CS389L: Automated Logical Reasoning

Lecture 16: Decision Procedures for
Combination Theories

Isil Dillig

Motivation

» So far, learned about decision procedures for useful theories

» Examples: Theory of equality with uninterpreted functions,
theory of rationals, theory of integers

» But in many cases, we need to decide satisfiability of formulas
involving multiple theories

> Example: 1<z Az <2Af(z)#f(Q)Af(z) #f(2)
> This formula does not belong to any individual theory

» But it does belong, for instance, to combination of 7— and 17,
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Overview

» Recall: Given two theories T and T5 that have the =
predicate, we define a combined theory 7 U T5

» Signature of T7 U Ts: ¥ U Xy
» Axioms of T3 U Ty: A1 U Ay
» Given decision procedures for quantifier-free T7 and T5, we

want a decision procedure to decide satisfiability of formulas
in qff 71U Ts

Nelson-Oppen Overview

¥ 1-theory Ty

for Ti-satisfiability

Nelson-Oppen

Y »-theory T
P2 for T,-satisfiability

@ for (T1 U Ty)-satisfiability

> Also allows combining arbitrary number of theories
» For instance, to combine Ty, Ts, T3, first combine Ty, To

» Then, combine T7 U T5 and T35 again using Nelson-Oppen
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Restrictions of Nelson-Oppen

» Nelson-Oppen method imposes the following restrictions:

1. Only allows combining quantifier-free fragments

2. Only allows combining formulas without disjunctions, but not a
major limitation because can convert to DNF

3. Signatures can only share equality: £; N Xo = {=}
4. Theories Ty and Ty must be stably infinite

» Theory T is stably infinite iff every satisfiable gff formula is
satisfiable in a universe of discourse with infinite cardinality

Example of Non-Stably Infinite Theory

{av b, :}

Ve.z=aVz=>0

Signature :
Axiom :

» Axiom says that any object in the universe of discourse must
be equal to either a or b

» Now consider U containing more than 2 distinct elements

v

Then, there is at least one element that is not equal to a or b

v

Thus, any U with more than 2 elements violates axiom

v

Hence, theory only has finite models, and is not stably infinite
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Examples of Stably Infinite Theories

» Fortunately, almost any theory of interest is stably infinite

> All theories we discussed, T—, Tq, Tz, T4, are stably infinite

» Which of these theories can we combine using Nelson-Oppen?
1. T— and Tg?

2. T— and T7?

3. TA and Tz?

4. TQ and Tz?

Nelson-Oppen Overview

» Nelson-Oppen method has conceptually two-different phases:

1. Purification: Seperate formula F in T7 U T into two formulas
F1 in T1 and F2 in T2

2. Equality propagation: Propagate all relevant equalities between
theories

» Purification step is always the same for any arbitrary theory

» But equality propagation is different between convex and
non-convex theories
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Purification Overview

» Given formula F' in T7 U T, goal of purification is to separate
F' into formulas F; and F such that:

1. F belongs only to T (is "pure”)
2. F, belong only to T, (is "pure”)
3. Fy A Fy is equisatisfiable as F'

» Resulting formula after purification is not equivalent, but this
is good enough

How To Purify

» To purify formula F, exhaustively apply the following:

1. Consider term f(...,#;,...). If f € ¥; but ¢; is not a term in
T;, replace t; with fresh variable z and conjoin z = ;

2. Consider predicate p(...,#;,...). If p €%, but ¢; is not a term
in T;, replace t; with fresh variable w and conjoin w = ¢;

> After this procedure, we can write F' as Fy A\ F5, where each
F; is pure
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Purification Example 1

v

Consider T_ U Tg formula z < f(z) +1

v

Is this formula already pure?

v

Since f(z) is not in Tg, replace with new variable y and add
equality constraint y = f(z)

v

Thus, formula after purification:

r<y+1Ay=f(r)
~— ——

Ty T

Purification Example Il

v

Consider following ¥— U ¥z formula:
fz+9(y)) < g(a) +f(b)

» Easiest to purify "inside out”

v

Is the term = + g(y) pure?

» How do we purify it?

v

Resulting formula:

fl@+az)<gla)+f(0) Az =g(y)
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Purification Example Il, cont

fla+2n) <gla) +f(b)Na=g(y)

v

Is f(z + 21) pure?
» How do we purify?
» Resulting formula:

flz) <gla)+fW)Aa=g(y) Nn=a+nxn

v

Is formula purified now? no

Purification Example I, cont

flz) <gla)+f)Aa=g(y) Nn=a+n

» How do we purify?
> Resulting formula:
f(z) < zm+uizn =g(y)hzn=z+xnNz=g(a) Nz = (D)

> s formula purified now?
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Purification Example Il, cont

f()<zm+u Aa=gly)N\a=c+2z Nz =gla) Az =[(b)

» How do we purify?

> Resulting formula:

m<zmtuizn=gy)ANn=cz+aA
z=gla)Na=[(b)Azs=[(2)

» Is formula purified now?

