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I Example specs: safety (no crashes), absence of arithmetic
overflow, complex behavioral property (e.g., “sorts an array”)

I Verification condition: An SMT formula φ s.t. program is
correct iff φ is valid
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Hoare Logic

I Hoare logic forms the basis of all deductive verification
techniques

I Named after Tony Hoare: inventor of
quick sort, father of formal verification,
1980 Turing award winner

I Logic is also known as Floyd-Hoare logic:
some ideas introduced by Robert Floyd in
1967 paper ”Assigning Meaning to
Programs”
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Simple Imperative Programming Language

I To illustrate Hoare logic, we’ll consider a small imperative
programming language IMP

I In IMP, we distinguish three program constructs: expressions,
conditionals, and statements

I Expression E := Z | V | e1 + e2 | e1 × e2

I Conditional C := true | false | e1 = e2 |e1 ≤ e2

Statement S := V := E (Assignment)
S1;S2 (Composition)
if C then S1 else S2 (If)
while C do S (While)
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Partial Correctness Specification

I In Hoare logic, we specify partial correctness of programs
using Hoare triples:

{P} S {Q}

I Here, S is a statement in programming language IMP

I P and Q are SMT formulas

I P is called precondition and Q is called post-condition

Işıl Dillig, Introduction to Deductive Program Verification 5/60

Meaning of Hoare Triples

I Meaning of Hoare triple {P}S{Q}:
I If S is executed in state satisfying P

I and if execution of S terminates

I then the program state after S terminates satisfies Q

I Is {x = 0} x := x+ 1 {x = 1} valid Hoare triple?

I What about {x = 0 ∧ y = 1} x := x+ 1 {x = 1 ∧ y = 2}?

I What about {x = 0} x := x+ 1 {x = 1 ∨ y = 2}?

I What about {x = 0} while true do x := 0{x = 1}?
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Partial vs. Total Correctness

I The specification {P}S{Q} called partial correctness spec.
b/c doesn’t require S to terminate

I There is also a stronger requirement called total correctness

I Total correctness specification written [P ]S [Q ]

I Meaning of [P ]S [Q ]:

I If S is executed in state satisfying P

I then the execution of S terminates

I and program state after S terminates satisfies Q

I Is [x = 0] while true do x := 0[x = 1] valid?

Işıl Dillig, Introduction to Deductive Program Verification 7/60

Example Specifications

I What does {true}S{Q} say?

I What about {P}S{true}?

I What about [P ]S [true]?

I When does {true}S{false} hold?

I When does {false}S{Q} hold?

I We’ll only focus on only partial correctness (safety)

I Total correctness = Partial correctness + termination

Işıl Dillig, Introduction to Deductive Program Verification 8/60

More Examples

Valid or invalid?

I {i = 0} while i<n do i++; {i = n}

I {i = 0} while i<n do i++; {i ≥ n}

I {i = 0 ∧ j = 0} while i<n do i++; j+=i {2j = n(n + 1)}

I How can we strengthen the precondition so it’s valid?
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Proving Partial Correctness

I Key problem: How to prove valid Hoare triples?

I If a Hoare triple is valid, written |= {P} S{Q}, we want a
proof system to prove its validity

I Use notation ` {P}S{Q} to indicate that we can prove
validity of Hoare triple

I Hoare also gave a sound and (relatively-) complete proof
system that allows semi-mechanizing correctness proofs

I Soundness: If ` {P}S{Q}, then |= {P}S{Q}

I Completeness: If |= {P}S{Q}, then ` {P}S{Q}
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Inference Rules

I Proof rules in Hoare logic are written as inference rules:

` {P1}S1{Q1} . . . ` {Pn}Sn{Qn}
` {P}S{Q}

I Says if Hoare triples {P1}S1{Q1}, . . . , {Pn}Sn{Qn} are
provable in our proof system, then {P}S{Q} is also provable.

