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Proof Rule for While and Loop Invariants

I Last proof rule of Hoare logic is that for while loops.

I But to understand proof rule for while, we first need concept
of a loop invariant

I A loop invariant I has following properties:

1. I holds initially before the loop

2. I holds after each iteration of the loop
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Examples

I Consider the following code

i := 0; j := 0; n := 10; while i < n do i := i+ 1; j := i+ j

I Which of the following are loop invariants?

I i ≤ n yes

I i < n no

I j ≥ 0 yes

I Suppose I is a loop invariant. Does I also hold after loop
terminates?

I Yes because, by definition, I holds after every loop iteration,
including after the last one
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Proof Rule for While

I Consider the statement while C do S

I Suppose I is a loop invariant for this loop. What is
guaranteed to hold after loop terminates? I ∧ ¬C

I Putting all this together, proof rule for while is:

` {P ∧ C}S{P}
` {P}while C do S{P ∧ ¬C}

I This rule simply says ”If P is a loop invariant, then P ∧ ¬C
must hold after loop terminates”

I Based on this rule, why is P a loop invariant?
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Example

I Consider the statement S = while x < n do x = x + 1

I Let’s prove validity of {x ≤ n}S{x ≥ n}

I What is appropriate loop invariant? x ≤ n

I First, let’s prove x ≤ n is loop invariant. What do we need to
show? {x ≤ n ∧ x < n}x = x + 1{x ≤ n}

I What proof rules do we need to use to show this? assignment,
precondition strengthening

` {x ≤ n[x + 1/x ]}x = x + 1{x ≤ n} ` {x + 1 ≤ n}x = x + 1{x ≤ n} x ≤ n ∧ x < n ⇒ x + 1 ≤ n

` {x ≤ n ∧ x < n}x = x + 1{x ≤ n}
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Example, cont

I Ok, we’ve shown x ≤ n is loop invariant, now let’s instantiate
proof rule for while with this loop invariant:

` {x ≤ n ∧ x < n}S ′{x ≤ n}
` {x ≤ n}while x < n do S ′{x ≤ n ∧ ¬(x < n)}

I Recall: We wanted to prove the Hoare triple
{x ≤ n}S{x ≥ n}

I In addition to proof rule for while, what other rule do we
need? postcondition weakening

Işıl Dillig, Hoare Logic, Part II 6/35

1



Example, cont.

The full proof:

` {x + 1 ≤ n}x = x + 1{x ≤ n}
x ≤ n ∧ x < n ⇒ x + 1 < n

` {x ≤ n ∧ x < n}x = x + 1{x ≤ n}
` {x ≤ n}S{x ≤ n ∧ ¬(x < n)} x ≤ n ∧ ¬(x < n)⇒ x ≥ n

{x ≤ n}S{x ≥ n}
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Invariant vs. Inductive Invariant

I Suppose I is a loop invariant for while C do S.

I Does it always satisfy {I ∧ C}S{I }?

I Counterexample: Consider I = j ≥ 1 and the code:

i := 1; j := 1; while i < n do {j := j+ i; i := i+ 1}

I But strengthened invariant j ≥ 1 ∧ i ≥ 1 does satisfy it

I Such invariants are called inductive invariants, and they are
the only invariants that we can prove

I Key challenge in verification is finding inductive loop invariants
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Exercise

Find inductive loop invariant to prove the following Hoare triple:

{i = 0 ∧ j = 0 ∧ n = 5}
while i < n do i := i+ 1; j := j+ i

{j = 15}

I Inductive loop invariant I :

2j = i(i + 1) ∧ i ≤ n ∧ n = 5

I Weakest precondition P w.r.t loop body:

2j = i(i + 1) ∧ i + 1 ≤ n ∧ n = 5

I Since I ∧ C ⇒ P , I is inductive.
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Summary of Proof Rules

1. ` {Q [E/x ]} x = E {Q} (Assignment)

2.
` {P ′}S{Q} P ⇒ P ′

` {P}S{Q} (Strengthen P)

3.
` {P}S{Q ′} Q ′ ⇒ Q

` {P}S{Q} (Weaken Q)

4.
` {P}C1{Q} ` {Q}C2{R}

` {P}C1;C2{R}
(Composition)

5.

