Overview

- **Last lecture**: Learned about DPLL(T) framework to solve SMT formulas
- However, in some applications, solving formula is not enough; also need to find compact representation
- Already saw one example of this idea in propositional logic: binary decision diagrams (BDDs)
- **This lecture**: How to simplify SMT formulas

Static Program Analysis and SMT

- Heavy user of SMT formulas: static analysis and verification systems
- Static analysis proves properties about programs by analyzing source code (i.e., does not execute program)
- Many static analysis techniques use SMT formulas to symbolically represent program states
- Deciding whether a program property holds is achieved by checking satisfiability/validity of SMT formulas
- SMT formulas generated by static analysis are very large but typically extremely redundant ⇒ scalability problems

Motivating Example

```c
enum op_type ADD=0, SUBTRACT=1, MULTIPLY=2, DIV=3;
int perform_op(op_type op, int x, int y) {
    int res;
    if(op == ADD) res = x+y;
    else if(op == SUBTRACT) res = x-y;
    else if(op == MULTIPLY) res = x*y;
    else if(op == DIV) assert(y!=0); res = x/y;
    else res = UNDEFINED;
    return res;
}
```

Condition for Success

$$\begin{align*}
 op &= 0 \lor (op \neq 0 \land op = 1) \lor (op \neq 0 \land op \neq 1 \land op \neq 2) \lor \\
 & (op \neq 0 \land op \neq 1 \land op \neq 2 \land op = 3 \land y \neq 0) \lor \\
 & (op \neq 0 \land op \neq 1 \land op \neq 2 \land op \neq 3)
\end{align*}$$

Take-Away Message

- If we automatically generate constraints from source code, resulting formulas are huge, but very redundant
- To allow analyses to run on large software, necessary to keep size of formulas under control
- Thus, want to find compact representation of SMT formulas called simplified form
- Simplified form of formula F should be equivalent to F and should not contain redundancies
- Furthermore, unlike BDDs, simplified form should not cause blow-up in formula size (in fact, should never be larger!)

Simplified Form

- **Goal**: To give algorithm to convert each SMT formula F to a simplified form F' with following guarantees:
 1. F' logically equivalent to F (i.e., $F' \iff F$)
 2. F' not redundant
 3. size of F' ≤ size of F
- Our algorithm will deal with qff formulas over any decidable first-order theory and that are in NNF
- First, need to be precise about what we mean by redundancy and size of formula
Atomic Formula vs. Leaf

- An atomic formula is a formula without \land, \lor
- Each syntactic occurrence of an atomic formula is called leaf
- How many leaves does this formula have? 3
 \[\neg f(x) = 1 \lor (\neg f(x) = 1 \land x + y \leq 1)\]
- Leaves:
 \[\neg f(x) = 1 \lor (\neg f(x) = 1 \land x + y \leq 1)\]
- Size of formula ϕ is number of leaves ϕ contains

Properties of ϕ^+ and ϕ^-

- What is the relationship between the size of $\phi^+(L)$ and ϕ?
 \[\text{size}(\phi^+(L)) < \text{size}(\phi)\]
- Similarly, $\text{size}(\phi^-(L)) < \text{size}(\phi)$
- $\phi^+(L)$ overapproximates ϕ because $\phi \Rightarrow \phi^+(L)$
- Similarly, $\phi^-(L)$ underapproximates ϕ because $\phi^-(L) \Rightarrow \phi$

Redundancy of Leaves

- If $\phi^+(L) \Rightarrow \phi$, then leaf L is called non-constraining
- Thus, if L is non-constraining, we have $\phi^+(L) \Leftrightarrow \phi$
- In this case, L does not “constrain” the formula – can replace it with \top to get equivalent formula
- If $\phi \Rightarrow \phi^-(L)$, then leaf L is called non-relaxing
- Hence, if L is non-relaxing, we have $\phi^-(L) \Leftrightarrow \phi$
- A leaf L is redundant if it is either non-constraining or non-relaxing
- Such a leaf is redundant because can be replaced with \top or \bot to obtain smaller, but equivalent formula

Example

- Consider again formula ϕ:
 \[\phi : \neg f(x) = 1 \lor (\neg f(x) = 1 \land x + y \leq 1)\]
- Is L_1 redundant? no
- Is L_2 redundant? yes because non-relaxing
- Is L_3 redundant? yes, both non-constraining and non-relaxing
Properties of Simplified Form

- A formula in simplified form is **satisfiable** iff it is not syntactically false.
- **Proof:** Suppose this is not true (i.e., formula unsat, but simplified form not false).
- Now consider replacing every leaf by \bot. Resulting formula: \bot
- Since formula is unsat, resulting formula \bot equivalent to original formula
- Thus, formula could not have been in simplified form.