I Not all rules have hypotheses: these correspond to bases cases
in the proof

I Rules with hypotheses correspond to inductive cases in proof

I One inference rule for every statement in the IMP language
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Understanding Proof Rule for Assignment

I Consider the assignment x := y and post-condition x > 2

I What do we need before the assignment so that x > 2 holds
afterwards?

I Consider i := i + 1 and post-condition i > 10

I What do we need to know before the assignment so that
i > 10 holds afterwards?
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Proof Rule for Assignment

` {Q [E/x ]} x := E {Q}

I To prove Q holds after assignment x := E , sufficient to show
that Q with E substituted for x holds before the assignment.

I Using this rule, which of these are provable?

I {y = 4} x := 4 {y = x}

I {x + 1 = n} x := x + 1 {x = n}

I {y = x} y := 2 {y = x}

I {z = 3} y := x {z = 3}
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Exercise

I Your friend suggests the following proof rule for assignment:

` {(x = E )→ Q} x := E {Q}

I Is the proposed proof rule correct?

I

I
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Motivation for Precondition Strengthening

I Is the Hoare triple {z = 2}y := x{y = x} valid?

I Is this Hoare triple provable using our assignment rule?

I Instantiating the assignment rule, we get:

{y = x [x/y ]x = xtrue}y = x{y = x}

I But intuitively, if we can prove y = x w/o any assumptions,
we should also be able to prove it if we do make assumptions!
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Proof Rule for Precondition Strengthening

` {P ′}S{Q} P ⇒ P ′

` {P}S{Q}

I Recall: P ⇒ P ′ means the formula P → P ′ is valid

I Hence, need to use SMT solver every time we use
precondition strengthening!
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Example

I Using this rule and rule for assignment, we can now prove
{z = 2}y = x{y = x}

I Proof:

` {y = x [x/y ]}y = x{y = x}
` {true}y := x{y = x} z = 2⇒ true

` {z = 2}y := x{y = x}
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Proof Rule for Post-Condition Weakening

I We also need a dual rule for post-conditions called
post-condition weakening:

` {P}S{Q ′} Q ′ ⇒ Q

` {P}S{Q}

I If we can prove post-condition Q ′, we can always relax it to
something weaker

I Again, need to use SMT solver when applying post-condition
weakening
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Post-condition Weakening Examples

I Suppose we can prove {true}S{x = y ∧ z = 2}.

I Using post-condition weakening, which of these can we prove?

I {true}S{x = y}

I {true}S{z = 2}

I {true}S{z > 0}

I {true}S{∀y . x = y}

I {true}S{∃y . x = y}
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Proof Rule for Composition

` {P}S1{Q} ` {Q}S2{R}
` {P}S1;S2{R}

I Using this rule, let’s prove validity of Hoare triple:

{true} x = 2; y = x {y = 2 ∧ x = 2}

I What is appropriate Q?

{x = 2[2/x ]}x = 2{x = 2}
{true} x = 2 {x = 2}

{x = 2 ∧ y = 2[x/y ]} y = x {x = 2 ∧ y = 2}
{x = 2} y = x {x = 2 ∧ y = 2}

` {true} x = 2; y = x {y = 2 ∧ x = 2}
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Proof Rule for If Statements

` {P ∧ C} S1 {Q}
` {P ∧ ¬C} S2 {Q}

` {P} if C then S1 else S2 {Q}

I Suppose we know P holds before if statement and want to
show Q holds afterwards.

I At beginning of then branch, what facts do we know?

I Thus, in the then branch, we want to show {P ∧ C}S1{Q}

I At beginning of else branch, what facts do we know?

I What do we need to show in else branch?
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Example

Prove the correctness of this Hoare triple:

{true} if x > 0 then y := x else y := −x {y ≥ 0}
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Exercise

I Your friend suggests the following proof rule:

{P ∧ C} S1;S3 {Q}
{P ∧ ¬C} S2;S3 {Q}

{P} (if C then S1 else S2); S3 {Q}

I Is this proof rule correct? If so, prove your answer. Otherwise,
give a counterexample.
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Exercise, cont

I Yes, this rule can be derived from existing rules.

