Phase 2 review

- Identify a variable x that increases the value of the objective function.
- Identify an equality $y = \ldots$ that most severely restricts how much x can be increased.
-Swap x and y: make x a basic variable.
- Keep repeating this until:
 - Objective value cannot be increased.
 - It can be increased by increasing x, but there is no bound on how much x can increase.

Overview of Phase I

- Phase 0: Express the linear program in slack form.
- Phase I: Compute a feasible basic solution, if one exists.
- Phase II: Optimize the value of the objective function.

Constructing the Auxiliary Linear Program

Consider the original LP problem:

Maximize $\sum_{j=1}^{n} c_j x_j$
Subject to:

$\sum_{j=1}^{n} a_{ij} x_j \leq b_i \quad (i \in [1, m])$
$x_j \geq 0 \quad (j \in [0, n])$

This problem is feasible if and only if the optimal value for L_{aux} is zero.

\[\text{Maximize} \quad -x_0 \]
\[\text{Subject to:} \]

$\sum_{j=1}^{n} a_{ij} x_j - x_0 \leq b_i \quad (i \in [1, m])$
$x_j \geq 0 \quad (j \in [0, n])$

Justification for Auxiliary LP

Maximize $-x_0$
Subject to:

$\sum_{j=1}^{n} a_{ij} x_j - x_0 \leq b_i \quad (i \in [1, m])$
$x_j \geq 0 \quad (j \in [0, n])$

\Rightarrow Suppose x_0 has optimal value 0. Then clearly $a_{ij} x_j \leq b_i$ is satisfied for all inequalities.

$\Leftarrow (a)$ Suppose original problem has feasible solution x^\ast. Then x^\ast
combined with $x_0 = 0$ is feasible solution for L_{aux}.

$\Leftarrow (b)$ Due to the non-negativity constraint, $-x_0$ can be at most 0; thus, this solution is optimal for L_{aux}.
Finding Feasible Basic Solution for L_{aux}

- So far, we argued that original problem L has feasible solution if L_{aux} has optimal value 0.
- But we still need to figure out how to find feasible basic solution to L_{aux}.
- Next: We’ll see how we can find feasible basic solution for L_{aux} after one pivot operation.

Why is This True?

- Suppose this equality has most negative b_i:
 \[x_i = b_i + x_0 - \sum_{j=1}^{n} a_{ij} x_j \]
- Rewrite to make x_0 basic:
 \[x_0 = -b_i - x_i + \sum_{j=1}^{n} a_{ij} x_j \]
- Now, $-b_i$ is positive and greater than all other $|b_j|$'s
- Thus, when we plug in equality for x_0 into other equations, their new constants will be positive
- Hence, we find a feasible basic solution after at most one pivot step

Auxiliary Problem in Slack Form

\[z = -x_0 \]
\[x_i = b_i + x_0 - \sum_{j=1}^{n} a_{ij} x_j \]

- If all b_i's are positive, basic solution already feasible
- If there is at least some negative b_i, find equality x_i with most negative b_i
- Make x_0 new basic variable, and x_i non-basic
- Claim: After this one pivot operation, all b_i's are non-negative; thus basic solution is feasible

Example

- Consider the following linear program from earlier:
 \[
 \begin{align*}
 z &= 2x_1 - x_2 \\
 x_3 &= 2 - 2x_1 + x_2 \\
 x_4 &= -4 - x_1 + 5x_2
 \end{align*}
 \]
- Construct L_{aux}:
 \[
 \begin{align*}
 z &= -x_0 \\
 x_3 &= 2 + x_0 - 2x_1 + x_2 \\
 x_4 &= -4 + x_0 - x_1 + 5x_2
 \end{align*}
 \]
- Which equation has most negative constant?
- Swap x_4 and x_0:
 \[x_0 = 4 + x_4 + x_1 - 5x_2 \]

Example, cont

- After pivoting, we obtain the new slack form:
 \[
 \begin{align*}
 z &= -4 - x_4 - x_1 + 5x_2 \\
 x_3 &= 6 - x_1 - 4x_2 + x_4 \\
 x_0 &= 4 + x_4 + x_1 - 5x_2
 \end{align*}
 \]
- What is current objective value?
- How can we increase it?
- Which equation constrains x_2 the most?
- Swap x_2 and x_0:
 \[x_2 = \frac{4}{5} - \frac{1}{5} x_0 + x_4 + x_1 \]

