Introduction to Deductive Program Verification

Iｓｉｌ Dillig

Hoare Logic I

Example specs: safety (no crashes), absence of arithmetic overflow, complex behavioral property (e.g., "sorts an array")

Verification condition: An SMT formula ϕ s.t. program is correct iff ϕ is valid

Simple Imperative Programming Language

To illustrate Hoare logic, we’ll consider a small imperative programming language IMP

In IMP, we distinguish three program constructs: expressions, conditionals, and statements

Expression $E := Z \mid V \mid e_1 + e_2 \mid e_1 \times e_2$

Conditional $C := true \mid false \mid e_1 = e_2 \mid e_1 \leq e_2$

Statement $S := V := E$ (Assignment)

$S_1; S_2$ (Composition)

if C then S_1 else S_2 (If)

while C do S (While)

Partial Correctness Specification

In Hoare logic, we specify partial correctness of programs using Hoare triples:

$\{P\} S \{Q\}$

Here, S is a statement in programming language IMP

P and Q are SMT formulas

P is called precondition and Q is called post-condition

Meaning of Hoare Triples

Meaning of Hoare triple $\{P\} S \{Q\}$:

If S is executed in state satisfying P

and if execution of S terminates

then the program state after S terminates satisfies Q

Is $\{x = 0\} x := x + 1 \{x = 1\}$ valid Hoare triple?

What about $\{x = 0 \land y = 1\} x := x + 1 \{x = 1 \land y = 2\}$?

What about $\{x = 0\} x := x + 1 \{x = 1 \lor y = 2\}$?

What about $\{x = 0\}$ while true do $x := 0 \{x = 1\}$?
Inference Rules

Proof rules in Hoare logic are written as inference rules:

\[\vdash \{P_1\}S_1\{Q_1\} \ldots \vdash \{P_n\}S_n\{Q_n\} \vdash \{P\}S\{Q\} \]

- Says if Hoare triples \(\{P_1\}S_1\{Q_1\}, \ldots, \{P_n\}S_n\{Q_n\} \) are provable in our proof system, then \(\{P\}S\{Q\} \) is also provable.
- Not all rules have hypotheses: these correspond to bases cases in the proof
- Rules with hypotheses correspond to inductive cases in proof
- One inference rule for every statement in the IMP language

Proving Partial Correctness

Key problem: How to prove valid Hoare triples?

- If a Hoare triple is valid, written \(\models \{P\}S\{Q\} \), we want a proof system to prove its validity
- Use notation \(\vdash \{P\}S\{Q\} \) to indicate that we can prove validity of Hoare triple
- Hoare also gave a sound and (relatively-) complete proof system that allows semi-mechanizing correctness proofs
- Soundness: If \(\vdash \{P\}S\{Q\} \), then \(\models \{P\}S\{Q\} \)
- Completeness: If \(\models \{P\}S\{Q\} \), then \(\vdash \{P\}S\{Q\} \)

Partial vs. Total Correctness

- The specification \(\{P\}S\{Q\} \) called partial correctness spec. b/c doesn’t require \(S \) to terminate
- There is also a stronger requirement called total correctness
- Total correctness specification written \([P]S[Q] \)
- Meaning of \([P]S[Q] \):
 - If \(S \) is executed in state satisfying \(P \)
 - then the execution of \(S \) terminates
 - and program state after \(S \) terminates satisfies \(Q \)
- Is \(\{x = 0\} \) while true do \(x := 0 \)[\(x = 1 \)] valid?

Example Specifications

- What does \(\{true\}S\{Q\} \) say?
- What about \(\{P\}S[true] \)?
- What about \([P]S[true] \)?
- When does \(\{true\}S[false] \) hold?
- When does \([false]S[Q] \) hold?
- We’ll only focus on only partial correctness (safety)
- Total correctness = Partial correctness + termination

More Examples

Valid or invalid?

- \(\{0\} \) while \(i < n \) do \(i++ \); \(\{i = n\} \)
- \(\{0\} \) while \(i < n \) do \(i++ \); \(\{i >= n\} \)
- \(\{0 \land j = 0\} \) while \(i < n \) do \(i++ \); \(j++ \) \(\{2j = n(n + 1)\} \)
- How can we strengthen the precondition so it’s valid?