I From premises, we know (1) {P ∧ C} S1;S3 {Q} and
(2) {P ∧ ¬C} S2;S3 {Q}

I Let Q ′ be the weakest precondition we need for Q to hold
after executing S3, i.e., (3) {Q ′}S3{Q}

I Using premises, this means {P ∧ C}S1{Q ′} and
{P ∧ ¬C}S2{Q ′}

I From these and existing if rule, we can derive:

{P} (if C then S1 else S2) {Q ′}

I Conclusion follows from these and (3) using Seq
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Proof Rule for While and Loop Invariants

I Last proof rule of Hoare logic is that for while loops.

I But to understand proof rule for while, we first need concept
of a loop invariant

I A loop invariant I has following properties:

1. I holds initially before the loop

2. I holds after each iteration of the loop
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Examples

I Consider the following code

i := 0; j := 0; n := 10; while i < n do i := i+ 1; j := i+ j

I Which of the following are loop invariants?

I i ≤ n

I i < n

I j ≥ 0

I Suppose I is a loop invariant. Does I also hold after loop
terminates?

I
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Proof Rule for While

I Consider the statement while C do S

I Suppose I is a loop invariant for this loop. What is
guaranteed to hold after loop terminates? I ∧ ¬C

I Putting all this together, proof rule for while is:

` {P ∧ C}S{P}
` {P}while C do S{P ∧ ¬C}

I This rule simply says ”If P is a loop invariant, then P ∧ ¬C
must hold after loop terminates”

I Based on this rule, why is P a loop invariant?

I
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Example

I Consider the statement S = while x < n do x = x + 1

I Let’s prove validity of {x ≤ n}S{x ≥ n}

I What is appropriate loop invariant?

I First, let’s prove x ≤ n is loop invariant. What do we need to
show?

I What proof rules do we need to use to show this?

` {x ≤ n[x + 1/x ]}x = x + 1{x ≤ n} ` {x + 1 ≤ n}x = x + 1{x ≤ n} x ≤ n ∧ x < n ⇒ x + 1 ≤ n

` {x ≤ n ∧ x < n}x = x + 1{x ≤ n}
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Example, cont

I Ok, we’ve shown x ≤ n is loop invariant, now let’s instantiate
proof rule for while with this loop invariant:

` {x ≤ n ∧ x < n}S ′{x ≤ n}
` {x ≤ n}while x < n do S ′{x ≤ n ∧ ¬(x < n)}

I Recall: We wanted to prove the Hoare triple
{x ≤ n}S{x ≥ n}

I In addition to proof rule for while, what other rule do we need?

Işıl Dillig, Introduction to Deductive Program Verification 29/60

Example, cont.

The full proof:

` {x + 1 ≤ n}x = x + 1{x ≤ n}
x ≤ n ∧ x < n ⇒ x + 1 < n

` {x ≤ n ∧ x < n}x = x + 1{x ≤ n}
` {x ≤ n}S{x ≤ n ∧ ¬(x < n)} x ≤ n ∧ ¬(x < n)⇒ x ≥ n

{x ≤ n}S{x ≥ n}
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Invariant vs. Inductive Invariant

I Suppose I is a loop invariant for while C do S.

I Does it always satisfy {I ∧ C}S{I }?

