
Introduction to Deductive Program Verification

Işıl Dillig

Işıl Dillig, Introduction to Deductive Program Verification 1/60

Hoare Logic I

Program

Spec

Deductive
verifier

FOL formula Theorem
prover

val
id

contingent

I Example specs: safety (no crashes), absence of arithmetic
overflow, complex behavioral property (e.g., “sorts an array”)

I Verification condition: An SMT formula φ s.t. program is
correct iff φ is valid

Işıl Dillig, Introduction to Deductive Program Verification 2/60

Hoare Logic

I Hoare logic forms the basis of all deductive verification
techniques

I Named after Tony Hoare: inventor of
quick sort, father of formal verification,
1980 Turing award winner

I Logic is also known as Floyd-Hoare logic:
some ideas introduced by Robert Floyd in
1967 paper ”Assigning Meaning to
Programs”

Işıl Dillig, Introduction to Deductive Program Verification 3/60

Simple Imperative Programming Language

I To illustrate Hoare logic, we’ll consider a small imperative
programming language IMP

I In IMP, we distinguish three program constructs: expressions,
conditionals, and statements

I Expression E := Z | V | e1 + e2 | e1 × e2

I Conditional C := true | false | e1 = e2 |e1 ≤ e2

Statement S := V := E (Assignment)
S1;S2 (Composition)
if C then S1 else S2 (If)
while C do S (While)

Işıl Dillig, Introduction to Deductive Program Verification 4/60

Partial Correctness Specification

I In Hoare logic, we specify partial correctness of programs
using Hoare triples:

{P} S {Q}

I Here, S is a statement in programming language IMP

I P and Q are SMT formulas

I P is called precondition and Q is called post-condition

Işıl Dillig, Introduction to Deductive Program Verification 5/60

Meaning of Hoare Triples

I Meaning of Hoare triple {P}S{Q}:
I If S is executed in state satisfying P

I and if execution of S terminates

I then the program state after S terminates satisfies Q

I Is {x = 0} x := x+ 1 {x = 1} valid Hoare triple?

I What about {x = 0 ∧ y = 1} x := x+ 1 {x = 1 ∧ y = 2}?

I What about {x = 0} x := x+ 1 {x = 1 ∨ y = 2}?

I What about {x = 0} while true do x := 0{x = 1}?

Işıl Dillig, Introduction to Deductive Program Verification 6/60

1

Partial vs. Total Correctness

I The specification {P}S{Q} called partial correctness spec.
b/c doesn’t require S to terminate

I There is also a stronger requirement called total correctness

I Total correctness specification written [P]S [Q]

I Meaning of [P]S [Q]:

I If S is executed in state satisfying P

I then the execution of S terminates

I and program state after S terminates satisfies Q

I Is [x = 0] while true do x := 0[x = 1] valid?

Işıl Dillig, Introduction to Deductive Program Verification 7/60

Example Specifications

I What does {true}S{Q} say?

I What about {P}S{true}?

I What about [P]S [true]?

I When does {true}S{false} hold?

I When does {false}S{Q} hold?

I We’ll only focus on only partial correctness (safety)

I Total correctness = Partial correctness + termination

Işıl Dillig, Introduction to Deductive Program Verification 8/60

More Examples

Valid or invalid?

I {i = 0} while i<n do i++; {i = n}

I {i = 0} while i<n do i++; {i ≥ n}

I {i = 0 ∧ j = 0} while i<n do i++; j+=i {2j = n(n + 1)}

I How can we strengthen the precondition so it’s valid?

Işıl Dillig, Introduction to Deductive Program Verification 9/60

Proving Partial Correctness

I Key problem: How to prove valid Hoare triples?