Understanding Proof Rule for Assignment

- Consider the assignment \(x := y \) and post-condition \(x > 2 \)
- What do we need before the assignment so that \(x > 2 \) holds afterwards?
- Consider \(i := i + 1 \) and post-condition \(i > 10 \)
- What do we need to know before the assignment so that \(i > 10 \) holds afterwards?
Proof Rule for Assignment
\[\vdash \{ Q[E/x] \} \ x := E \ \{ Q \} \]

- To prove \(Q \) holds after assignment \(x := E \), sufficient to show that \(Q \) with \(E \) substituted for \(x \) holds before the assignment.

- Using this rule, which of these are provable?

 - \(\{ y = 4 \} \ x := 4 \ \{ y = x \} \)

 - \(\{ x + 1 = n \} \ x := x + 1 \ \{ x = n \} \)

 - \(\{ y = x \} \ y := 2 \ \{ y = x \} \)

 - \(\{ z = 3 \} \ y := x \ \{ z = 3 \} \)

Exercise

- Your friend suggests the following proof rule for assignment:
 \[\vdash \{(x = E) \rightarrow Q\} \ x := E \ \{ Q \} \]

- Is the proposed proof rule correct?

- Motivation for Precondition Strengthening

- Is the Hoare triple \(\{ z = 2 \} \ y := x \ \{ y = x \} \) valid?

- Is this Hoare triple provable using our assignment rule?

- Instantiating the assignment rule, we get:
 \[\{ y = x \ y := x \ \{ y = x \} \} \]

- But intuitively, if we can prove \(y = x \) w/o any assumptions, we should also be able to prove it if we do make assumptions!

Proof Rule for Precondition Strengthening
\[\vdash \{ P \} \ S \ \{ Q \} \quad P \Rightarrow P' \]
\[\vdash \{ P \} \ S \ \{ Q \} \]

- Recall: \(P \Rightarrow P' \) means the formula \(P \rightarrow P' \) is valid

- Hence, need to use SMT solver every time we use precondition strengthening!

Example

- Using this rule and rule for assignment, we can now prove \(\{ z = 2 \} \ y := x \ \{ y = x \} \)

- Proof:
 \[\vdash \{ y = x \ y := x \ \{ y = x \} \} \]
 \[\vdash \{ \text{true} \} \ y := x \ \{ y = x \} \]
 \[\vdash \{ z = 2 \} \ y := x \ \{ y = x \} \]

Proof Rule for Post-Condition Weakening
\[\vdash \{ P \} \ S \ \{ Q \} \quad Q' \Rightarrow Q \]
\[\vdash \{ P \} \ S \ \{ Q \} \]

- We also need a dual rule for post-conditions called **post-condition weakening**:

- If we can prove post-condition \(Q' \), we can always relax it to something weaker

- Again, need to use SMT solver when applying post-condition weakening
Proof Rule for If Statements

\[
\frac{\vdash \{P \land C\} S_1 \{Q\} \quad \vdash \{P \land \neg C\} S_2 \{Q\}}{
\vdash \{P\} \text{if } C \text{ then } S_1 \text{ else } S_2 \{Q\}}
\]

- Suppose we know \(P\) holds before if statement and want to show \(Q\) holds afterwards.
- At beginning of then branch, what facts do we know?
- Thus, in the then branch, we want to show \(\{P \land C\} S_1\{Q\}\)
- At beginning of else branch, what facts do we know?
- What do we need to show in else branch?