I Counterexample: Consider I = j ≥ 1 and the code:

i := 1; j := 1; while i < n do {j := j+ i; i := i+ 1}

I But strengthened invariant j ≥ 1 ∧ i ≥ 1 does satisfy it

I Such invariants are called inductive invariants, and they are
the only invariants that we can prove

I Key challenge in verification is finding inductive loop invariants
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Exercise

Find inductive loop invariant to prove the following Hoare triple:

{i = 0 ∧ j = 0 ∧ n = 5}
while i < n do i := i+ 1; j := j+ i

{j = 15}

I Inductive loop invariant I :

I Weakest precondition P w.r.t loop body:

2j = i(i + 1) ∧ i + 1 ≤ n ∧ n = 5

I Since I ∧ C ⇒ P , I is inductive.
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Another Exercise

I Suppose we add a for loop construct to IMP:

for v := e1 until e2 do S

I Initializes v to e1, increments v by 1 in each iteration and
terminates when v > e2

I Write a proof rule for this for loop construct

I We can de-sugar into while loop:

v := e1; while v ≤ e2 do {S; v := v+ 1}
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Exercise, cont.

v := e1; while v ≤ e2 do {S; v := v+ 1}

I Suppose I is the inductive invariant of while loop

I First, I must hold at the beginning:

{P} v := e1 {I }

I Next, I must be inductive:

{I ∧ v ≤ e2} S; v := v+ 1 {I }
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Exercise, cont.

I Putting all this together, we get the following proof rule:

{P} v := e1 {I }
{I ∧ v ≤ e2} S; v := v+ 1 {I }

{P} for v := e1 until e2 do S {I ∧ v > e2}
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Arrays

I Let’s add arrays to our IMP language:

v[e1] := e2

I What is the proof rule for this statement?

I Idea 1: Treat array write just like assignment:

{Q [e2/v [e1]]} v[e1] := e2 {Q}

I Is this rule correct?
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Counterexample

I No, counterexample:

{i = 1} v[i] := 3; v[1] := 2 {v [i ] = 3}

I What is the value of v[i] after this code?

I But using previous“proof rule”, we can“prove”this Hoare triple

I Clearly, this rule is unsound
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Correct Proof Rule for Arrays

I The correct proof rule:

{Q [v〈e1 / e2〉/v ]} v[e1] := e2 {Q}

I Effectively assigns v to a new array that is the same as v
except at index e1

I We now require theory of arrays
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Array Example

I Consider again this example:

{i = 1} v[i] := 3; v[1] := 2 {v [i ] = 3}

I Applying the array write rule, we obtain:

{v〈1 / 2〉[i ] = 3} v[1] := 2 {v [i ] = 3}

I Use composition and apply array rule to first statement:

{(v〈i / 3〉)〈1 / 2〉[i ] = 3} v[i] := 3 {v〈1 / 2〉[i ] = 3}

I But the following implication is not valid:

i = 1⇒ (v〈i / 3〉)〈1 / 2〉[i ] = 3
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Example with Arrays and Loops

I Consider the following code snippet:

while i < n do {a[i] := 0; i := i+ 1; }

I Suppose the precondition is i = 0 ∧ n > 0 and the
postcondition is:

∀j . 0 ≤ j < n → a[j ] = 0

I Find an inductive loop invariant and show the correctness
proof

I Inductive invariant:
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Summary of Proof Rules

1. ` {Q [E/x ]} x = E {Q} (Assignment)

2.
` {P ′}S{Q} P ⇒ P ′

` {P}S{Q} (Strengthen P)

3.
` {P}S{Q ′} Q ′ ⇒ Q

` {P}S{Q} (Weaken Q)

4.
` {P}C1{Q} ` {Q}C2{R}

` {P}C1;C2{R}
(Composition)

5.