I If a Hoare triple is valid, written |= {P} S{Q}, we want a
proof system to prove its validity

I Use notation ` {P}S{Q} to indicate that we can prove
validity of Hoare triple

I Hoare also gave a sound and (relatively-) complete proof
system that allows semi-mechanizing correctness proofs

I Soundness: If ` {P}S{Q}, then |= {P}S{Q}

I Completeness: If |= {P}S{Q}, then ` {P}S{Q}

Işıl Dillig, Introduction to Deductive Program Verification 10/60

Inference Rules

I Proof rules in Hoare logic are written as inference rules:

` {P1}S1{Q1} . . . ` {Pn}Sn{Qn}
` {P}S{Q}

I Says if Hoare triples {P1}S1{Q1}, . . . , {Pn}Sn{Qn} are
provable in our proof system, then {P}S{Q} is also provable.

I Not all rules have hypotheses: these correspond to bases cases
in the proof

I Rules with hypotheses correspond to inductive cases in proof

I One inference rule for every statement in the IMP language

Işıl Dillig, Introduction to Deductive Program Verification 11/60

Understanding Proof Rule for Assignment

I Consider the assignment x := y and post-condition x > 2

I What do we need before the assignment so that x > 2 holds
afterwards?

I Consider i := i + 1 and post-condition i > 10

I What do we need to know before the assignment so that
i > 10 holds afterwards?

Işıl Dillig, Introduction to Deductive Program Verification 12/60

2

Proof Rule for Assignment

` {Q [E/x]} x := E {Q}

I To prove Q holds after assignment x := E , sufficient to show
that Q with E substituted for x holds before the assignment.

I Using this rule, which of these are provable?

I {y = 4} x := 4 {y = x}

I {x + 1 = n} x := x + 1 {x = n}

I {y = x} y := 2 {y = x}

I {z = 3} y := x {z = 3}

Işıl Dillig, Introduction to Deductive Program Verification 13/60

Exercise

I Your friend suggests the following proof rule for assignment:

` {(x = E)→ Q} x := E {Q}

I Is the proposed proof rule correct?

I

I

Işıl Dillig, Introduction to Deductive Program Verification 14/60

Motivation for Precondition Strengthening

I Is the Hoare triple {z = 2}y := x{y = x} valid?

I Is this Hoare triple provable using our assignment rule?

I Instantiating the assignment rule, we get:

{y = x [x/y]x = xtrue}y = x{y = x}

I But intuitively, if we can prove y = x w/o any assumptions,
we should also be able to prove it if we do make assumptions!

Işıl Dillig, Introduction to Deductive Program Verification 15/60

Proof Rule for Precondition Strengthening

` {P ′}S{Q} P ⇒ P ′

` {P}S{Q}

I Recall: P ⇒ P ′ means the formula P → P ′ is valid

I Hence, need to use SMT solver every time we use
precondition strengthening!

Işıl Dillig, Introduction to Deductive Program Verification 16/60

Example

I Using this rule and rule for assignment, we can now prove
{z = 2}y = x{y = x}

I Proof:

` {y = x [x/y]}y = x{y = x}
` {true}y := x{y = x} z = 2⇒ true

` {z = 2}y := x{y = x}

Işıl Dillig, Introduction to Deductive Program Verification 17/60

Proof Rule for Post-Condition Weakening

I We also need a dual rule for post-conditions called
post-condition weakening:

` {P}S{Q ′} Q ′ ⇒ Q

` {P}S{Q}

I If we can prove post-condition Q ′, we can always relax it to
something weaker

I Again, need to use SMT solver when applying post-condition
weakening

Işıl Dillig, Introduction to Deductive Program Verification 18/60

3

Post-condition Weakening Examples

I Suppose we can prove {true}S{x = y ∧ z = 2}.

I Using post-condition weakening, which of these can we prove?

I {true}S{x = y}

I {true}S{z = 2}

I {true}S{z > 0}

I {true}S{∀y . x = y}

I {true}S{∃y . x = y}

Işıl Dillig, Introduction to Deductive Program Verification 19/60

Proof Rule for Composition

` {P}S1{Q} ` {Q}S2{R}
` {P}S1;S2{R}

I Using this rule, let’s prove validity of Hoare triple:

{true} x = 2; y = x {y = 2 ∧ x = 2}

I What is appropriate Q?

