Motivation

- Last few lectures: Full first-order logic
- In FOL, functions/predicates are uninterpreted (i.e., structure can assign any meaning)
- But in many cases, we have a particular meaning in mind (e.g., $=, \leq$ etc.)
- First-order theories allow us to give meaning to the symbols used in a first-order language

Signatures and Axioms of First-Order Theory

- A first-order theory T consists of:
 1. Signature Σ_T: set of constant, function, and predicate symbols
 2. Axioms A_T: A set of FOL sentences over Σ_T

- Σ_T formula: Formula constructed from symbols of Σ_T and variables, logical connectives, and quantifiers.

- Example: We could have a theory of heights T_H with signature $\Sigma_H : \{\text{taller}\}$ and axiom:
 $\forall x, y. \ (\text{taller}(x, y) \rightarrow \neg \text{taller}(y, x))$
 - Is $\exists x. \forall z. \text{taller}(x, z) \land \text{taller}(y, w)$ legal Σ_H formula? Yes
 - What about $\exists x. \forall z. \text{taller}(x, z) \land \text{taller}(\text{joe}, \text{tom})$? No

Models of T

- A structure $M = (U, I)$ is a model of theory T, or T-model, if $M \models A$ for every $A \in A_T$.

- Example: Consider structure consisting of universe $U = \{A, B\}$ and interpretation $I(\text{taller}) : \{(A, A), (B, B)\}$
 - Is this a model of T? No
 - Now, consider same U and interpretation $\{(A, B)\}$. Is this a model? Yes

 Suppose our theory had another axiom:
 $\forall z, y, z. \ (\text{taller}(x, y) \land \text{taller}(y, z) \rightarrow \text{taller}(x, z))$

 Consider $I(\text{taller}) : \{(A, B), (B, C)\}$. Is (U, I) a model? No

Axioms of First-Order Theory

- The axioms A_T provide the meaning of symbols in Σ_T.
- Specifically, axioms ensure that some interpretations legal in standard FOL are not legal in T

 Example: Consider relation constant taller, and $U = \{A, B, C\}$
 - In FOL, possible interpretation: $I(\text{taller}) : \{(A, B), (B, A)\}$
 - In our theory of heights, this interpretation is not legal b/c does not satisfy axioms

Satisfiability and Validity Modulo T

- Formula F is satisfiable modulo T if there exists a T-model M and variable assignment σ such that $M, \sigma \models F$
- Formula F is valid modulo T if for all T-models M and variable assignments $\sigma, M, \sigma \models F$

 Question: How is validity modulo T different from FOL-validity?
 - Answer: Disregards all structures that do not satisfy theory axioms.

 If a formula F is valid modulo theory T, we will write $T \models F$.
 - Theory T consists of all sentences that are valid in T.

Overview of the Theory of Equality T_e

- Extends first-order logic with a “built-in” equality predicate $=$
- Signature:
 \[
 \Sigma_e = \{=, a, b, c, \ldots, f, g, h, \ldots, p, q, r, \ldots\}
 \]
 - $=$, a binary predicate, interpreted by axioms.
 - all constant, function, and predicate symbols.

Questions

Consider some first order theory T:

- If a formula is valid in FOL, is it also valid modulo T? Yes
- If a formula is valid modulo T, is it also valid in FOL? No
- Counterexample: This formula is valid in “theory of heights”:
 \[
 \neg \text{taller}(x, x)
 \]

Completeness of Theory

- A theory T is complete if for every sentence F, if T entails F or its negation:
 \[
 T \models F \text{ or } T \models \neg F
 \]
- Question: In first-order logic, for every closed formula F, is either F or $\neg F$ valid?
- Answer: No! Consider $p(a)$: Neither $p(a)$ nor $\neg p(a)$ is valid.

Equivalence Modulo T

- Two formulas F_1 and F_2 are equivalent modulo theory T if for every T-model M and for every variable assignment σ:
 \[
 M, \sigma \models F_1 \iff M, \sigma \models F_2
 \]
- Another way of stating equivalence of F_1 and F_2 modulo T:
 \[
 T \models F_1 \leftrightarrow F_2
 \]
- Example: Consider a theory T_heights with predicate symbol $=$ and suppose Ar gives the intended meaning of equality to $=$. Are $x = y$ and $y = z$ equivalent modulo T_heights? Yes
- Are they equivalent according to FOL semantics? No

The Plan

- Remainder of this lecture: Introduction to commonly-used first-order theories:
 1. Theory of equality
 2. Peano Arithmetic
 3. Presburger Arithmetic
 4. Theory of Rationals
 5. Theory of Arrays
- In the following lectures, we will further explore these theories and look at decision procedures.