Shared vs. Unshared Variables

> After purification, we have decomposed a formula F' into two
pure formulas Fy and Fy

» If £ occurs in both F| and Fy, z is called shared variable

> If y occurs only in F} or only in Fs, it is called unshared
variable

» Consider the following purified formula:

w=c+yANy=1ANw =2 AN w = f(z) A f(z) # f(u)
Ty T—

» Which variables are shared? w;, x, w,

» Which variables are unshared? y
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Two Phases of Nelson-Oppen

» Recall: Nelson-Oppen method has two different phases:

1. Purification: Seperate formula F in Ty U T5 into two formulas
F1 in T1 and F2 in T2

2. Equality propagation: Propagate all relevant equalities between
theories

» Talk about second phase next

» But this phase is different for convex vs. non-convex theories

Convex Theories

> Theory T is called convex if for every conjunctive formula F':
> If =\ @ =y, for finite n
» Then, F = z; =y, for some i € [1,n]

» Thus, in convex theory, if F' implies disjunction of equalities,
F' also implies at least one of these equalities on its own

> If a theory does not satisfy this condition, it is called
non-convex
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Examples of Convex and Non-Convex Theories

» Example: Consider formula 1 <z Az <2in Ty
> Does it imply z =1V z =27

» Does it imply z =17

» Does it imply z = 27

> |s Ty convex?

> However, theory of rationals Tg is convex

» Theory of equality 7— is also convex

» Combining decision procedures for two convex theories is
easier and more efficient

Nelson-Oppen Method for Convex Theories

» Given formula F in Ty U Ty (T4, T> convex), want to decide
if F' is satisfiable

» First, purify F' into F} and F»
» Run decision procedures for T}, T» to decide sat. of Fy, Fy

» |f either is unsat, F' is unsatisfiable.
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Nelson-Oppen Method for Convex Theories

> If both are SAT, this does not mean F is sat

» Example:
s+y=2Az=1A f(z)#f(y)
S—— D

Ty T=

» Here, F; and Fy are individually sat, but their combination is
unsat b/c Tz implies z = y

> In the case where F; and F5 are sat, theories have to
exchange all implied equalities

» Why only equalities?

Nelson-Oppen Method for Convex Theories

> For each pair of shared variables z, y, determine if:

1. fi=2z=y

2. Fhb=z=y
» If (1) holds but not (2), conjoin © = y with F»
» If (2) holds but not (1), conjoin z = y with F;
> Let F| and F} denote new formulas
> Check satisfiability of F| and F}

» Repeat until either formula becomes unsat or no new
equalities can be inferred

Isil Dillig, C5389L: Automated Logical Reasoning  Lecture 16: Decision Procedures for Combination Theories

21/39

Isil Dill €5389L: Automated Logical Reasoning _Lecture 16: Decision Procedures for Combination Theories 22/39
8 gl g /

Example

> Use Nelson-Oppen to decide sat of following 7— U Tg formula:

ff@)=fy)#f(z) Ne<y Ny+z<z AN0<z
» First, we need to purify:

> Replace f(z) with new variable w;

> Replace f(y) with new variable wy

> f(z) — f(y) is now replaced with w; — w, and we conjoin
wy = f(z) Nwp = f(y)

> First literal is now f(w; — wy) # f(z); still not pure!

» Replace w; — wy with w3 and add equality ws = w; — ws

Example, cont

v

Purified formula is F; A Fy where:

Fi: ow = f(z) Nwe = f(y) A fus) # f(2)

Fo: ws=w—w ANz<y ANy+z<z A0z

Which variables are shared?

v

v

Check sat of Fy. Is it SAT?

v

Check sat of Fy. Is it SAT?

> Now, for each pair of shared variable z;, z;, we query whether
Fy or Fy imply x; = x;
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Example, cont

Fr:owy = f(z) ANwe = f(y) A f(ws) # f(2)
Fo: ws=w—w Nz<yANy+z<zxz AN0<z

v

Consider the query z = y — is it implied by either F} or F5?

> y+2<zA0<zimply0<z<z—y, ie,y<z

v

Since we also have z < y, Tg implies z =y

» Now, propagate this to T, so F| becomes:

Flwy = fle) Nwy = f(y) Af(ws) #f(z) he =y

v

Check sat of Fy. Is it SAT? yes

» Are we done? no

Example, cont

v

v

v

Fi: wi=fz)ANw=f(y)Nf(ws) #f(z) ANz =y
Fo: ws=w—wm Nz<y ANy+z<z AN0<z

Since Fy changed, need to check if it implies any new equality
Does it imply a new equality? yes, w; = w»

Now, we add w; = wy to Fo:

Frrus=wi—w Nz <y ANy+z<zAN0<2z AN w =u
We recheck sat of Fs. Is it SAT? yes

Still not done b/c need to check if Fy implies any new
equalities
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Example, cont