{x = 2[2/x]}x = 2{x = 2}
{true} x = 2 {x = 2}

{x = 2 ∧ y = 2[x/y]} y = x {x = 2 ∧ y = 2}
{x = 2} y = x {x = 2 ∧ y = 2}

` {true} x = 2; y = x {y = 2 ∧ x = 2}

Işıl Dillig, Introduction to Deductive Program Verification 20/60

Proof Rule for If Statements

` {P ∧ C} S1 {Q}
` {P ∧ ¬C} S2 {Q}

` {P} if C then S1 else S2 {Q}

I Suppose we know P holds before if statement and want to
show Q holds afterwards.

I At beginning of then branch, what facts do we know?

I Thus, in the then branch, we want to show {P ∧ C}S1{Q}

I At beginning of else branch, what facts do we know?

I What do we need to show in else branch?

Işıl Dillig, Introduction to Deductive Program Verification 21/60

Example

Prove the correctness of this Hoare triple:

{true} if x > 0 then y := x else y := −x {y ≥ 0}

Işıl Dillig, Introduction to Deductive Program Verification 22/60

Exercise

I Your friend suggests the following proof rule:

{P ∧ C} S1;S3 {Q}
{P ∧ ¬C} S2;S3 {Q}

{P} (if C then S1 else S2); S3 {Q}

I Is this proof rule correct? If so, prove your answer. Otherwise,
give a counterexample.

Işıl Dillig, Introduction to Deductive Program Verification 23/60

Exercise, cont

I Yes, this rule can be derived from existing rules.

I From premises, we know (1) {P ∧ C} S1;S3 {Q} and
(2) {P ∧ ¬C} S2;S3 {Q}

I Let Q ′ be the weakest precondition we need for Q to hold
after executing S3, i.e., (3) {Q ′}S3{Q}

I Using premises, this means {P ∧ C}S1{Q ′} and
{P ∧ ¬C}S2{Q ′}

I From these and existing if rule, we can derive:

{P} (if C then S1 else S2) {Q ′}

I Conclusion follows from these and (3) using Seq

Işıl Dillig, Introduction to Deductive Program Verification 24/60

4

Proof Rule for While and Loop Invariants

I Last proof rule of Hoare logic is that for while loops.

I But to understand proof rule for while, we first need concept
of a loop invariant

I A loop invariant I has following properties:

1. I holds initially before the loop

2. I holds after each iteration of the loop

Işıl Dillig, Introduction to Deductive Program Verification 25/60

Examples

I Consider the following code

i := 0; j := 0; n := 10; while i < n do i := i+ 1; j := i+ j

I Which of the following are loop invariants?

I i ≤ n

I i < n

I j ≥ 0

I Suppose I is a loop invariant. Does I also hold after loop
terminates?

I

Işıl Dillig, Introduction to Deductive Program Verification 26/60

Proof Rule for While

I Consider the statement while C do S

I Suppose I is a loop invariant for this loop. What is
guaranteed to hold after loop terminates? I ∧ ¬C

I Putting all this together, proof rule for while is:

` {P ∧ C}S{P}
` {P}while C do S{P ∧ ¬C}

I This rule simply says ”If P is a loop invariant, then P ∧ ¬C
must hold after loop terminates”

I Based on this rule, why is P a loop invariant?

I

Işıl Dillig, Introduction to Deductive Program Verification 27/60

Example

I Consider the statement S = while x < n do x = x + 1

I Let’s prove validity of {x ≤ n}S{x ≥ n}

I What is appropriate loop invariant?

I First, let’s prove x ≤ n is loop invariant. What do we need to
show?

I What proof rules do we need to use to show this?