Axioms of the Theory of Equality

- Axioms of T_e define the meaning of equality predicate $=$
- Equality is reflexive, symmetric, and transitive:
 1. $\forall x. x = x$ (reflexivity)
 2. $\forall x, y. (x = y \implies y = x)$ (symmetry)
 3. $\forall x, y, z. (x = y \land y = z \implies x = z)$ (transitivity)
Example

- Consider universe $U = \{\circ, \bullet\}$.
- Which interpretations of $=$ are allowed according to axioms?
 - $I(=) = \{(\circ, \bullet), (\bullet, \circ)\}$?
 - $I(=) = \{(\circ, \circ), (\bullet, \bullet)\}$?
 - $I(=) = \{(\circ, \bullet), (\bullet, \bullet), (\bullet, \circ)\}$?

Axioms of the Theory of Equality, cont.

- Function congruence:
 For any n-ary function f, two terms $f(\vec{x})$ and $f(\vec{y})$ are equal if \vec{x} and \vec{y} are equal:
 \[
 \forall x_1, \ldots, x_n, \forall y_1, \ldots, y_n, \forall_i x_i = y_i \rightarrow f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n)
 \]

- Predicate congruence:
 For any n-ary predicate p, two formulas $p(\vec{x})$ and $p(\vec{y})$ are equivalent if \vec{x} and \vec{y} are equal:
 \[
 \forall x_1, \ldots, x_n, \forall y_1, \ldots, y_n, \forall_i x_i = y_i \rightarrow (p(x_1, \ldots, x_n) \leftrightarrow p(y_1, \ldots, y_n))
 \]

Congruence and Axiom Schemata

- Function/predicate congruence "axioms" stand for a set of axioms, instantiated for each function and predicate symbol.
- Thus, these are not really axioms, but axiom schemata.
- Example: For unary functions g and h, function congruence axiom scheme stands for two axioms:
 1. $\forall x, y. (x = y \rightarrow g(x) = g(y))$
 2. $\forall x, y. (x = y \rightarrow h(x) = h(y))$

Example

- Consider universe $\{\circ, \bullet, \star\}$, and
 \[
 I(=) : \{\langle \circ, \circ \rangle, \langle \circ, \bullet \rangle, \langle \bullet, \bullet \rangle, \langle \bullet, \circ \rangle, \langle \star, \star \rangle\}
 \]
- Are the following valid interpretations?
 - $I(f) = \{\circ \mapsto \circ, \circ \mapsto \bullet, \bullet \mapsto \star\}$
 - $I(f) = \{\bullet \mapsto \bullet, \circ \mapsto \bullet, \bullet \mapsto \star\}$
 - $I(f) = \{\circ \mapsto \circ, \circ \mapsto \bullet, \bullet \mapsto \star\}$

Proving Validity in $T_=$ using Semantic Arguments

- Semantic argument method can be used to prove $T_=$ validity.
- In addition to proof rules for FOL, our proof can also use axioms of $T_=$.
- As before, if we derive contradiction in every branch, formula is valid modulo $T_=$.

Example

Prove
\[
F : a = b \land b = c \rightarrow g(f(a), b) = g(f(c), a)
\]
$T_=$-valid.

1. $M, \sigma \notin F$ assumption
2. $M, \sigma \models a = b \land b = c$ 1. \rightarrow
3. $M, \sigma \not\models g(f(a), b) = g(f(c), a)$ 2. \land
4. $M, \sigma \models a = b$ 2. \land
5. $M, \sigma \models b = c$ 4. 5. (transitivity)
6. $M, \sigma \models a = c$ 6. (congruence)
7. $M, \sigma \models f(a) = f(c)$ 6. (symmetry)
8. $M, \sigma \models b = a$ 6. (congruence)
9. $M, \sigma \models g(f(a), b) = g(f(c), a)$ 7. 8. (congruence)
10. $M, \sigma \models \perp$ 3, 9
Decidability and Completeness Results for $T=\equiv$

- Is the full theory of equality decidable?
 - No, because it is an extension of FOL
- However, quantifier-free fragment of $T=\equiv$ is decidable but NP-complete
- Is $T=\equiv$ complete? (i.e., for any F, $T=\equiv F$ or $T=\equiv \neg F$?)