` {P ∧ C} S1 {Q}
` {P ∧ ¬C} S2 {Q}

` {P} if C then S1 else S2 {Q}
(If)

6.
` {P ∧ C}S{P}

` {P}while C do S{P ∧ ¬C} (While)
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Meta-theory: Soundness of Proof Rules

I It can be show that the proof rules for Hoare logic are sound:

If ` {P}S{Q}, then |= {P}S{Q}

I That is, if a Hoare triple {P}S{Q} is provable using the proof
rules, then {P}S{Q} is indeed valid

I Completeness of proof rules means that if {P}S{Q} is a valid
Hoare triple, then it can be proven using our proof rules, i.e.,

If |= {P}S{Q}, then ` {P}S{Q}

I Unfortunately, completeness does not hold!
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Meta-theory: Relative Completeness

I Recall: Rules for precondition strengthening and postcondition
weakening require checking A⇒ B

I In general, these formulas belong to Peano arithmetic

I Since PA is incomplete, there are implications that are valid
but cannot be proven

I However, Hoare’s proof rules still have important goodness
guarantee: relative completeness

I If we have an oracle for deciding whether an implication
A⇒ B holds, then any valid Hoare triple can be proven using
our proof rules
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Automating Reasoning in Hoare Logic

I Manually proving correctness is tedious, so we’d like to
automate the tedious parts of program verification

I Idea: Assume an oracle gives loop invariants, but automate
the rest of the reasoning

I This oracle can either be a human or a static analysis tool
(e.g., abstract interpretation)
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Basic Idea Behind Program Verification

I Automating Hoare logic is based on generating verification
conditions (VC)

I A verification condition is a formula φ such that program is
correct iff φ is valid

I Deductive verification has two components:

1. Generate VC’s from source code

2. Use theorem prover to check validity of formulas from step 1
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Generating VCs: Forwards vs. Backwards

I Two ways to generate verification conditions: forwards or
backwards

I A forwards analysis starts from precondition and generates
formulas to prove postcondition

I Forwards technique computes strongest postconditions (sp)

I In contrast, backwards analysis starts from postcondition and
tries to prove precondition

I Backwards technique computes weakest preconditions (wp)

I We’ll use the backwards method
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Weakest Preconditions

I Idea: Suppose we want to verify Hoare triple {P}S{Q}

I We’ll start with Q and going backwards, compute formula
wp(S ,Q) called weakest precondition of Q w.r.t. to S

I wp(S ,Q) has the property that it is the weakest condition
that guarantees Q will hold after S in any execution

I Thus, Hoare triple {P}S{Q} is valid iff:

P ⇒ wp(S ,Q)

I Why? Because if triple {P ′}S{Q} is valid and P ⇒ P ′, then
{P}S{Q} is also valid
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Defining Weakest Preconditions

I Weakest preconditions are defined inductively and follow
Hoare’s proof rules

I wp(x := E ,Q) = Q [E/x ]

I wp(s1; s2,Q) = wp(s1,wp(s2,Q))

I wp(if C then s1 else s2,Q) =
C → wp(s1,Q) ∧ ¬C → wp(s2,Q)

I This says ”If C holds, wp of then branch must hold; otherwise,
wp of else branch must hold”
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Example

I Consider the following code S :

x := y+ 1; if x > 0 then z := 1 else z := −1

I What is wp(S , z > 0)? y ≥ 0

I What is wp(S , z ≤ 0)? y < 0

I Can we prove post-condition z = 1 if precondition is y ≥ −1?

I What if precondition is y > −1?
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Weakest Preconditions for Loops

I Unfortunately, we can’t compute weakest preconditions for
loops exactly...