Exercise, cont

- Yes, this rule can be derived from existing rules.
- From premises, we know (1) \(\{P \land C\} S_1; S_3\{Q\}\) and (2) \(\{P \land \neg C\} S_2; S_3\{Q\}\)
- Let \(Q'\) be the weakest precondition we need for \(Q\) to hold after executing \(S_3\), i.e., (3) \(\{Q'\} S_3\{Q\}\)
- Using premises, this means \(\{P \land C\} S_1\{Q'\}\) and \(\{P \land \neg C\} S_2\{Q'\}\)
- From these and existing if rule, we can derive:
 \(\{P\} \text{if } C \text{ then } S_1 \text{ else } S_2 \{Q'\}\)
- Conclusion follows from these and (3) using Seq

Post-condition Weakening Examples

- Suppose we can prove \(\{\text{true}\} S(x = y \land z = 2)\).
- Using post-condition weakening, which of these can we prove?
 - \(\{\text{true}\} S(x = y)\)
 - \(\{\text{true}\} S(z = 2)\)
 - \(\{\text{true}\} S(z > 0)\)
 - \(\{\text{true}\} S(x = y)\)
 - \(\{\text{true}\} S(\exists y. x = y)\)

Proof Rule for Composition

\[
\frac{\vdash \{P\} S_1 \{Q\} \quad \vdash \{Q\} S_2 \{R\}}{
\vdash \{P\} S_1; S_2 \{R\}}
\]

- Using this rule, let’s prove validity of Hoare triple:
 \(\{\text{true}\} x = 2; y = x \{y = 2 \land x = 2\}\)
- What is appropriate \(Q\)?
 \(\{x = 2; y = 2\} \quad x = 2 \quad y = x \{x = 2 \land y = 2\}\)

Example

Prove the correctness of this Hoare triple:
\(\{\text{true}\} \text{ if } x > 0 \text{ then } y := x \text{ else } y := -x \{y \geq 0\}\)

Exercise

- Your friend suggests the following proof rule:
 \(\{P \land C\} S_1; S_3\{Q\}\)
 \(\{P \land \neg C\} S_2; S_3\{Q\}\)
 \(\{P\} \text{ if } C \text{ then } S_1 \text{ else } S_2\{Q\}\)
- Is this proof rule correct? If so, prove your answer. Otherwise, give a counterexample.
Proof Rule for While and Loop Invariants

- Last proof rule of Hoare logic is that for while loops.
- But to understand proof rule for while, we first need concept of a loop invariant.
- A loop invariant I has following properties:
 1. I holds initially before the loop.
 2. I holds after each iteration of the loop.

Proof Rule for While

- Consider the statement $\text{while } C \text{ do } S$.
- Suppose I is a loop invariant for this loop. What is I?

Loop Invariants

- Based on this rule, why is P a loop invariant?

Example

- Consider the following code:

  ```plaintext
  i := 0; j := 0; n := 10; while i<n do i:= i + 1; j := i + j
  ```

Example, cont.

- Which of the following are loop invariants?
 - $i \leq n$
 - $i < n$
 - $j \geq 0$

Example, cont.

- Suppose I is a loop invariant. Does I also hold after loop terminates?

The full proof:

\[
\begin{align*}
\vdash\{x + 1 \leq n\} x = x + 1 \{x \leq n\} \\
\vdash\{x \leq n\} \Rightarrow x + 1 < n \\
\vdash\{x \leq n\} S \{x \leq n \wedge (x < n)\} \\
\vdash\{x \leq n\} \Rightarrow x \geq n \\
\vdash\{x \leq n\} S \{x \geq n\}
\end{align*}
\]
Invariant vs. Inductive Invariant

- Suppose \(I \) is a loop invariant for while \(C \) do \(S \).
- Does it always satisfy \(\{ I \land C \} S \{ I \} \)?
- Counterexample: Consider \(I = j \geq 1 \) and the code:
 \[
 i := 1; \; j := 1; \; \text{while } i < n \text{ do } \{ j := j + 1; \; i := i + 1 \}
 \]
- But strengthened invariant \(j \geq 1 \land i \geq 1 \) does satisfy it
- Such invariants are called inductive invariants, and they are the only invariants that we can prove
- Key challenge in verification is finding inductive loop invariants

Another Exercise

- Suppose we add a for loop construct to IMP:
 \[
 \text{for } v := e_1 \text{ until } e_2 \text{ do } S
 \]
- Initializes \(v \) to \(e_1 \), increments \(v \) by 1 in each iteration and terminates when \(v > e_2 \)
- Write a proof rule for this for loop construct
 \[
 \{ I \land v \leq e_2 \} S; \; v := v + 1 \{ I \}
 \]
- We can de-sugar into while loop:
 \[
 v := e_1; \; \text{while } v \leq e_2 \text{ do } \{ S; \; v := v + 1 \}
 \]

Exercise, cont.