Theories Involving Natural Numbers and Integers

- There are three major logical first-order theories involving natural numbers and arithmetic.
- **Peano arithmetic**: Allows multiplication and addition over natural numbers
- **Presburger arithmetic**: Allows only addition over natural numbers
- **Theory of integers**: Equivalent in expressiveness to Presburger arithmetic, but more convenient notation

Peano Arithmetic Signature

- The theory of Peano arithmetic T_{PA} has signature:
 \[\Sigma_{PA} : \{0, 1, +, \cdot, =\} \]
- $0, 1$ are constants
- $+, \cdot$ binary functions
- $=$ is a binary predicate

Peano Arithmetic Examples

- Question: Is the following a well-formed formula in T_{PA}?
 \[x + y = 1 \lor f(x) = 1 + 1 \]
- What about $\forall x. \exists y. \exists z. x + y = 1 \lor z \cdot x = 1 + 17$?
- What about $2x = y$?
- But can be rewritten to equivalent T_{PA} formula:
 \[(1 + 1) \cdot x = y \]

The Axioms

- Includes equality axioms, reflexivity, symmetry, and transitivity
- In addition, axioms to give meaning to remaining symbols:
 1. $\forall x. \neg(x + 1 = 0)$: 0 minimal element of \mathbb{N} (zero)
 2. $\forall x. x + 0 = x$: 0 identity for addition (plus zero)
 3. $\forall x, y. x + 1 = y + 1 \rightarrow x = y$ (successor)
 4. $\forall x, y. x + (y + 1) = (x + y) + 1$ (plus successor)
 5. $\forall x. x \cdot 0 = 0$ (times zero)
 6. $\forall x, y. x \cdot (y + 1) = x \cdot y + x$ (times successor)

Last Axiom

- One last axiom schema for induction:
 \[(F[0] \land (\forall x. F[x] \rightarrow F[x + 1])) \rightarrow \forall x. F[x] \]
- States that any valid interpretation must obey induction
Inequalities and Peano Arithmetic

- The theory of Peano arithmetic doesn’t have inequality symbols $<, \leq, <, \geq$
- But all of these are expressible in T_{PA}
- Example: How can we express $x \cdot y \geq z$ in T_{PA}?
- Example: How can we express $x \cdot y < z$ in T_{PA}?

Presburger Arithmetic

- The theory of Presburger arithmetic T_{N} has signature:
 $\Sigma_{N} : \{0, 1, +, =\}$
- Axioms define meaning of symbols:
 1. $\forall x. (x + 1 = 0)$ (zero)
 2. $\forall x. x + 0 = x$ (plus zero)
 3. $\forall x, y. x + 1 = y + 1 \rightarrow x = y$ (successor)
 4. $\forall x, y. x + (y + 1) = (x + y) + 1$ (plus successor)
 5. $F[0] \land (\forall z. F[z] \rightarrow F[z + 1]) \rightarrow \forall z. F[z]$ (induction)

Decidability and Completeness Results for Peano Arithmetic

- Validity in full T_{PA} is undecidable. (Gödel)
- Validity in even the quantifier-free fragment of T_{PA} is undecidable. (Matiyasevitch, 1970)
- T_{PA} is also incomplete. (Gödel)
- Implication of this: There are valid propositions of number theory that are not valid according to T_{PA}
- To get decidability and completeness, we need to drop multiplication!

Decidability and Completeness Results for Presburger Arithmetic

- Validity in quantifier-free fragment of Presburger arithmetic is decidable (coNP-complete).
- Validity in full Presburger arithmetic is also decidable (Presburger, 1929)
- But super exponential complexity: $O(2^n)$
- Presburger arithmetic is also complete: For any sentence F, $T_{N} \models F$ or $T_{N} \models \neg F$
- Admits quantifier elimination: For any formula F in T_{N}, there exists an equivalent quantifier-free formula F'.

Theory of Integers T_{Z}

- Signature:
 $\Sigma_{Z} : \{\ldots, -2, -1, 0, 1, 2, \ldots, -3, -2, 2, 3, \ldots, +, -, =, \geq\}$
- Also referred to as the theory of linear arithmetic over integers
- Equivalent in expressiveness to Presburger arithmetic (i.e., every T_{Z} can be encoded as a formula in Presburger arithmetic)

Theory of Rationals

- So far, looked at theories involving arithmetic over integers
- Next: the theory of rationals T_{Q}, which is much more efficiently decidable
- Defined by signature:
 $\Sigma_{Q} : \{0, 1, +, -, =, \geq\}$
- Signature does not allow strict inequality, but easy to express:
 $\forall x, y. \exists z. x + y > z \Rightarrow \forall x, y. \exists z. -(x + y = z) \land x + y \geq z$
Distinction between Theory of Rationals and Presburger Arithmetic

- T_Q has too many axioms, so we won’t discuss them
- Distinction between T_Z and T_Q: Rational numbers do not satisfy T_Z axioms, but they satisfy T_Q axioms
- Example: $\exists x. (1 + 1)x = 1 + 1 + 1$ Is this formula valid in T_Q?
- Is it valid in T_Z?
- In general, every formula valid in T_Z is valid in T_Q, but not vice versa