Properties of Simplified Form, cont

- A formula in simplified form is **valid** iff it is syntactically true.
- Thus, if formulas are kept in simplified form, deciding satisfiability and validity just a syntactic check
- **Recall:** A representation is called **canonical** if two equivalent formulas have same representation
- Is simplified form a canonical representation? **No**
- Formulas $a \land (b \lor c)$ and $(a \land b) \lor (a \land c)$ are equivalent and both in simplified form, but not syntactically identical
- Thus, if we keep formulas in simplified form, checking equivalence is not a syntactic test

Simple Algorithm to Compute Simplified Forms

- Definition of simplified form suggests very simple algorithm:
 1. Pick any leaf L in formula ϕ
 2. Compute $\phi^+(L)$ by replacing L with \top
 3. Test if $\phi^+(L) \Rightarrow \phi$ If so, $\phi := \phi[\top/L]$
 4. Otherwise, compute $\phi^-(L)$
 5. Test if $\phi \Rightarrow \phi^-(L)$ If so, $\phi := \phi[\bot/L]$
 6. Repeat until no leaf can be replaced

Discussion of Simple Algorithm

- Algorithm requires checking $\phi^+(L) \Rightarrow \phi$ and $\phi^-(L) \Rightarrow \phi$
- What is the size of formula $\phi^+(L) \Rightarrow \phi$? **twice as large as ϕ**
- Thus, algorithm requires repeatedly checking validity of formulas twice as large as original formula
- But actually we can do much better!
- **Idea:** Can determine if leaf is redundant by querying validity of formula **no larger than ϕ**
- **Key concept:** critical constraint

Critical Constraint

- For each leaf L, compute critical constraint $C(L)$
- Critical constraint has following properties:
 1. $C(L)$ is never larger than original formula
 2. L is non-constraining iff $C(L) \Rightarrow L$
 3. L is non-relaxing iff $C(L) \Rightarrow \neg L$

Computing Critical Constraint

- To compute critical constraint for each leaf, (conceptually) represent formula as tree
- For instance, consider formula:

 $$x = y \land (f(x) = 1 \lor (f(y) = 1 \lor x + y \leq 1))$$

 - Represent formula as tree:

 ![Tree Diagram](https://via.placeholder.com/150)

 - L_1 represents $x = y$
 - L_2 represents $(f(x) = 1 \lor (f(y) = 1 \lor x + y \leq 1))$
Computing Critical Constraint, cont

- Compute critical constraint for each tree node
- Do this top-down
- Start with root node
- Recursively compute critical constraint for each node using critical constraint for parent
- Base case: Initialize critical constraint of root to true

Inductive case: Let N be any non-root node.
- N has parent P with critical constraint $C(P)$
- N has sibling S with formula rooted at S being F_S
- There are two cases to consider:
 1. If P is an \land node, then:
 \[C(N) = C(P) \land F_S \]
 2. If P is an \lor node, then:
 \[C(N) = C(P) \land \neg F_S \]

Critical Constraint Example

Consider again the formula $x = y \land (f(x) = 1 \lor (f(y) = 1 \land x + y \leq 1))$

Using Critical Constraint to Check Redundancy

- Recall: Can use critical constraint to check redundancy of leaf
- Leaf L is non-constraining iff $C(L) \Rightarrow L$
- Leaf L is non-relaxing iff $C(L) \Rightarrow \neg L$
- Thus, if $C(L) \Rightarrow L$, we get smaller, equivalent formula when we replace L with boolean constant \top
- If $C(L) \Rightarrow \neg L$, we get smaller, equivalent formula when we replace L with boolean constant \bot

Example

Does $C(L_0)$ imply L_0 or $\neg L_0$? no, so L_0 not redundant
Does $C(L_1)$ imply L_1 or $\neg L_1$? no, so L_1 not redundant
Does $C(L_2)$ imply L_2 or $\neg L_2$? implies $\neg L_2$, so L_2 non-relaxing
Does $C(L_3)$ imply L_3 or $\neg L_3$? implies both, so L_3 non-constraining and non-relaxing

Putting it All Together

We want an algorithm to convert any formula ϕ in NNF to simplified form
To do this, represent ϕ as tree and formulate auxiliary algorithm simplify(N, C)
First arg. of simplify is subformula represented by tree node N
Second argument C is critical constraint of N
The output of simplify(N, C) is a new tree representing simplified form of subformula rooted at N
Putting It All Together, cont.

