprecise
results

I Consider this example:

x=1;

while(*) {

x = 2;

}

I After widening, x ’s abstract value will be [1,∞] after the
loop; but more precise value is [1, 2]

Işıl Dillig, Abstract Interpretation 22/27

Narrowing

I Idea: After finding a post-fixed-point (using widening), have
a second pass using a narrowing operator

I Narrowing operator 4 must satisfy the following conditions:

1. ∀x , y ∈ D̂ . (y v x) ⇒ y v (x 4 y) v x

2. For all decreasing chains x0 w x1 w . . ., the sequence
y0 = x0, . . . yi+1 = yi 4 xi+1 converges

I For interval domain, we can define 4 as follows:

[a, b]4⊥ = ⊥
⊥4 [a, b] = ⊥

[a, b]4 [c, d] = [(a = −∞?c : a), (b =∞?d : b)]

Işıl Dillig, Abstract Interpretation 23/27

Example with Narrowing

x=1

loop head

exit block x=2

x=1

loop head

exit block x=2

x=1

loop head

exit block x=2

x=1

loop head

exit block x=2

x=1

loop head

exit block x=2

x=1

loop head

exit block x=2

x=1

loop head

exit block

Fixed point!

x=2

Işıl Dillig, Abstract Interpretation 24/27

4

Relational Abstract Domains

I Both the sign and interval domain are non-relational
domains (i.e., do not relate different program variables)

I Relational domains track relationships between variables and
are more powerful

I A motivating example:

x=0; y=0;

while(*) {

x = x+1; y = y+1;

}

assert(x=y);

I Cannot prove this assertion using interval domain

Işıl Dillig, Abstract Interpretation 25/27

Examples of Relational Domains

I Karr’s domain: Tracks equalities between variables (e.g.,
x = 2y + z)

I Octagon domain: Constraints of the form ±x ± y ≤ c

I Polyhedra domain: Constraints of the form
c1x1 + . . . cnxn ≤ c

I Polyhedra domain most precise among these, but can be
expensive (exponential complexity)

I Octagons less precise but cubic time complexity

Işıl Dillig, Abstract Interpretation 26/27

Message from Patrick Cousot

Işıl Dillig, Abstract Interpretation 27/27

5