Example, cont

- After pivoting, new slack form:
 \[
 \begin{align*}
 z &= -x_0 \\
 x_2 &= \frac{4}{5} - \frac{4x_1}{5} + \frac{9x_4}{5} \\
 x_3 &= \frac{1}{5} + \frac{1x_1}{5} - \frac{2x_4}{5} + \frac{9}{5} x_2
 \end{align*}
 \]
- Objective function cannot be increased, so we are done!
- In original problem, objective function was $z = 2x_1 - x_2$
- Since x_3 is now a basic variable, substitute for x_2 with RHS:
 \[z = -4 + \frac{9x_1}{5} - \frac{x_4}{5} \]
- Thus, Phase I returns the following slack form to Phase II:
 \[
 \begin{align*}
 z &= \frac{1}{5} + \frac{1}{5}x_0 - \frac{3}{5} \\
 x_2 &= \frac{4}{5} - \frac{4x_1}{5} + \frac{9}{5} \\
 x_3 &= \frac{1}{5} + \frac{1x_1}{5} - \frac{2x_4}{5} + \frac{9}{5} x_2
 \end{align*}
 \]
Overview of Techniques

- Two different techniques for solving linear integer inequalities
 1. Elimination-based techniques: Omega Test, Cooper’s method
 2. Relaxation-based techniques: Branch-and-bound, Gomory cuts, Cuts-from-Proofs

Problem Description

- As in previous two lectures, we’ll consider T_Z formulas without disjunctions
- **Problem we want to solve**: Given an $m \times n$ matrix A with only integer coefficients and a vector \vec{b} in \mathbb{Z}^n, does

$$A\vec{x} \leq \vec{b}$$

have any integer solutions?
- Integrality requirement actually makes problem much harder
- Finding solution over rationals is poly-time, but integer problem is NP-complete even without disjunctions

Theory of Integers

- Earlier, we talked about the theory of integers T_Z
- **Signature of T_Z**:
 $$\Sigma_Z : \{\ldots, -2, -1, 0, 1, 2, \ldots, -3, -2, 2, 3, \ldots, +, -, =, >\}$$
- This theory also called linear arithmetic over integers
- Since equal in expressive power to Presburger arithmetic, people also refer to it as Presburger arithmetic
- Today and next lecture: Look at algorithms for deciding satisfiability in quantifier-free fragment of T_Z

A Concrete Example

- Consider the set of linear inequalities:

$$
3x + 3y \leq 2 \\
3x + 3y \geq 1
$$

- This problem has rational-valued solutions, e.g., $x = \frac{1}{3}, y = \frac{1}{4}$
- But it doesn’t have integer solutions
- In general, if $A\vec{x} \leq \vec{b}$ has integer solutions, it also has rational solutions
- But if it has rational solutions, this does not imply it also has integer solutions

Road Map

- Today’s lecture:
 Talk about an elimination-based technique called Omega test
- Next lecture:
 Talk about two relaxation-based techniques:
 1. Branch-and-Bound
 2. Cuts-from-Proofs

Summary

- To solve constraints in T_Q (linear inequalities over rationals), we use Simplex algorithm for LP
- Simplex has two phases
- In first phase, we construct slack form such that it has a basic feasible solution
- In second phase, we start with basic feasible solution and rewrite one slack form into equivalent one until objective value can’t increase

Theory of Integers

- Earlier, we talked about the theory of integers T_Z
- **Signature of T_Z**:
 $$\Sigma_Z : \{\ldots, -2, -1, 0, 1, 2, \ldots, -3, -2, 2, 3, \ldots, +, -, =, >\}$$
- This theory also called linear arithmetic over integers
- Since equal in expressive power to Presburger arithmetic, people also refer to it as Presburger arithmetic
- Today and next lecture: Look at algorithms for deciding satisfiability in quantifier-free fragment of T_Z
The Omega Test: Historical Perspective

- Omega Test: invented in early 1990's for compiler optimizations
- Particular application: array dependence analysis
- Array dependence analysis: “Can two expressions $a[i]$ and $a[j]$ refer to the same element?”
- Can use this information to reorder reads and writes from the array and perform operations in parallel

Array Dependence Analysis Example

- Consider the following code snippet:
  ```c
  for(i=1; i<= 100; i++) {
    for(j=i; j<= 100; j++)
      a[i, j+1] = a[100, j]
  }
  ```

 - Can the expressions $a[i, j+1]$ and $a[100, j]$ ever refer to the same element (not necessarily in the same iteration)? No!
 - Thus, no array element is both read and written to in the loop
 - Hence, we can optimize code by performing assignments in parallel!