- Putting all this together, we get the following proof rule:
 \[
 \begin{align*}
 \{ P \} \; v := e_1 \{ I \}
 \\
 \{ I \land v \leq e_2 \} \; S; \; v := v + 1 \{ I \}
 \\
 \{ P \} \; \text{for } v := e_1 \text{ until } e_2 \text{ do } S \{ I \land v > e_2 \}
 \end{align*}
 \]

Exercise

Find inductive loop invariant to prove the following Hoare triple:

\[
\{ i = 0 \land j = 0 \land n = 5 \}
\]
\[
\text{while } i < n \text{ do } i := i + 1; \; j := j + 1
\]
\[
\{ j = 15 \}
\]

- Inductive loop invariant \(I \):
- Weakest precondition \(P \) w.r.t loop body:
 \[
 2j = i(i+1) \land i + 1 \leq n \land n = 5
 \]
- Since \(I \land C \Rightarrow P \), \(I \) is inductive.

Arrays

- Let’s add arrays to our IMP language:
 \[
 v[e_1] := e_2
 \]
- What is the proof rule for this statement?
- Idea 1: Treat array write just like assignment:
 \[
 \{ Q[e_2/v[e_1]] \} \; v[e_1] := e_2 \{ Q \}
 \]
- Is this rule correct?
Counterexample

- No, counterexample:
 \(\{ i = 1 \} \ v[1] := 3; v[1] := 2 \ \{ v[i] = 3 \} \)
- What is the value of \(v[1] \) after this code?
- But using previous “proof rule”, we can “prove” this Hoare triple
- Clearly, this rule is unsound

Correct Proof Rule for Arrays

- The correct proof rule:
 \(\{ Q|v(e_1 \circ e_2)/v \} \ v[e_1] := e_2 \ \{ Q \} \)
- Effectively assigns \(v \) to a new array that is the same as \(v \) except at index \(e_1 \)
- We now require theory of arrays

Array Example

- Consider again this example:
 \(\{ i = 1 \} \ v[1] := 3; v[1] := 2 \ \{ v[i] = 3 \} \)
- Applying the array write rule, we obtain:
 \(\{ v(1 \triangleleft 2)[i] = 3 \} \ v[1] := 2 \ \{ v[i] = 3 \} \)
- Use composition and apply array rule to first statement:
 \(\{ (v(i \triangleleft 3))(1 \triangleleft 2)[i] = 3 \} \ v[1] := 3 \ \{ v(1 \triangleleft 2)[i] = 3 \} \)
- But the following implication is not valid:
 \(i = 1 \Rightarrow (v(i \triangleleft 3))(1 \triangleleft 2)[i] = 3 \)

Example with Arrays and Loops

- Consider the following code snippet:
 \(\text{while } i < n \text{ do } \{ a[i] := 0; i := i + 1; \} \)
- Suppose the precondition is \(i = 0 \land n > 0 \) and the postcondition is:
 \(\forall j. 0 \leq j < n \Rightarrow a[j] = 0 \)
- Find an inductive loop invariant and show the correctness proof
- Inductive invariant:

Summary of Proof Rules

1. \(\vdash \{ Q|E/x \} \ z = E \ \{ Q \} \) (Assignment)
2. \(\vdash \{ P \} S(Q) \ P \Rightarrow P' \ \vdash \{ P \} S(Q) \) (Strengthen P)
3. \(\vdash \{ P \} S(Q) \ Q' \Rightarrow Q \ \vdash \{ P \} S(Q) \) (Weaken Q)
4. \(\vdash \{ P \} C_1(Q) \ \vdash \{ Q \} C_2(R) \ \vdash \{ P \} C_1; C_2(R) \) (Composition)
5. \(\vdash \{ P \} \text{ if } C \text{ then } S_1 \text{ else } S_2 \ \{ Q \} \) (If)
6. \(\vdash \{ P \} \text{ while } C \text{ do } S \{ P \land \neg C \} \) (While)