I Idea: approximate it using awp(S ,Q)

I awp(S ,Q) may be stronger than wp(S ,Q) but not weaker

I To verify {P}S{Q}, show P ⇒ awp(S ,Q)

I Hope is that awp(S ,Q) is weak enough to be implied by P
although it may not be the weakest
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Approximate Weakest Preconditionsr loops, we will rely on
loop invariants provided by oracle (human or static ana

I For all statements except for while loops, computation of
awp(S ,Q) same as wp(S ,Q)

I To compute, awp(S ,Q) for loops, we will rely on loop
invariants provided by oracle (human or static analysis)

I Assume all loops are annotated with invariants
while C do [I ] S

I Now, we’ll just define awp(while C do [I ] S ,Q) ≡ I

I Why is this sound? If I is an invariant, it must hold before
the loop
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Verification with Approximate Weakest Preconditions

I If P ⇒ awp(S ,Q), does this mean {P}S{Q} is valid?

I No, two problems with awp(while C do {I } S ,Q)

1. We haven’t checked I is an actual loop invariant

2. We also haven’t made sure I ∧ ¬C is sufficient to establish Q!

I For each statement S , generate verification condition
VC (S ,Q) that encodes additional conditions to prove
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Generating Verification Conditions

I Most interesting VC generation rule is for loops:

VC (while C do [I ] S ,Q) =?

I To ensure Q is satisfied after loop, what condition must hold?
I ∧ ¬C ⇒ Q

I Assuming I holds initially, need to check I is loop invariant

I i.e., need to prove {I ∧ C}S{I }

I How can we prove this? check validity of
I ∧ C ⇒ awp(S , I ) ∧VC (S , I )
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Verification Condition for Loops

I To summarize, to show I is preserved in loop, need:

I ∧ C ⇒ awp(S , I ) ∧VC (S , I )

I To show I is strong enough to establish Q , need:

I ∧ ¬C ⇒ Q

I Putting this together, verification condition for a while loop
S ′ = while C do {I } S is:

VC (S ′,Q) = (I∧C ⇒ awp(S , I )∧VC (S , I )) ∧ (I∧¬C ⇒ Q)
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Verification Condition for Other Statements

I We also need rules to generate VC’s for other statements
because there might be loops nested in them

I VC (x := E ,Q) = true

I VC (s1; s2,Q) = VC (s2,Q) ∧VC (s1, awp(s2,Q))

I VC (if C then s1 else s2,Q) = VC (s1,Q) ∧VC (s2,Q)

Işıl Dillig, Hoare Logic, Part II 24/35

4



Verification of Hoare Triple

I Thus, to show validity of {P}S{Q}, need to do following:

1. Compute awp(S ,Q)

2. Compute VC (S ,Q)

I Theorem: {P}S{Q} is valid if following formula is valid:

VC (S ,Q) ∧ P → awp(S ,Q) (∗)

I Thus, if we can prove of validity of (∗), we have shown that
program obeys specification
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Discussion

Theorem: {P}S{Q} is valid if following formula is valid:

VC (S ,Q) ∧ P → awp(S ,Q) (∗)

I Question: If {P}S{Q} is valid, is (∗) valid?

I No, for two reasons:

1. Loop invariant might not be strong enough

2. Loop invariant might be bogus

I Thus, even if program obeys specification, might not be able
to prove it b/c loop invariants we use are not strong enough
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Example

I Consider the following code:

i := 1; sum := 0;
while i ≤ n do [sum ≥ 0] {

j := 1;
while j ≤ i do [sum ≥ 0 ∧ j ≥ 0]

sum := sum+ j; j := j+ 1

i := i+ 1

}

I Show the VC’s generated for this program for post-condition
sum ≥ 0 – can it be verified?

I What is the post-condition we need to show for inner loop?
sum ≥ 0
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Example, cont.

I Generate VC’s for inner loop:

(1) (sum ≥ 0 ∧ j ≥ 0 ∧ j > i)⇒ sum ≥ 0
(2) (j ≤ i ∧ sum ≥ 0 ∧ j ≥ 0)⇒ (sum + j ≥ 0 ∧ j + 1 ≥ 0))

I Now, generate VC’s for outer loop:

(3) (i ≤ n ∧ sum ≥ 0)⇒ (sum ≥ 0 ∧ 1 ≥ 0)
(4) (i > n ∧ sum ≥ 0)⇒ sum ≥ 0

I Finally, compute awp for outer loop: (5) 0 ≥ 0

I Feed the formula (1) ∧ (2) ∧ (3) ∧ (4) ∧ (5) to SMT solver

I It’s valid; hence program is verified!

