Nelson-Oppen with Non-Convex Theories

Problem is that in non-convex theories, a formula might imply a disjunction of equalities, but not any individual equality.

We also have to query and propagate disjunctions of equalities.

How do we propagate disjunctions, since we only allow conjunctive formula?

If answer to some disjunctive query $\bigvee_{i=1}^{n} x_{i} = y_{i}$ is yes, create n subproblems where we propagate $x_{i} = y_{i}$ in i’th subproblem.

If there is any subproblem that is satisfiable, original formula is satisfiable.

Example, cont

\[F_1 : f(x) \neq f(w_1) \land f(x) \neq f(w_2) \]
\[F_2 : 1 \leq x \land x \leq 2 \land w_1 = 1 \land w_2 = 2 \]

Is F_1 SAT? yes

Is F_2 SAT? yes

Does F_1 imply new equalities? no

Does F_2 imply new equalities? no

Thus technique discussed so far returns sat, although formula is unsat.
Example II

Consider the following $T_{\cup T_Z}$ formula:

\[
1 \leq x \land x \leq 3 \land f(x) \neq f(1) \land f(x) \neq f(3) \land f(1) \neq f(2)
\]

Formulas after purification:

\[
F_1 : f(x) \neq f(w_1) \land f(x) \neq f(w_3) \land f(w_1) \neq f(w_2)
F_2 : 1 \leq x \land x \leq 2 \land w_1 = 1 \land w_2 = 2 \land w_3 = 3
\]

Consider the query $x = w_1 \lor x = w_2 \lor x = w_3$

Does either formula imply this query? Yes

Example II

Example II, cont

First subproblem:

\[
\begin{align*}
F_1 & : f(x) \neq f(w_1) \land f(x) \neq f(w_3) \land f(w_1) \neq f(w_2) \\
F_2 & : 1 \leq x \land x \leq 2 \land w_1 = 1 \land w_2 = 2
\end{align*}
\]

Is this satisfiable?

No because $x = w_1$ implies $f(x) = f(w_1)$

Thus, we now issue new queries such as $x = w_1$, $x = w_2$, etc.

Are there any new implied equalities or disjunctions of equalities? No

Thus, second subproblem is satisfiable

Do we need to check third subproblem? No

Thus, original formula is satisfiable

Example II, cont

Second subproblem:

\[
\begin{align*}
F_1 & : f(x) \neq f(w_1) \land f(x) \neq f(w_2) \land x = w_2 \\
F_2 & : 1 \leq x \land x \leq 2 \land w_1 = 1 \land w_2 = 2 \land w_3 = 3
\end{align*}
\]

Is this satisfiable?

Yes

Nelson-Oppen for Convex vs. Non-Convex Theories

Nelson-Oppen method is much more efficient for convex theories than for non-convex theories

In convex theories: If decision procedures for T_1 and T_2 have polynomial time complexity, combination using Nelson-Oppen also has polynomial complexity

In non-convex theories: If decision procedures for T_1 and T_2 have NP time complexity, combination using Nelson-Oppen also has NP time complexity
SMT Solvers

- An SMT (satisfiability modulo theory) solver is a tool that decides satisfiability of formulas in first-order theories.
- SMT solvers are generalizations of SAT solvers.
- Can think of SMT formula as SAT formula where propositional variables are replaced with formulas in first-order theories.
- Common first-order theories SMT solvers reason about:
 - Theory of equality
 - Theory of bitvectors
 - Theory of rationals
 - Theory of arrays
 - Theory of integers
 - Difference logic

Applications of SMT Solvers

- SMT solvers have gained enormous popularity over the last several years – active research topic.
- Many applications: software verification, programming languages, test case generation, planning and scheduling, ...
- Slogan: “Whatever SAT solvers can do, SMT solvers can do better!”

Existing SMT Solvers

- Many existing off-the-shelf SMT solvers:
 - Yices (SRI)
 - Z3 (Microsoft Research)
 - CVC3 (NYU, U Iowa)
 - STP (Stanford)
 - MathSAT (U Trento, Italy)
 - Barcelogic (Catalonia, Spain)
- Annual competition SMT-COMP between solvers; tools ranked in various categories.

Overview

- Plan: Learn about how SMT solvers actually work.
- Already know how to decide satisfiability of several qff first-order theories (theory of equality, theory of rationals, theory of integers).
- Also already know how to combine these theories using Nelson-Oppen technique.
- Big missing piece: How to handle boolean structure of SMT formulas including disjunctions.

Main Idea of DPLL(T)

- Key idea underlying SMT solvers: Combine DPLL algorithm for SAT solving with theory solvers.
- Theory solver: Decision procedure for checking satisfiability in conjunctive fragment.
- This architecture where we combine DPLL-based SAT solvers with theory solvers is known as DPLL(T) framework.
- Called DPLL(T) because we combine DPLL algorithm with solver for theory T.
- However, T can be a combination theory, such as $T_1 \cup T_2$.
- As before, solver for $T_1 \cup T_2$ is obtained by using Nelson-Oppen technique.

DPLL(T) Overview

- In the DPLL(T) framework, SAT solver handles boolean structure of formula.
- For this, treat each atomic formula as a propositional variable \Rightarrow resulting formula called boolean abstraction.
- Now, use SAT solver to decide satisfiability of boolean abstraction.
Main Idea of DPPL(T), cont.