Meta-theory: Soundness of Proof Rules

- It can be show that the proof rules for Hoare logic are sound:
 \[\vdash \{ P \} S(Q) \]
 If \(\vdash \{ P \} S(Q) \)
- That is, if a Hoare triple \(\{ P \} S(Q) \) is provable using the proof rules, then \(\{ P \} S(Q) \) is indeed valid
- Completeness of proof rules means that if \(\{ P \} S(Q) \) is a valid Hoare triple, then it can be proven using our proof rules, i.e.,
 \[\vdash \{ P \} S(Q) \]
 If \(\vdash \{ P \} S(Q) \)
- Unfortunately, completeness does not hold!
Meta-theory: Relative Completeness

- **Recall**: Rules for precondition strengthening and postcondition weakening require checking $A \Rightarrow B$
- In general, these formulas belong to Peano arithmetic.
- Since PA is incomplete, there are implications that are valid but cannot be proven.
- However, Hoare’s proof rules still have important goodness guarantee: relative completeness.
- If we have an oracle for deciding whether an implication $A \Rightarrow B$ holds, then any valid Hoare triple can be proven using our proof rules.

Automating Reasoning in Hoare Logic

- Manually proving correctness is tedious, so we’d like to automate the tedious parts of program verification.
- **Idea**: Assume an oracle gives loop invariants, but automate the rest of the reasoning.
- This oracle can either be a human or a static analysis tool (e.g., abstract interpretation).

Basic Idea Behind Program Verification

- Automating Hoare logic is based on generating verification conditions (VC).
- A verification condition is a formula ϕ such that program is correct iff ϕ is valid.
- Deductive verification has two components:
 1. Generate VC’s from source code.
 2. Use theorem prover to check validity of formulas from step 1.

Generating VCs: Forwards vs. Backwards

- Two ways to generate verification conditions: forwards or backwards.
- A forwards analysis starts from precondition and generates formulas to prove postcondition.
- Forwards technique computes strongest postconditions (sp).
- In contrast, backwards analysis starts from postcondition and tries to prove precondition.
- Backwards technique computes weakest preconditions (wp).
- We’ll use the backwards method.

Weakest Preconditions

- **Idea**: Suppose we want to verify Hoare triple $\{P\} S \{Q\}$.
- We’ll start with Q and going backwards, compute formula $wp(S, Q)$ called weakest precondition of Q w.r.t. to S.
- $wp(S, Q)$ has the property that it is the weakest condition that guarantees Q will hold after S in any execution.
- Thus, Hoare triple $\{P\} S \{Q\}$ is valid iff:
 $$ P \Rightarrow wp(S, Q) $$

Defining Weakest Preconditions

- Weakest preconditions are defined inductively and follow Hoare’s proof rules.
 - $wp(x := E, Q) = Q[E/x]$.
 - $wp(s_1; s_2, Q) = wp(s_1, wp(s_2, Q))$.
 - $wp(\text{if } C \text{ then } s_1 \text{ else } s_2, Q) = C \Rightarrow wp(s_1, Q) \land \neg C \Rightarrow wp(s_2, Q)$.
 - This says “If C holds, wp of then branch must hold; otherwise, wp of else branch must hold.”
Example

- Consider the following code S:

 $$x := y + 1; \text{if } x > 0 \text{ then } z := 1 \text{ else } z := -1$$

- What is $wp(S, z > 0)$?
- What is $wp(S, z < 0)$?
- Can we prove post-condition $z = 1$ if precondition is $y \geq -1$?
- What if precondition is $y > -1$?

Weakest Preconditions for Loops

- Unfortunately, we can’t compute weakest preconditions for loops exactly...

 - Idea: approximate it using $awp(S, Q)$

 - $awp(S, Q)$ may be stronger than $wp(S, Q)$ but not weaker

 - To verify $\{P\}S\{Q\}$, show $P \Rightarrow awp(S, Q)$

 - Hope is that $awp(S, Q)$ is weak enough to be implied by P
 although it may not be the weakest

Verification with Approximate Weakest Preconditions

- If $P \Rightarrow awp(S, Q)$, does this mean $\{P\}S\{Q\}$ is valid?