Işıl Dillig, Hoare Logic, Part II 28/35

Example: Variant

I Suppose annotated invariant for inner loop was sum ≥ 0
instead of sum ≥ 0 ∧ j ≥ 0

I Could the program be verified then? no, because loop
invariant not strong enough

I While VC generation handles many tedious aspects of the
proof, user must still come up with loop invariants...
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Guess-and-Check

I Fortunately, there are many automated techniques for loop
invariant generation

I The simplest technique is guess-and-check

I Given template of invariants (e.g., ? =?, ? ≤?), instantiate
the holes with program variables and constants

I Then, check if it’s an invariant; if not, try a different
instantiation
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Abstract Interpretation

I Symbolically execute the program over an abstraction until we
reach a fixed point

I Example: In sign abstract domain, only track if a variable x is
positive, non-negative, negative, or zero

I This defines a lattice:

non-neg

neg

pos zero

I Initialize everything to ⊥ and then take the join of the new
value with old value; repeat until you reach fixed point
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An Example

x = 0;
y =0;

while(y <= n) 
{
   if (z == 0) {
      x = x+1;
   }
   else {
      x = x + y;
   }
   y = y+1 
}

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

y = y+1
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Fixed-Point Computation

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

y = y+1

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

y = y+1

x = , y = 

x = , y = 
x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 
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x =0 

y =1

loop head
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x = x+1 x = x+y

loop end
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x = , y = 
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x = , y = 

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

x = Z , y = P 

y = y+1

x = , y = 
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loop end

y <= n
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y = y+1

x = , y = 

x = Z , y = 
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x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 
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x = , y = 

x = Z , y = P 

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

x = Z , y = P 

y = y+1

x = , y = 

x = Z , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = Z , y = P 

x = Z , y = P x = Z , y = P 

x = Z , y = P x = Z , y = P 

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

x = Z , y = P 

y = y+1

x = , y = 

x = Z , y = 

x = , y = 

x = , y = 

x = , y = 

x = , y = 

x = Z , y = P 

x = Z , y = P x = Z , y = P 

x = Z , y = P x = Z , y = P 

x = P , y = P 

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

x = Z , y = P 

y = y+1

x = , y = 

x = Z , y = 

x = , y = 

x = , y = 

x = , y = 

x = Z , y = P 

x = Z , y = P x = Z , y = P 

x = Z , y = P x = Z , y = P 

x = P , y = P x = P , y = P 

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end
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z =0 z !=0
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x = , y = 
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x = , y = 
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x =0 

y =1
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exit block branch

x = x+1 x = x+y

loop end
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z =0 z !=0

x = Z , y = P 

y = y+1

x = , y = 
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x = Z , y = P 

x = Z , y = P x = Z , y = P 
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x = P , y = P 

x = P , y = P 

x = P , y = P 

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end

y <= n

z =0 z !=0

x = Z , y = P 

y = y+1

x = , y = 

x = Z , y = 

x = Z , y = P x = Z , y = P 
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x = P , y = P x = P , y = P 
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x = P , y = P 

x = P , y = P 

x = NN , y = P 

x =0 

y =1

loop head

exit block branch

x = x+1 x = x+y

loop end
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x = Z , y = P 

y = y+1

x = , y = 

x = Z , y = 
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Abstract Interpretation, cont.

I The sign abstract domain allows inferring simple invariants of
the form x ≥ 0, x < 0 etc.

I More interesting abstract domains:

I Intervals: Tracks ranges (e.g., x ∈ [0, 100])

I Polyhedra: Tracks linear inequalities (e.g., x ≤ y + z )

I Karr’s domain: Tracks linear equalities (e.g., x = y + z )

I In these domains, we may not reach a fixed point; apply
so-called widening operation to force fixed-point
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Conclusion

I Program verification automates reasoning about program
correctness

I In this lecture, we assumed oracle provides loop invariants

I Many different techniques for automating loop invariant
generation; active research area

I Some other challenges: how to reason about the heap,
concurrency, recursive functions ...

I Since program verification is undecidable, we can’t always
verify every correct program, but can verify many
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