` {x ≤ n[x + 1/x]}x = x + 1{x ≤ n} ` {x + 1 ≤ n}x = x + 1{x ≤ n} x ≤ n ∧ x < n ⇒ x + 1 ≤ n

` {x ≤ n ∧ x < n}x = x + 1{x ≤ n}

Işıl Dillig, Introduction to Deductive Program Verification 28/60

Example, cont

I Ok, we’ve shown x ≤ n is loop invariant, now let’s instantiate
proof rule for while with this loop invariant:

` {x ≤ n ∧ x < n}S ′{x ≤ n}
` {x ≤ n}while x < n do S ′{x ≤ n ∧ ¬(x < n)}

I Recall: We wanted to prove the Hoare triple
{x ≤ n}S{x ≥ n}

I In addition to proof rule for while, what other rule do we need?

Işıl Dillig, Introduction to Deductive Program Verification 29/60

Example, cont.

The full proof:

` {x + 1 ≤ n}x = x + 1{x ≤ n}
x ≤ n ∧ x < n ⇒ x + 1 < n

` {x ≤ n ∧ x < n}x = x + 1{x ≤ n}
` {x ≤ n}S{x ≤ n ∧ ¬(x < n)} x ≤ n ∧ ¬(x < n)⇒ x ≥ n

{x ≤ n}S{x ≥ n}

Işıl Dillig, Introduction to Deductive Program Verification 30/60

5

Invariant vs. Inductive Invariant

I Suppose I is a loop invariant for while C do S.

I Does it always satisfy {I ∧ C}S{I }?

I Counterexample: Consider I = j ≥ 1 and the code:

i := 1; j := 1; while i < n do {j := j+ i; i := i+ 1}

I But strengthened invariant j ≥ 1 ∧ i ≥ 1 does satisfy it

I Such invariants are called inductive invariants, and they are
the only invariants that we can prove

I Key challenge in verification is finding inductive loop invariants

Işıl Dillig, Introduction to Deductive Program Verification 31/60

Exercise

Find inductive loop invariant to prove the following Hoare triple:

{i = 0 ∧ j = 0 ∧ n = 5}
while i < n do i := i+ 1; j := j+ i

{j = 15}

I Inductive loop invariant I :

I Weakest precondition P w.r.t loop body:

2j = i(i + 1) ∧ i + 1 ≤ n ∧ n = 5

I Since I ∧ C ⇒ P , I is inductive.

Işıl Dillig, Introduction to Deductive Program Verification 32/60

Another Exercise

I Suppose we add a for loop construct to IMP:

for v := e1 until e2 do S

I Initializes v to e1, increments v by 1 in each iteration and
terminates when v > e2

I Write a proof rule for this for loop construct

I We can de-sugar into while loop:

v := e1; while v ≤ e2 do {S; v := v+ 1}

Işıl Dillig, Introduction to Deductive Program Verification 33/60

Exercise, cont.

v := e1; while v ≤ e2 do {S; v := v+ 1}

I Suppose I is the inductive invariant of while loop

I First, I must hold at the beginning:

{P} v := e1 {I }

I Next, I must be inductive:

{I ∧ v ≤ e2} S; v := v+ 1 {I }

Işıl Dillig, Introduction to Deductive Program Verification 34/60

Exercise, cont.

I Putting all this together, we get the following proof rule:

{P} v := e1 {I }
{I ∧ v ≤ e2} S; v := v+ 1 {I }

{P} for v := e1 until e2 do S {I ∧ v > e2}

Işıl Dillig, Introduction to Deductive Program Verification 35/60

Arrays

I Let’s add arrays to our IMP language:

v[e1] := e2

I What is the proof rule for this statement?

I Idea 1: Treat array write just like assignment:

{Q [e2/v [e1]]} v[e1] := e2 {Q}

I Is this rule correct?

Işıl Dillig, Introduction to Deductive Program Verification 36/60

6

Counterexample

I No, counterexample:

{i = 1} v[i] := 3; v[1] := 2 {v [i] = 3}

I What is the value of v[i] after this code?