Array Dependence Analysis as Integer Constraints

```c
for(i=1; i<= 100; i++) {
  for(j=1; j<= 100; j++)
    a[i, j+1] = a[100, j]
}
```

- Can express dependence analysis as linear integer constraints
- Variables w_i and w_j denote array indices when write is performed
- Variables r_i and r_j denote array indices when read is performed
- How do we express that same element is both read and written to? $w_i = r_i \land w_j = r_j$

Applications of Theory of Integers

- Array dependence analysis one application of decision procedure for theory of integers
- Omega Test was initially invented to do a better job with array dependence analysis
- Many other applications in software verification, compiler optimizations, operations research, …
Omega Test: Main Idea

- **Main idea**: Eliminate variables one by one from the initial system $A\vec{x} \leq \vec{b}$

- Geometrically, eliminating a variable corresponds to computing a projection of a polytope in n-dimensional space to an $n-1$-dimensional space

- Since the polytope has one less dimension at each step, resulting problem is easier to solve than the previous one

Fourier-Motzkin Variable Elimination

- Suppose we want to eliminate variable x_n from $A\vec{x} \leq \vec{b}$

- Consider an inequality $\sum_{j=1}^{n} a_{nj} x_j \leq b_i$

- This can be rewritten as $a_{ni} x_n \leq b_i - \sum_{j=1}^{n-1} a_{nj} x_j$

- If a_{ni} is positive, this yields an upper bound on x_n:

 $$x_n \leq \frac{b_i}{a_{ni}} - \sum_{j=1}^{n-1} \frac{a_{nj}}{a_{ni}} x_j$$

- If a_{ni} is negative, this yields a lower bound on x_n:

 $$x_n \geq \frac{b_i}{a_{ni}} - \sum_{j=1}^{n-1} \frac{a_{nj}}{a_{ni}} x_j$$

Projections in Omega Test

Omega test computes three kinds of projections, called shadows:

1. **Real Shadow**
 - Overapproximates satisfiability over integers
 - If real shadow has no solutions, neither does original problem

2. **Dark Shadow**
 - Underapproximates satisfiability over integers
 - If dark shadow has solution, original problem has solution

3. **Gray Shadows**
 - These correspond to areas between real and dark shadow that might contain integer points
 - Omega test constructs multiple gray shadows

The Real Shadow

- When constructing the real shadow, we ignore requirement that solution must be integer

- Thus, resulting projection overapproximates satisfiability of original problem

- To construct real shadow, we use the Fourier-Motzkin variable elimination technique

Fourier-Motzkin Variable Elimination, cont.

- Thus, if we have $A\vec{x} \leq \vec{b}$ has two rows i and k with positive and negative coefficients for x_n, this yields the inequality:

 $$\frac{b_i}{a_{kn}} - \sum_{j=1}^{n-1} \frac{a_{kj}}{a_{kn}} x_j \leq x_n \leq \frac{b_k}{a_{kn}} - \sum_{j=1}^{n-1} \frac{a_{kj}}{a_{kn}} x_j$$

- We eliminate x_n by removing it from the middle of inequality:

 $$\frac{b_i}{a_{kn}} - \sum_{j=1}^{n-1} \frac{a_{kj}}{a_{kn}} x_j \leq \frac{b_i}{a_{kn}} - \sum_{j=1}^{n-1} \frac{a_{kj}}{a_{kn}} x_j$$

- If we do this for every pair of inequalities with positive and negative coefficients for x_n, this yields the real shadow
Fourier-Motzkin Example

- Consider the set of inequalities:
 \[x \leq y + 10 \quad y \leq 15 \quad -x + 20 \leq y \]
- Let's compute real shadow on \(x \)-axis using Fourier-Motzkin
- Isolate \(y \) on one side:
 \[(1) \ x - 10 \leq y \quad (2) \ y \leq 15 \quad (3) \ -x + 20 \leq y \]
- From (1) and (2), we get \(x - 10 \leq 15 \), i.e., \(x \leq 25 \)
- From (2) and (3), we get \(-x + 20 \leq 15 \), i.e. \(x \geq 5 \)
- Thus, real shadow on \(x \)-axis is \(5 \leq x \leq 25 \)

Dark Shadow

- The second projection Omega test constructs is dark shadow
- Dark shadow underapproximates satisfiability
- Suppose we want to eliminate variable \(x \) from \(A\vec{x} \leq \vec{b} \)
- Dark shadow only projects those parts of polytope that are at least one unit thick in the \(x \)-dimension
- If dark shadow has integer solution, original polytope must also have integer solution. Why?
- Since polytope is at least one unit thick above the dark shadow in \(x \)-dimension, we are guaranteed to have an integer solution for \(x \) as well!

Real Shadow and Overapproximation

- When we want integer solutions, real shadow overapproximates satisfiability
- For instance, consider \(3x \geq 1 \land 3x \leq 2 \)
- Does this formula have integer solutions? no
- When we compute dark shadow, we get \(\frac{1}{3} \leq \frac{3}{2} \), i.e., \(\frac{1}{2} \leq 2 \)
- Since this formula is tautology, real shadow is satisfiable
- But original formula is not satisfiable

Math Behind the Dark Shadow

- As in real shadow, consider a pair of inequalities corresponding to lower and upper bounds on \(x \):
 \[\mathcal{L} \leq ax \quad bx \leq \mathcal{U} \]
- These imply:
 \[\frac{\mathcal{L}}{a} \leq x \leq \frac{\mathcal{U}}{b} \]
- Now, suppose there is no integer between \(\frac{\mathcal{L}}{a} \) and \(\frac{\mathcal{U}}{b} \)
- Consider first integer \(i \) smaller than \(\frac{\mathcal{L}}{a} \)