Theories about Data Structures

- So far, we only considered first-order theories involving numbers and arithmetic
- There are also theories that formalize data structures used in programming
- We’ll look at one example: theory of arrays
- Commonly used in software verification

Axioms of T_A

- To define “intended semantics of array read and write”, we need to provide axioms of T_A.
- Axioms of T_A include reflexivity, symmetry, and transitivity
 - In addition, they include axioms unique to arrays:
 1. $\forall a, i, j. i = j \rightarrow a[i] = a[j]$ (array congruence)
 2. $\forall a, v, i, j. i = j \rightarrow a[i \triangleright v][j] = v$ (read-over-write 1)
 3. $\forall a, v, i, j. i \neq j \rightarrow a[i \triangleright v][j] = a[j]$ (read-over-write 2)

Example Formulas in Theory of Arrays

- Example: $(a(2 \triangleleft 5))[2] = 5$
- Says: “The value stored at position 2 of an array to whose second position we wrote the value 5 is 5”
- Example: $(a(2 \triangleleft 5))[2] = 3$
- Says: “The value stored at position 2 of an array to whose second position we wrote the value 5 is 3”
- According to the usual semantics of array read and write, is the first formula valid/satisfiable/unsat?
- What about second formula?

Decidability and Complexity Results for T_Q

- Full theory of rationals is decidable, but doubly exponential
- Conjunctive quantifier-free fragment efficiently decidable (polynomial time)

Theory of Arrays

Signature

$\Sigma: \{\cdot[\cdot], \cdot⟨\cdot,\cdot⟩, =\}$

where

- $a[i]$ binary function – read array a at index i (“read(a, i)”)
- $a(i \triangleleft v)$ ternary function – write value v to index i of array a (“write(a, i, v)”)
- $a(i \triangleleft v)$ represents the resulting array after writing value v at index i
Example

- Is the following T_A formula valid?

 \[F : a[i] = e \rightarrow (\forall j. a(i \triangleleft e)[j] = a[j]) \]

- For any $j = i$, old value of j was already e, so its value didn’t change.

- Let’s prove its validity using the semantic argument method.

- Assume there exists a model M and variable assignment σ that does not satisfy F and derive contradiction.

Decidability Results for T_A

- The full theory of arrays is not decidable.

- The quantifier-free fragment of T_A is decidable.

- Unfortunately, the quantifier-free fragment is not sufficiently expressive in many contexts.

- Thus, people have studied other richer fragments that are still decidable.

- Example: array property fragment (disallows nested arrays, restrictions on where quantified variables can occur).

Combined Theories

- Given two theories T_1 and T_2 that have the $=$ predicate, we define a combined theory $T_1 \cup T_2$.

 - Signature of $T_1 \cup T_2$: $\Sigma_1 \cup \Sigma_2$

 - Axioms of $T_1 \cup T_2$: $A_1 \cup A_2$

- Is this a well-formed $T_{1 \cup 2}$ formula?

 \[1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2) \]

- Is this formula satisfiable according to axioms $A_2 \cup A_4$?

Decision Procedures for Combined Theories

- Given decision procedures for individual theories T_1 and T_2, can we decide satisfiability of formulas in $T_1 \cup T_2$?

 - In the early 80s, Nelson and Oppen showed this is possible.

 - Specifically, if

 1. quantifier-free fragment of T_1 is decidable

 2. quantifier-free fragment of T_2 is decidable

 3. and T_1 and T_2 meet certain technical requirements

 then quantifier-free fragment of $T_1 \cup T_2$ is also decidable.

 Also, given decision procedures for T_1 and T_2, Nelson and Oppen’s technique allows deciding satisfiability $T_1 \cup T_2$.

Combination of Theories

- So far, we only talked about individual first-order theories.

- Examples: $T_\text{=}$, T_{PA}, T_{Z}, T_{A},

- But in many applications, we need combined reasoning about several of these theories.

- Example: The formula $f(x) + 3 = y$ isn’t a well-formed formula in any individual theory, but belongs to combined theory $T_2 \cup T_\text{=}$.
Plan for Next Few Lectures

- We’ll talk about decision procedures for some interesting first
 order-theories

- **Next lecture:** Quantifier-free theory of equality

- **Later:** Theory of rationals, Presburger arithmetic

- Initially, we’ll only focus on decision procedures for formulas
 without disjunctions

- Ok because we can always convert to DNF to deal with
 disjunctions – just not very efficient!

- Later in the course, we’ll see about how to handle disjunctions
 much more efficiently