` {P ∧ C} S1 {Q}
` {P ∧ ¬C} S2 {Q}

` {P} if C then S1 else S2 {Q}
(If)

6.
` {P ∧ C}S{P}

` {P}while C do S{P ∧ ¬C} (While)
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Meta-theory: Soundness of Proof Rules

I It can be show that the proof rules for Hoare logic are sound:

If ` {P}S{Q}, then |= {P}S{Q}

I That is, if a Hoare triple {P}S{Q} is provable using the proof
rules, then {P}S{Q} is indeed valid

I Completeness of proof rules means that if {P}S{Q} is a valid
Hoare triple, then it can be proven using our proof rules, i.e.,

If |= {P}S{Q}, then ` {P}S{Q}

I Unfortunately, completeness does not hold!
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Meta-theory: Relative Completeness

I Recall: Rules for precondition strengthening and postcondition
weakening require checking A⇒ B

I In general, these formulas belong to Peano arithmetic

I Since PA is incomplete, there are implications that are valid
but cannot be proven

I However, Hoare’s proof rules still have important goodness
guarantee: relative completeness

I If we have an oracle for deciding whether an implication
A⇒ B holds, then any valid Hoare triple can be proven using
our proof rules
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Automating Reasoning in Hoare Logic

I Manually proving correctness is tedious, so we’d like to
automate the tedious parts of program verification

I Idea: Assume an oracle gives loop invariants, but automate
the rest of the reasoning

I This oracle can either be a human or a static analysis tool
(e.g., abstract interpretation)
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Basic Idea Behind Program Verification

I Automating Hoare logic is based on generating verification
conditions (VC)

I A verification condition is a formula φ such that program is
correct iff φ is valid

I Deductive verification has two components:

1. Generate VC’s from source code

2. Use theorem prover to check validity of formulas from step 1
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Generating VCs: Forwards vs. Backwards

I Two ways to generate verification conditions: forwards or
backwards

I A forwards analysis starts from precondition and generates
formulas to prove postcondition

I Forwards technique computes strongest postconditions (sp)

I In contrast, backwards analysis starts from postcondition and
tries to prove precondition

I Backwards technique computes weakest preconditions (wp)

I We’ll use the backwards method
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Weakest Preconditions

I Idea: Suppose we want to verify Hoare triple {P}S{Q}

I We’ll start with Q and going backwards, compute formula
wp(S ,Q) called weakest precondition of Q w.r.t. to S

I wp(S ,Q) has the property that it is the weakest condition
that guarantees Q will hold after S in any execution

I Thus, Hoare triple {P}S{Q} is valid iff:

P ⇒ wp(S ,Q)
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Defining Weakest Preconditions

I Weakest preconditions are defined inductively and follow
Hoare’s proof rules

I wp(x := E ,Q) = Q [E/x ]

I wp(s1; s2,Q) = wp(s1,wp(s2,Q))

I wp(if C then s1 else s2,Q) =
C → wp(s1,Q) ∧ ¬C → wp(s2,Q)

I This says ”If C holds, wp of then branch must hold; otherwise,
wp of else branch must hold”
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Example

I Consider the following code S :

x := y+ 1; if x > 0 then z := 1 else z := −1

I What is wp(S , z > 0)?

I What is wp(S , z ≤ 0)?

I Can we prove post-condition z = 1 if precondition is y ≥ −1?

I What if precondition is y > −1?
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Weakest Preconditions for Loops

I Unfortunately, we can’t compute weakest preconditions for
loops exactly...

I Idea: approximate it using awp(S ,Q)

I awp(S ,Q) may be stronger than wp(S ,Q) but not weaker

I To verify {P}S{Q}, show P ⇒ awp(S ,Q)

I Hope is that awp(S ,Q) is weak enough to be implied by P
although it may not be the weakest
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Approximate Weakest Preconditionsr loops, we will rely on
loop invariants provided by oracle (human or static ana

I For all statements except for while loops, computation of
awp(S ,Q) same as wp(S ,Q)

I To compute, awp(S ,Q) for loops, we will rely on loop
invariants provided by oracle (human or static analysis)

I Assume all loops are annotated with invariants
while C do [I ] S

I Now, we’ll just define awp(while C do [I ] S ,Q) ≡ I

I Why is this sound?
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Verification with Approximate Weakest Preconditions

I If P ⇒ awp(S ,Q), does this mean {P}S{Q} is valid?