Fioow=fz)Nw=Ffy) Af(ws) #f(z) ANz =1y
Fo: ws=w—wy N za<y ANy+z<z AN0<z A w =u

» Consider the query w3 = 27

> w3 = w; — wy and wy = we imply ws =0
» Sincex =y, y+ 2z <z implies 2 <0

» Since 2 < 0and 0 < z, we have 2 =0

> Thus, Tg answer "yes" for query w3 = z

Example, cont

v

v

v

Now, propagate w3 = z to Fy:

Frow =f(z)Nwe =fy) ANf(us) #f(2) Nz =y ANwg =2z

Is this sat?
No, because w3 = z implies f(w3) = f(2)
This contradicts f(ws) # f(2)

Thus, original formula is UNSAT
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Non-Convex Theories

» Unfortunately, technique discussed so far does not work for
non-convex theories

» Consider the following T7 U T— formula:
L<znz <2Af(z) # F() A f(z) # f(2)
> Is this formula SAT? no
> Let's see what happens if we use technique described so far

> If we purify, we get the following formulas:

Froo f(z) # flw) Af(z) # f(u)
Fo: 1<zANz<2ANwi=1Aup =2

Example, cont

v

v

v

Fr:oo f(@) # f(w) A f(z) # fuwr)

Fo: 1<zNhNz<2ANw=1ANwy =2
Is F; SAT? yes
Is Fo SAT? yes
Does F; imply new equalities? no
Does Fy imply new equalities? no

Thus technique discussed so far returns sat, although formula
in unsat
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Nelson-Oppen with Non-Convex Theories

» Problem is that in non-convex theories, a formula might imply
a disjunction of equalities, but not any individual equality

» We also have to query and propagate disjunctions of equalities

» But how do you propagate disjunctions, since we only allow
conjunctive formula?

> If answer to query \/]_, z; = y; is yes, create n subproblems
where we propagate z; = y; in i'th subproblem

» If there is any subproblem that is satisfiable, original formula
is satisfiable

> |If every subproblem is unsatisfiable, then original formula is
unsatisfiable

Example

» Consider T— U Ty formula:
L<anz <2Af(x) #f()Af(z) # f(2)
» After purification, we get:

Froo fz) # flwn) A fx) # fwe)

Fo: 1<zNhz<2ANw=1Awpy =2

» Does Fy imply any disjunction of equalities?
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Example, cont

> Now, we create two subproblems, one where we propagate
= w; and x = w»

Example, cont

v

Second subproblem:

Fi: f(z) # f(w) Af(z) # f(wn) Az = wy

» First subproblem: Fy: I<zAz<2Awr=1Aw=2
Fi: f(x) 7& f(wl) /\f(x) 7& f(w2) AT = w > |s this satisfiable?
Fy: 1<zAz<2ANw =1ANwy =2
| 4
» |s this satisfiable?
> Since neither subproblem is satisfiable, Nelson-Oppen returns
> unsat for original formula
Example I Example Il, cont
» Consider the following T— U Ty formula: > First subproblem:
Fro f(x) # flw) Af(z) # flws) Af(wr) # flu) Ao = w
1<zAz<3Af(z HAf(z 3)AF(1 2 1
< S3Af(@) A ) Af(2) #FB)AFQA) # (2) Fy: 1<ono<3mw o lAw—2Aus3
» F las aft ification:
ormulas after purification » Is this satisfiable?
B f(z) # flw) A f(z) # fws) Af(wr) # f(w2)
Fy: 1<zAhz<3Aw=1Awy=2Aw3=23 > Second subproblem:
» Consider the query ©z = w; Vo = wy V2 = ws Fro f(z) # f(un) Af(z) # flws) A f(wn) # flw) Az = we
Fo: 1<zANz<3ANwi=1ANuwp=2ANw3=3
» Does either formula imply this query?
I uia 1mply this query > |s this satisfiable?
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Example Il, cont

Second subproblem:

Fyo f(z) # flw) Af(z) # f(ws) A f(wy) # flwe) Az = wy
Fo: 1<zNhNz<3ANwi=1ANwp=2Aw3=3

» So it's satisfiable, are we done?

v

Are there any new implied equalities or disjunctions of
equalities?

v

Thus, second subproblem is satisfiable
» Do we need to check third subproblem? No

» Thus, original formula is satisfiable

Nelson-Oppen for Convex vs. Non-Convex Theories

> Nelson-Oppen method is much more efficient for convex
theories than for non-convex theories

> In convex theories:
1. need to issue one query for each pair of shared variables

2. If decision procedures for T} and T5 have polynomial time
complexity, combination using Nelson-Oppen also has
polynomial complexity

> In non-convex theories:
1. need to consider disjunctions of equalities between each pair of
shared variables

2. If decision procedures for T} and T have NP time complexity,
combination using Nelson-Oppen also has NP time complexity
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Summary

> Nelson-Oppen method gives a sound and complete decision
procedure for combination theories

» However, it only works for quantifier-free theories that are
infinitely stable

» Not a severe restriction because most theories of interest are
infinitely stable

> Next lecture: How to decide satisfiability in first-order theories
without converting to DNF
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