I But using previous“proof rule”, we can“prove”this Hoare triple

I Clearly, this rule is unsound

Işıl Dillig, Introduction to Deductive Program Verification 37/60

Correct Proof Rule for Arrays

I The correct proof rule:

{Q [v〈e1 / e2〉/v]} v[e1] := e2 {Q}

I Effectively assigns v to a new array that is the same as v
except at index e1

I We now require theory of arrays

Işıl Dillig, Introduction to Deductive Program Verification 38/60

Array Example

I Consider again this example:

{i = 1} v[i] := 3; v[1] := 2 {v [i] = 3}

I Applying the array write rule, we obtain:

{v〈1 / 2〉[i] = 3} v[1] := 2 {v [i] = 3}

I Use composition and apply array rule to first statement:

{(v〈i / 3〉)〈1 / 2〉[i] = 3} v[i] := 3 {v〈1 / 2〉[i] = 3}

I But the following implication is not valid:

i = 1⇒ (v〈i / 3〉)〈1 / 2〉[i] = 3

Işıl Dillig, Introduction to Deductive Program Verification 39/60

Example with Arrays and Loops

I Consider the following code snippet:

while i < n do {a[i] := 0; i := i+ 1; }

I Suppose the precondition is i = 0 ∧ n > 0 and the
postcondition is:

∀j . 0 ≤ j < n → a[j] = 0

I Find an inductive loop invariant and show the correctness
proof

I Inductive invariant:

Işıl Dillig, Introduction to Deductive Program Verification 40/60

Summary of Proof Rules

1. ` {Q [E/x]} x = E {Q} (Assignment)

2.
` {P ′}S{Q} P ⇒ P ′

` {P}S{Q} (Strengthen P)

3.
` {P}S{Q ′} Q ′ ⇒ Q

` {P}S{Q} (Weaken Q)

4.
` {P}C1{Q} ` {Q}C2{R}

` {P}C1;C2{R}
(Composition)

5.

` {P ∧ C} S1 {Q}
` {P ∧ ¬C} S2 {Q}

` {P} if C then S1 else S2 {Q}
(If)

6.
` {P ∧ C}S{P}

` {P}while C do S{P ∧ ¬C} (While)

Işıl Dillig, Introduction to Deductive Program Verification 41/60

Meta-theory: Soundness of Proof Rules

I It can be show that the proof rules for Hoare logic are sound:

If ` {P}S{Q}, then |= {P}S{Q}

I That is, if a Hoare triple {P}S{Q} is provable using the proof
rules, then {P}S{Q} is indeed valid

I Completeness of proof rules means that if {P}S{Q} is a valid
Hoare triple, then it can be proven using our proof rules, i.e.,

If |= {P}S{Q}, then ` {P}S{Q}

I Unfortunately, completeness does not hold!

Işıl Dillig, Introduction to Deductive Program Verification 42/60

7

Meta-theory: Relative Completeness

I Recall: Rules for precondition strengthening and postcondition
weakening require checking A⇒ B

I In general, these formulas belong to Peano arithmetic

I Since PA is incomplete, there are implications that are valid
but cannot be proven

I However, Hoare’s proof rules still have important goodness
guarantee: relative completeness

I If we have an oracle for deciding whether an implication
A⇒ B holds, then any valid Hoare triple can be proven using
our proof rules

Işıl Dillig, Introduction to Deductive Program Verification 43/60

Automating Reasoning in Hoare Logic

I Manually proving correctness is tedious, so we’d like to
automate the tedious parts of program verification

I Idea: Assume an oracle gives loop invariants, but automate
the rest of the reasoning

I This oracle can either be a human or a static analysis tool
(e.g., abstract interpretation)

Işıl Dillig, Introduction to Deductive Program Verification 44/60

Basic Idea Behind Program Verification

I Automating Hoare logic is based on generating verification
conditions (VC)