I No, two problems with awp(while C do [I ] S ,Q)

1. We haven’t checked I is an actual loop invariant

2. We also haven’t made sure I ∧ ¬C is sufficient to establish Q!

I For each statement S , generate verification condition
VC (S ,Q) that encodes additional conditions to prove
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Generating Verification Conditions

I Most interesting VC generation rule is for loops:

VC (while C do [I ] S ,Q) =?

I To ensure Q is satisfied after loop, what condition must hold?
I ∧ ¬C ⇒ Q

I Assuming I holds initially, need to check I is loop invariant

I i.e., need to prove {I ∧ C}S{I }

I How can we prove this? check validity of
I ∧ C ⇒ awp(S , I ) ∧VC (S , I )
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Verification Condition for Loops

I To summarize, to show I is preserved in loop, need:

I ∧ C ⇒ awp(S , I ) ∧VC (S , I )

I To show I is strong enough to establish Q , need:

I ∧ ¬C ⇒ Q

I Putting this together, verification condition for a while loop
S ′ = while C do {I } S is:

VC (S ′,Q) = (I∧C ⇒ awp(S , I )∧VC (S , I )) ∧ (I∧¬C ⇒ Q)
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Verification Condition for Other Statements

I We also need rules to generate VC’s for other statements
because there might be loops nested in them

I VC (x := E ,Q) = true

I VC (s1; s2,Q) = VC (s2,Q) ∧VC (s1, awp(s2,Q))

I VC (if C then s1 else s2,Q) = VC (s1,Q) ∧VC (s2,Q)
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Verification of Hoare Triple

I Thus, to show validity of {P}S{Q}, need to do following:

1. Compute awp(S ,Q)

2. Compute VC (S ,Q)

I Theorem: {P}S{Q} is valid if following formula is valid:

VC (S ,Q) ∧ P → awp(S ,Q) (∗)

I Thus, if we can prove of validity of (∗), we have shown that
program obeys specification
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Discussion

Theorem: {P}S{Q} is valid if following formula is valid:

VC (S ,Q) ∧ P → awp(S ,Q) (∗)

I Question: If {P}S{Q} is valid, is (∗) valid?

I No, for two reasons:

1. Loop invariant might not be strong enough

2. Loop invariant might be bogus

I Thus, even if program obeys specification, might not be able
to prove it b/c loop invariants we use are not strong enough
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Example

I Consider the following code:

i := 1; sum := 0;
while i ≤ n do [sum ≥ 0] {

j := 1;
while j ≤ i do [sum ≥ 0 ∧ j ≥ 0]

sum := sum+ j; j := j+ 1

i := i+ 1

}

I Show the VC’s generated for this program for post-condition
sum ≥ 0 – can it be verified?

I What is the post-condition we need to show for inner loop?
sum ≥ 0
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Example, cont.

I Generate VC’s for inner loop:

(1) (sum ≥ 0 ∧ j ≥ 0 ∧ j > i)⇒ sum ≥ 0
(2) (j ≤ i ∧ sum ≥ 0 ∧ j ≥ 0)⇒ (sum + j ≥ 0 ∧ j + 1 ≥ 0))

I Now, generate VC’s for outer loop:

(3) (i ≤ n ∧ sum ≥ 0)⇒ (sum ≥ 0 ∧ 1 ≥ 0)
(4) (i > n ∧ sum ≥ 0)⇒ sum ≥ 0

I Finally, compute awp for outer loop: (5) 0 ≥ 0

I Feed the formula (1) ∧ (2) ∧ (3) ∧ (4) ∧ (5) to SMT solver

I It’s valid; hence program is verified!
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Example: Variant

I Suppose annotated invariant for inner loop was sum ≥ 0
instead of sum ≥ 0 ∧ j ≥ 0

I Could the program be verified then? no, because loop
invariant not strong enough

I While VC generation handles many tedious aspects of the
proof, user must still come up with loop invariants (more on
this in next few lectures)
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