- If we have such an auxiliary algorithm `simplify(N, C)`, how do we compute simplified form of \(\phi \)?
- Represent \(\phi \) as tree with root \(R \) and call \(\text{simplify}(R, \text{true}) \)
- Suppose this yields new tree rooted at \(R' \).
- Simplified form of \(\phi \) is simply \(R' \) represented as formula
- Thus, if we have auxiliary algorithm \(\text{simplify}(\text{N}, \text{C}) \), this immediately gives way to simplify any formula \(\phi \) in NNF

Example

- Simplify children of topmost \(\land \)
- \(L_0 \) leaf, but stays the same
- To simplify \(\lor \) node, need to simplify children
- \(L_1 \) leaf, but stays unchanged
- To simplify bottom \(\land \) node, need to simplify \(L_2, L_3 \)
- For \(L_2, C(L_2) \Rightarrow \neg L_2 \), thus replace with: false

Example, cont

- Now, since child of \(\lor \) node changed, re-simplify \(L_1 \)
- New critical constraint: \(x = y \)
- Does \(L_1 \) change? no
- Result of simplify \(\lor \) node: \(f(x) = 1 \)

Full Algorithm

/*
* Recursive algorithm to compute simplified form.
* \(N \): current subformula, \(C \): critical constraint of \(N \)
*/

\[\text{simplify}(N, C) \]

- Inductive case 1: If \(N \) is an \(\land \) node with children \(N_1, N_2 \):
 - \(N'_1 = \text{simplify}(N_1, C \land N_2) \)
 - \(N'_2 = \text{simplify}(N_2, C \land N'_1) \)
 - \(N_1 := N'_1; N_2 := N'_2; \) repeat until \(N'_1 = N_1 \) and \(N'_2 = N_2 \)
 - If \(N'_1 \) or \(N'_2 \) is false, return false
 - Else if \(N'_1 \) and \(N'_2 \) is true, return true
 - Else return new subtree with root \(\land \) and children \(N'_1 \) and \(N'_2 \)

- Inductive case 2: If \(N \) is an \(\lor \) node with children \(N_1, N_2 \):
 - \(N'_1 = \text{simplify}(N_1, C \land \neg N_2) \)
 - \(N'_2 = \text{simplify}(N_2, C \land \neg N'_1) \)
 - \(N_1 := N'_1; N_2 := N'_2; \) repeat until \(N'_1 = N_1 \) and \(N'_2 = N_2 \)
 - If \(N'_1 \) or \(N'_2 \) is true, return true
 - Else if \(N'_1 \) and \(N'_2 \) is false, return false
 - Else return new subtree with root \(\lor \) and children \(N'_1 \) and \(N'_2 \)

- Otherwise, return \(N \)
Discussion of Algorithm, cont.

- In simplify algorithm, we resimplify children of connectives if any of the siblings change. Why is this necessary?

- Because critical constraint changes, so it might expose new simplification opportunities

- Example: $x \neq 1 \land (x \leq 0 \lor x > 2 \lor x = 1)$

- Critical constraint for L_1: $x \leq 0 \lor x > 2 \lor x = 1$

- Does it imply L_1 or $\neg L_1$? no

- So, initially can’t eliminate L_1

Optimization

- Specifically, all formulas whose validity are queried have same set of leaves

- How can we use this to our advantage?

- Recall: When solving SMT formulas in DPLL(T) framework, we learn theory conflict clauses

- Theory conflict clauses are valid modulo T and prevent wrong assignments to boolean structure

- Since our formulas have same set of leaves, a theory conflict clause we learned during previous validity query will be useful for next query!

Benefit of Simplification

- If simplifying formula more expensive than solving, why bother simplifying?

- Recall: Motivation for simplification is applications that incrementally build formulas from existing formulas, such as program analysis

- In these kinds of applications, redundancies accumulate as formula is built from existing formulas

- Goal of simplification: Prevent accumulation of redundancies so that formulas at every step are manageable in size

- Thus, to evaluate benefit of simplification, need to compare running times of applications that only solve vs. simplify
Benefit of Simplification in Static Analysis

- We evaluated benefit of simplification in the context of static analysis.
- Used a static analysis tool, Compass, that incrementally builds formulas from existing formulas.
- Ran Compass on 811 benchmarks, totaling 173,000 LOC to verify memory safety.
- Compared running time of analysis runs that use simplification with runs that do not.
- In former case, every time analysis queries satisfiability of formula, we simplify formula and give back this simplified form.
- In latter case, just give yes/no answer.

Impact on Running Time of Static Analysis Tool

![Impact on Running Time of Static Analysis Tool](image)

Summary

- In applications that incrementally build formulas, simplification might be very beneficial.
- Looked at one application of simplified forms: static analysis.
- Haven’t applied this idea to other domains, but could have other interesting applications.
- How does simplified form compare with BDDs?
- Guaranteed not to cause increase in formula size (often desirable).
- But it’s not a canonical representation, so equivalence checking is not syntactic.