I A verification condition is a formula φ such that program is
correct iff φ is valid

I Deductive verification has two components:

1. Generate VC’s from source code

2. Use theorem prover to check validity of formulas from step 1

Işıl Dillig, Introduction to Deductive Program Verification 45/60

Generating VCs: Forwards vs. Backwards

I Two ways to generate verification conditions: forwards or
backwards

I A forwards analysis starts from precondition and generates
formulas to prove postcondition

I Forwards technique computes strongest postconditions (sp)

I In contrast, backwards analysis starts from postcondition and
tries to prove precondition

I Backwards technique computes weakest preconditions (wp)

I We’ll use the backwards method

Işıl Dillig, Introduction to Deductive Program Verification 46/60

Weakest Preconditions

I Idea: Suppose we want to verify Hoare triple {P}S{Q}

I We’ll start with Q and going backwards, compute formula
wp(S ,Q) called weakest precondition of Q w.r.t. to S

I wp(S ,Q) has the property that it is the weakest condition
that guarantees Q will hold after S in any execution

I Thus, Hoare triple {P}S{Q} is valid iff:

P ⇒ wp(S ,Q)

Işıl Dillig, Introduction to Deductive Program Verification 47/60

Defining Weakest Preconditions

I Weakest preconditions are defined inductively and follow
Hoare’s proof rules

I wp(x := E ,Q) = Q [E/x]

I wp(s1; s2,Q) = wp(s1,wp(s2,Q))

I wp(if C then s1 else s2,Q) =
C → wp(s1,Q) ∧ ¬C → wp(s2,Q)

I This says ”If C holds, wp of then branch must hold; otherwise,
wp of else branch must hold”

Işıl Dillig, Introduction to Deductive Program Verification 48/60

8

Example

I Consider the following code S :

x := y+ 1; if x > 0 then z := 1 else z := −1

I What is wp(S , z > 0)?

I What is wp(S , z ≤ 0)?

I Can we prove post-condition z = 1 if precondition is y ≥ −1?

I What if precondition is y > −1?

Işıl Dillig, Introduction to Deductive Program Verification 49/60

Weakest Preconditions for Loops

I Unfortunately, we can’t compute weakest preconditions for
loops exactly...

I Idea: approximate it using awp(S ,Q)

I awp(S ,Q) may be stronger than wp(S ,Q) but not weaker

I To verify {P}S{Q}, show P ⇒ awp(S ,Q)

I Hope is that awp(S ,Q) is weak enough to be implied by P
although it may not be the weakest

Işıl Dillig, Introduction to Deductive Program Verification 50/60

Approximate Weakest Preconditionsr loops, we will rely on
loop invariants provided by oracle (human or static ana

I For all statements except for while loops, computation of
awp(S ,Q) same as wp(S ,Q)

I To compute, awp(S ,Q) for loops, we will rely on loop
invariants provided by oracle (human or static analysis)

I Assume all loops are annotated with invariants
while C do [I] S

I Now, we’ll just define awp(while C do [I] S ,Q) ≡ I

I Why is this sound?

Işıl Dillig, Introduction to Deductive Program Verification 51/60

Verification with Approximate Weakest Preconditions

I If P ⇒ awp(S ,Q), does this mean {P}S{Q} is valid?

I No, two problems with awp(while C do [I] S ,Q)

1. We haven’t checked I is an actual loop invariant

2. We also haven’t made sure I ∧ ¬C is sufficient to establish Q!

I For each statement S , generate verification condition
VC (S ,Q) that encodes additional conditions to prove

Işıl Dillig, Introduction to Deductive Program Verification 52/60

Generating Verification Conditions

I Most interesting VC generation rule is for loops:

VC (while C do [I] S ,Q) =?

