Invariant Inference: Part II

İsıl Dillig

Motivation

- **Previous lecture:** Abstract interpretation
- **This lecture:** Other annotation inference techniques
 - Houdini Algorithm
 - Abduction-based inference

Houdini Overview

- Named after magician Harry Houdini
- Originally proposed as annotation assistant for ESC/Java
- Can generate both loop invariants and method contracts
- “Guess-and-check” approach: Guess some annotations, then check if they are correct

Houdini Workflow

- The annotations produced by Houdini are sound (i.e., true loop invariants and method contracts)
- However, it is not complete ⇒ synthesized annotations may not be sufficient to prove property

Phase I: Guess Invariants

Many different techniques for guessing invariants:

- Mine candidates from source code based on heuristics
 - Expressions of the form \(v_1 \text{ op } v_2 \) or \(v_1 \text{ op } c \), where \(v_1, v_2 \) are variables used in source code and \(c \) is an “interesting” constant
 - Use dynamic analysis (Daikon approach)
 - Facts that have been observed while running the program
 - All these techniques are heuristic in nature – not our main focus...

Phase II: Check Invariants

- The checker only throws out candidate annotations that are refuted by the verifier
- Loop invariant \(I \) is refuted if (1) it is not implied by loop precondition or (2) it is not preserved in the loop body
- Method precondition \(P \) is refuted if it does not hold at call site
- Method post-condition \(Q \) is refuted if \(P \not\Rightarrow wp(M, Q) \)
The Checking Algorithm

\[
\text{Candidate Invariants: } \begin{cases}
(A) & i \geq 0 \\
(B) & i = j \\
(C) & 1 < 1000 \\
(D) & 1 \leq 1000
\end{cases}
\]

\[
\text{Verify returns refuted annotations}
\]

A Nice Property

- Given a set of candidate loop invariants, Houdini finds the \textit{largest subset} that is inductive!
- Largest subset \(\Rightarrow \) Strongest invariant

- Why is this true?
 - Suppose Houdini returns set \(A \), but there exists a \(B \supset A \) such that \(I_B = \bigwedge_{b \in B} b \) is inductive
 - This means the algorithm must have eliminated some \(b_i \in B \)
 - But this only happens if either (a) \(\forall \{I_B \land C\}. \text{Body}\{b_i\} \)
 - But neither option is possible since \(I_B \) is inductive.

Example: Finding Loop Invariants

- Consider the following very simple code example:

\[
\begin{align*}
\text{main} & \colon \text{foo}(5, 0); \\
\text{foo} & \colon \{ \text{if}(x \leq 0) \text{z} := y; \text{else} \text{z} := \text{bar}(x,y); \text{return} \text{z}; \} \\
\text{bar} & \colon \{ \text{x} := x-1; \text{y} := y+1; \text{return} \text{foo}(x,y); \}
\end{align*}
\]

- What are the contracts computed for \(\text{foo} \) and \(\text{bar} \)?

Example, cont.

Beyound Loops

- Houdini is not just limited to inferring loop invariants; can also infer method contracts

- Suppose we have a set \(P \) of candidate pre-conditions and a set \(Q \) of candidate post-conditions

- For every method, initialize pre-condition set to be \(P \) and post-cost condition set to be \(Q \)

- When analyzing method \(M \):
 - If verification fails due to callee’s precondition \(p \), remove \(p \) from callee’s pre-condition set
 - If verification fails because could not establish some \(q \in \text{Post}(M) \), remove \(q \) from \(M \)’s post-conditions

Example

- Consider the following procedures:

\[
\begin{align*}
\text{main} & \colon \text{foo}(5, 0); \\
\text{foo} & \colon \{ \text{if}(x = y) \text{z} := y; \text{else} \text{z} := \text{bar}(x,y); \text{return} \text{z}; \} \\
\text{bar} & \colon \{ \text{x} := x-1; \text{y} := y+1; \text{return} \text{foo}(x,y); \}
\end{align*}
\]

- What are the contracts computed for \(\text{foo} \) and \(\text{bar} \)?