Math Behind the Dark Shadow, cont.

\[
\begin{align*}
\geq \frac{1}{a} & \quad \geq \frac{1}{b} \\
i & \quad \frac{c}{a} & \quad \frac{d}{b} & \quad i + 1
\end{align*}
\]

- Thus, we have the following inequalities:
 \[\frac{c}{a} - i \geq \frac{1}{a} \]
 \[i + 1 - \frac{d}{b} \geq \frac{1}{b} \]
- If we sum these up, we get:
 \[\frac{c}{a} - \frac{d}{b} + 1 \geq \frac{1}{a} + \frac{1}{b} \]

Math Behind Dark Shadow, cont

- If we rearrange this equation, we get:
 \[b\mathcal{L} - ad \geq b + a - ab \]
- Finally, multiplying both sides by \(-1 \):
 \[a\mathcal{L} - b\mathcal{U} \leq ab - a - b \quad (*) \]
- **Recall:** We derived this equation by assuming that there is no integer solution for \(x \)
- That is, we showed "If there is no integer solution for \(x \), then \((*)\) must hold"
- Thus, negation of \((*)\) guarantees there exists integer solution for \(x \)!
Math Behind Dark Shadow, cont

- Thus, negation of (*)
 \[aL - bL > ab - a - b \quad (**) \]
 guarantees there is an integer value for \(x \)!
- Thus, to construct dark shadow, we remove inequalities containing \(x \) and add inequality (**)
- Resulting projection is underapproximation because only projects those parts that are at least one unit thick, but there might be an integer solution for \(x \) even if it’s not unit thick

Gray Shadows

- Recall: Real shadow overapproximates the problem, and dark shadow underapproximates it.
- If real shadow has integer solutions, but dark shadow does not, we still don’t know if original problem has integer solutions.
- In this case, Omega test constructs projections called gray shadows
- Gray shadows look for integer solutions outside the dark shadow, but inside the real shadow.

Constructing the Gray Shadow

- Consider again the pair of inequalities:
 \[L \leq ax \quad bx \leq U \]
- By construction, any point in the real shadow satisfies:
 \[bL \leq abx \leq alL \quad (1) \]
- Also, by construction, any point outside dark shadow satisfies:
 \[alL - bL \leq ab - a - b \]
- We can rewrite above as: \(alL \leq bL + ab - a - b \quad (2) \)
- Combining (1) and (2), we have:
 \[bL \leq abx \leq bL + ab - a - b \]

Constructing Gray Shadow, cont.

- Thus, any point inside real shadow but outside dark shadow must satisfy:
 \[bL \leq abx \leq ab + bL - a - b \]
- Dividing by \(b \), points in the gray shadow must satisfy:
 \[L \leq ax \leq L + \frac{ab - a - b}{b} \]
- Observe: If \(x \) is an integer, \(ax \) must also be integer
- Furthermore, \(ax \) must be equal to
 \[L + i \]
 for some \(i \) in the range \((0, \frac{ab - a - b}{b}) \)

Constructing Gray Shadow, cont.

- Thus, we construct each gray shadow by adding the equality:
 \[ax = L + i \]
 for each \(i \) in the range \((0, \frac{ab - a - b}{b}) \)
- If any subproblem has integer solution, then so does original problem
- If no subproblem has integer solution, original problem unsatisfiable

Remark about Gray Shadows

- Observe: If there are \(n \) integers between 0 and \(\frac{ab - a - b}{b} \), Omega test constructs \(n \) gray shadows
- Thus, Omega test is very sensitive to coefficients in formula
- The larger \(a \) is, the more gray shadows we must consider
- Nightmare for Omega test: Real shadow has solution, dark shadow has no solution, and coefficient \(a \) is very large, and problem is unsatisfiable
- In this case, Omega test must solve a very large number of subproblems
An Optimization

- Omega test uses important optimization to handle equality constraints
- Equality constraints can be expressed as pair of inequalities, but handling equalities directly much more efficient
- Thus, Omega test has special preliminary step where it gets rid of all equality constraints
- Uses interesting coefficient-reducing technique based on symmetric modulo
- Details are in paper posted on class webpage - strongly encouraged to read!

Omega Test Summary

- Omega test is an elimination-based technique for solving linear inequalities over integers
- Constructs three kinds of projections: real shadow, dark shadow, gray shadow
- Problem has no solution if real shadow has no solution
- Problem has solution if dark shadow has solution
- Otherwise, problem has solution iff one of the dark shadows has solution
- Omega test handles equalities specially using the symmetric modulo technique