I To ensure Q is satisfied after loop, what condition must hold?
I ∧ ¬C ⇒ Q

I Assuming I holds initially, need to check I is loop invariant

I i.e., need to prove {I ∧ C}S{I }

I How can we prove this? check validity of
I ∧ C ⇒ awp(S , I) ∧VC (S , I)

Işıl Dillig, Introduction to Deductive Program Verification 53/60

Verification Condition for Loops

I To summarize, to show I is preserved in loop, need:

I ∧ C ⇒ awp(S , I) ∧VC (S , I)

I To show I is strong enough to establish Q , need:

I ∧ ¬C ⇒ Q

I Putting this together, verification condition for a while loop
S ′ = while C do {I } S is:

VC (S ′,Q) = (I∧C ⇒ awp(S , I)∧VC (S , I)) ∧ (I∧¬C ⇒ Q)

Işıl Dillig, Introduction to Deductive Program Verification 54/60

9

Verification Condition for Other Statements

I We also need rules to generate VC’s for other statements
because there might be loops nested in them

I VC (x := E ,Q) = true

I VC (s1; s2,Q) = VC (s2,Q) ∧VC (s1, awp(s2,Q))

I VC (if C then s1 else s2,Q) = VC (s1,Q) ∧VC (s2,Q)

Işıl Dillig, Introduction to Deductive Program Verification 55/60

Verification of Hoare Triple

I Thus, to show validity of {P}S{Q}, need to do following:

1. Compute awp(S ,Q)

2. Compute VC (S ,Q)

I Theorem: {P}S{Q} is valid if following formula is valid:

VC (S ,Q) ∧ P → awp(S ,Q) (∗)

I Thus, if we can prove of validity of (∗), we have shown that
program obeys specification

Işıl Dillig, Introduction to Deductive Program Verification 56/60

Discussion

Theorem: {P}S{Q} is valid if following formula is valid:

VC (S ,Q) ∧ P → awp(S ,Q) (∗)

I Question: If {P}S{Q} is valid, is (∗) valid?

I No, for two reasons:

1. Loop invariant might not be strong enough

2. Loop invariant might be bogus

I Thus, even if program obeys specification, might not be able
to prove it b/c loop invariants we use are not strong enough

Işıl Dillig, Introduction to Deductive Program Verification 57/60

Example

I Consider the following code:

i := 1; sum := 0;
while i ≤ n do [sum ≥ 0] {

j := 1;
while j ≤ i do [sum ≥ 0 ∧ j ≥ 0]

sum := sum+ j; j := j+ 1

i := i+ 1

}

I Show the VC’s generated for this program for post-condition
sum ≥ 0 – can it be verified?

I What is the post-condition we need to show for inner loop?
sum ≥ 0

Işıl Dillig, Introduction to Deductive Program Verification 58/60

Example, cont.

I Generate VC’s for inner loop:

(1) (sum ≥ 0 ∧ j ≥ 0 ∧ j > i)⇒ sum ≥ 0
(2) (j ≤ i ∧ sum ≥ 0 ∧ j ≥ 0)⇒ (sum + j ≥ 0 ∧ j + 1 ≥ 0))

I Now, generate VC’s for outer loop:

(3) (i ≤ n ∧ sum ≥ 0)⇒ (sum ≥ 0 ∧ 1 ≥ 0)
(4) (i > n ∧ sum ≥ 0)⇒ sum ≥ 0

I Finally, compute awp for outer loop: (5) 0 ≥ 0

I Feed the formula (1) ∧ (2) ∧ (3) ∧ (4) ∧ (5) to SMT solver

I It’s valid; hence program is verified!

Işıl Dillig, Introduction to Deductive Program Verification 59/60

Example: Variant

I Suppose annotated invariant for inner loop was sum ≥ 0
instead of sum ≥ 0 ∧ j ≥ 0

I Could the program be verified then? no, because loop
invariant not strong enough

I While VC generation handles many tedious aspects of the
proof, user must still come up with loop invariants (more on
this in next few lectures)

Işıl Dillig, Introduction to Deductive Program Verification 60/60

10