- When analyzing \(\text{main} \), we eliminate \(P_3 (x = y) \) for \(\text{foo} \) because \(\text{assert}(x=0) \) fails

- When analyzing \(\text{foo} \), we eliminate \(Q_2 \) (\(\text{ret} = 0 \)) for \(\text{foo} \) because \(\text{assert}(x=0) \) fails

- When analyzing \(\text{bar} \), we eliminate \(P_3 (x = y) \) for \(\text{bar} \) because \(\text{assert}(x=y) \) fails at call site
Example, cont.

```c
main() { foo(5, 0); }
foo(x, y) {
  if(x<=0) z:= y;
  else z:= bar(x,y);
  return z;
}
bar(x, y) {
  x := x-1;
  y := y+1;
  return foo(x,y);
}
```

Discussion: Pros and Cons of the Houdini Approach

- **Pros:**
 - Can infer both loop invariants and method contracts
 - Infers strongest invariants over the candidate set
 - Conceptually simple; easy to implement

- **Cons:**
 - Only infers conjunctions of predicates in the candidate set
 - No guarantee that the inferred invariants are useful for verifying property

Motivation for Being Property-Directed

- Houdini does not leverage the property we are trying to prove
- But the property we are trying to prove gives strong hints about what invariants are useful!

```c
while (i<j) {...}
assert(i>=100)
```

▶ From loop condition, we have \(i \geq j \) after the loop
▶ Want invariant that is strong enough to prove assertion
▶ Formulate this as an abduction problem:

 \[
 \begin{align*}
 &1. \quad i \geq j \land ? = i \geq 100 \\
 &2. \quad SAT(i \geq j \land ?)
 \end{align*}
 \]
▶ Condition (2) says our guess is non-trivial (i.e., doesn’t make assertion unreachable)
▶ \(j \geq 100 \) is a solution; so is \(i \geq 100 \) – not unique!

Abductive Reasoning

- Making educated guesses that support some observation is known as abductive reasoning
- Given known facts \(\Gamma \) and desired outcome \(\phi \), abductive inference finds "simple" explanatory hypothesis \(\psi \) such that:
 1. \(\Gamma \land \psi \models \phi \) (i.e., explains conclusion)
 2. \(SAT(\Gamma \land \psi) \) (i.e., it’s consistent with known facts)
- In our case, the "desired outcome" is the property we are trying to prove
- “Known facts” can come from different sources – e.g., pre-condition, proven invariants, ...

Desirable Properties

- An abductive reasoning problem has many solutions – what makes a "good" solution?
- **Occam’s razor principle**: Want simplest explanation
- Many ways to define “simple”, but one option:
 - Uses few variables (intuition: parsimonious invariants)
 - Logically weakest – the weaker the explanation, the less assumptions it makes
Quantifier Elimination

- In some first-order theories, we can automate abduction using quantifier elimination (QE).
- Given a quantified formula φ, quantifier elimination yields a quantifier-free formula φ' such that $\varphi \leftrightarrow \varphi'$.
- Example theories that admit quantifier elimination:
 - Linear rational arithmetic
 - Linear integer arithmetic (extended with mod operator)

Automating Abduction via Quantifier Elimination

- Suppose we have premises φ and conclusion χ, and we want a hypothesis containing only variables V.
- Then, the logically weakest quantifier-free explanation over variables V is given by:
 $$\psi \equiv QE(\forall V. \varphi \rightarrow \chi)$$
- Why is this a solution?
 - First, observe: $\varphi \land (\varphi \rightarrow \chi) \models \chi$.
 - Second, we have $\psi \Rightarrow (\varphi \rightarrow \chi)$.
 - Thus, $\varphi \land \psi \models \chi$.

Back to Example

```plaintext
while(i<j) {...}
assert(i>=100)
```

- Our abduction problem:
 1. $i \geq j \land ? \models i \geq 100$
 2. SAT($i \geq j \land ?$)
- Suppose we want solution containing just variable j:
 $$QE(\forall i. (i \geq j \rightarrow i \geq 100))$$
 $$\equiv j \geq 100$$

Can Do Even Better!

- This approach has some advantages, but it still suffers from one shortcoming of the Houdini algorithm.
- Houdini can discard true loop invariants if they are not inductive.
- Idea: Use abduction to strengthen loop invariants to make them inductive.

Motivating Example

- Using abduction, we can generate $j \geq 100$ as a candidate invariant.
- But since it’s not inductive (why?), Houdini will reject it.
- But now we can use abduction to figure out how to strengthen it!
 $$i < j \land j \geq 100 \land ? \Rightarrow wp(Body, j \geq 100)$$
- Solution: $i \geq 0$.
- New candidate invariant is now $j \geq 100 \land i \geq 0$, which is inductive.
The Full Algorithm

Comparison with Houdini

Similarities:
- Also guess-and-check approach
- Uses verifier to check correctness of annotations

Differences:
- Property-directed; guesses generated using abduction
- Generates new candidate invariants on-line rather than statically up-front
- Does not have termination guarantees
 - But can bound number of strengthening steps