CS389L: Problem Set 7

- 1. Recall that the Nelson-Oppen method requires the theories to be combined to be *stably infinite*. Give an example to demonstrate why this restriction is necessary. Specifically, give two theories T_1, T_2 , and a $(T_1 \cup T_2)$ formula F such that F is unsatisfiable but we would conclude otherwise using the Nelson-Oppen method.
- 2. Consider the following formula F in $T_{=} \cup T_{\mathbb{Z}}$:

$$g(f(x-2)) = x + 2 \land g(f(y)) = y - 2 \land y = x - 2$$

- (a) Purify F by writing it as an equisatisfiable formula of the form $F_1 \wedge F_2$ such that F_1 is in $T_{=}$ and F_2 is in $T_{\mathbb{Z}}$.
- (b) Decide the satisfiability of F using the Nelson-Oppen method.
- 3. Recall that the DPLL(T) framework invokes the solver for theory T to learn conflict clauses and theory propagation lemmas. In this question, we will explore the inference of theory propagation lemmas.
 - (a) Let D_T be a decision procedure for a conjunction of Σ_T literals. Describe how one can perform exhaustive theory propagation for T without modifying the decision procedure D_T . (Note: exhaustive means that we want to infer all theory propagation lemmas.)
 - (b) Suppose T is the theory of equality with interpreted functions. Explain how we can infer theory propagation lemmas for this theory after running the congruence closure algorithm on the current partial assignment.
- 4. Consider the following program S:

```
y := 0; i:=0;
while(i<n) {
   t := 2i+1; y := y+t; i := i+1;
}
```

Our goal in this problem is to prove the correctness of the Hoare triple $\{n>0\}$ S $\{y=n\times n\}$

- (a) State an inductive loop invariant I that is sufficient to prove the correctness of the above Hoare triple.
- (b) Compute the weakest precondition of I (from part (a)) with respect to the loop body B.
- (c) Show all VCs that are generated for proving the Hoare triple $\{n > 0\}$ S $\{y = n \times n\}$ using invariant I from part (a).
- 5. Prove the correctness of the following derived proof rule for loops:

$$\frac{P \Rightarrow I \quad \vdash \{I \land C\}S\{I\} \quad I \land \neg C \Rightarrow Q}{\vdash \{P\} \text{ while}(C) \text{ do } S \{Q\}}$$