 - No, two problems with $awp(\text{while } C \text{ do } [I] S, Q)$

 1. We haven’t checked I is an actual loop invariant
 2. We also haven’t made sure $I \land \neg C$ is sufficient to establish Q

- For each statement S, generate verification condition $VC(S, Q)$ that encodes additional conditions to prove

Generating Verification Conditions

- Most interesting VC generation rule is for loops:

 $$VC(\text{while } C \text{ do } [I] S, Q) = ?$$

- To ensure Q is satisfied after loop, what condition must hold?

 $$I \land \neg C \Rightarrow Q$$

- Assuming I holds initially, need to check I is loop invariant

 - i.e., need to prove $\{I \land C\}S\{I\}$

- How can we prove this? check validity of

 $$I \land C \Rightarrow awp(S, I) \land VC(S, I)$$

Verification Condition for Loops

- To summarize, to show I is preserved in loop, need:

 $$I \land C \Rightarrow awp(S, I) \land VC(S, I)$$

- To show I is strong enough to establish Q, need:

 $$I \land \neg C \Rightarrow Q$$

- Putting this together, verification condition for a while loop $S’ = \text{while } C \text{ do } [I] S$ is:

 $$VC(S’, Q) = (I \land C \Rightarrow awp(S, I) \land VC(S, I)) \land (I \land \neg C \Rightarrow Q)$$
Verification Condition for Other Statements

- We also need rules to generate VC's for other statements because there might be loops nested in them
- $VC(x := E, Q) = \text{true}$
- $VC(s_1; s_2, Q) = VC(s_2, Q) \land VC(s_1, awp(s_2, Q))$
- $VC(\text{if } C \text{ then } s_1 \text{ else } s_2, Q) = VC(s_1, Q) \land VC(s_2, Q)$

Verification of Hoare Triple

- Thus, to show validity of $\{P\}S\{Q\}$, need to do following:
 1. Compute $awp(S, Q)$
 2. Compute $VC(S, Q)$
- Theorem: $\{P\}S\{Q\}$ is valid if following formula is valid:
 $$VC(S, Q) \land P \rightarrow awp(S, Q) \quad (*)$$
- Thus, if we can prove of validity of $(*)$, we have shown that program obeys specification

Discussion

- Theorem: $\{P\}S\{Q\}$ is valid if following formula is valid:
 $$VC(S, Q) \land P \rightarrow awp(S, Q) \quad (*)$$
- Question: If $\{P\}S\{Q\}$ is valid, is $(*)$ valid?
- No, for two reasons:
 1. Loop invariant might not be strong enough
 2. Loop invariant might be bogus
- Thus, even if program obeys specification, might not be able to prove it b/c loop invariants we use are not strong enough

Example

- Consider the following code:

  ```
  i := 1; sum := 0;
  while i ≤ n do [sum ≥ 0] {
    j := 1;
    while j ≤ i do [sum ≥ 0 ∧ j ≥ 0] {
      sum := sum + j; j := j + 1
    }
  }
  ```
- What is the post-condition we need to show for inner loop? $sum ≥ 0$

Example, cont.

- Generate VC's for inner loop:
 1. $(sum ≥ 0 ∧ j ≥ 0 ∧ j > i) \Rightarrow sum ≥ 0$
 2. $(i ≤ n ∧ sum ≥ 0 ∧ j ≥ 0) \Rightarrow (sum + j ≥ 0 ∧ j + 1 ≥ 0)$
- Now, generate VC's for outer loop:
 3. $(i ≤ n ∧ sum ≥ 0) \Rightarrow (sum ≥ 0 ∧ 1 ≥ 0)$
 4. $(i > n ∧ sum ≥ 0) \Rightarrow sum ≥ 0$
- Finally, compute awp for outer loop: $(5) \ 0 ≥ 0$
- Feed the formula $(1) \land (2) \land (3) \land (4) \land (5)$ to SMT solver
- It's valid; hence program is verified!

Example: Variant

- Suppose annotated invariant for inner loop was $sum ≥ 0$ instead of $sum ≥ 0 ∧ j ≥ 0$
- Could the program be verified then? no, because loop invariant not strong enough
- While VC generation handles many tedious aspects of the proof, user must still come up with loop invariants (more on this in next few lectures)