- If there is no satisfying assignment to boolean abstraction, formula is UNSAT
- If there is satisfying assignment to boolean abstraction, formula may not be SAT
- Main job of the theory solver is to check whether assignments made by SAT solver is satisfiable modulo theory
- If SAT solver finds assignment that is consistent with theory, then SMT formula is satisfiable

SMT Formulas and Boolean Abstraction

- SMT formula in theory T formed according to CFG:
 \[F := a_i^T | F_1 \land F_2 | F_1 \lor F_2 | \neg F \]

- For each SMT formula, define a bijective function B, called boolean abstraction function, that maps SMT formula to overapproximate SAT formula

 Function B defined inductively as follows:
 \[
 B(a_i^T) = b_i \\
 B(F_1 \land F_2) = B(F_1) \land B(F_2) \\
 B(F_1 \lor F_2) = B(F_1) \lor B(F_2) \\
 B(\neg F) = \neg B(F_1)
 \]

Example

- What is the boolean abstraction of this formula?
 \[F : x = z \land ((y = z \land x < z) \lor \neg(x = z)) \]

- Boolean abstraction is also called boolean skeleton
- Since B is a bijective function, B^{-1} also exists
- What is $B^{-1}(b_2 \lor \neg b_1)$?

Boolean Abstraction as Overapproximation

- Observe: The boolean abstraction constructed this way overapproximates satisfiability of the formula
- Is this formula satisfiable?
 \[F : x = z \land ((y = z \land x < z) \lor \neg(x = z)) \]
- Boolean abstraction: $B(F) = b_1 \land ((b_2 \land b_3) \lor \neg b_1)$
- Is this satisfiable?
- What is a sat assignment?
- What is $B^{-1}(A)$?

SMT Solving: Simplest Version

- In simplest version of SMT solvers, construct boolean abstraction $B(F)$ of SMT formula F
- If $B(F)$ is unsat, return unsat
- If $B(F)$ is sat, get sat assignment A (conjunction of propositional literals)
- Construct $B^{-1}(A)$; this is conjunction of atomic T-formulas
- Query T-solver for satisfiability of $B^{-1}(A)$

SMT Solving: Simplest Version, cont

- If T-solver decides $B^{-1}(A)$ is sat, return SAT
- If $B^{-1}(A)$ is unsat, does this mean original formula is UNSAT?
 - In this case, construct new boolean abstraction $B(F) \land \neg A$
 - $\neg A$ called theory conflict clause
- Repeat until we find assignment consistent with theory or until boolean abstraction is unsat
Example
- Consider example from before:
 \[F : x = z \land \{(y = z \land x < z) \lor \neg(x = z)\} \]
- \(B(F) : b_1 \land ((b_2 \land b_3) \lor \neg b_3) \)
- Sat assignment to \(B(F) \): \(A = b_1 \land b_2 \land b_3 \)
- \(B^{-1}(A) \) is unsat
- What is new boolean abstraction?
- Is this formula SAT?

Shortcoming of This Approach
- So far, we just add negation of current assignment as theory conflict clause, but such conflict clauses are too weak
- Suppose \(A \) is a conjunction of 100 literals such that
 \[B^{-1}(A) = x = y \land x < y \land a_1 \land a_2 \land \ldots \land a_{98} \]
- Theory conflict clause \(\neg A \) prevents exact same assignment
- But it doesn’t prevent many other bad assignments involving
 \[x = y \land x < y \text{ such as:} \]
 \[B^{-1}(A) = x = y \land x < y \land a_1 \land a_2 \land \ldots \land \neg a_{98} \]
- In fact, there are \(2^{98} \) unsat assignments containing
 \[x = y \land x < y \text{ but } \neg A \text{ prevents only one of them!} \]

SMT solving, Improvement #1
- Suppose SAT solver makes assignment \(A \) s.t. \(B^{-1}(A) \) is unsat
- Rather than adding \(\neg A \) as a conflict clause, better idea is to find an unsatisfiable core of \(B^{-1}(A) \)
- An unsatisfiable core \(C \) of \(A \) contains a subset of atoms in \(A \) and \(B^{-1}(C) \) is still unsatisfiable.
- Ideally, we would like to find the minimal unsatisfiable core
- Minimal unsatisfiable core \(C^* \) has property that if you drop any single atom of \(C^* \), result is satisfiable
 - What is a minimal unsat core of
 \[x = y \land x \neq y \land a_1 \land a_2 \land \ldots \land a_{98} \]
 - \(x = y \land x \neq y \)

Computing Minimal Unsat Core
- How can we compute minimal unsat core of conjunctive \(T \) formula without modifying theory solver?
- Let \(\phi \) be original unsatisfiable conjunct
- Drop one atom from \(\phi \), call this \(\phi' \)
- If \(\phi' \) is still unsat, \(\phi := \phi' \)
- Repeat this for every atom in \(\phi \)

Example
- Let’s compute minimal unsat core of
 \[\phi : x = y \land f(x) + z = 5 \land f(x) \neq f(y) \land y \leq 3 \]
- Drop \(x = y \) from \(\phi \). Is result unsat?
- Drop \(f(x) + z = 5 \). Is result unsat?
- New formula: \(\phi : x = y \land f(x) \neq f(y) \land y \leq 3 \)
- Drop \(f(x) \neq f(y) \). Is result unsat?
- Finally, drop \(y \leq 3 \). Is result unsat?
- Minimal unsat core: \(x = y \land f(x) \neq f(y) \)

SMT Solving Using Unsat Cores
- Given formula \(F \), construct boolean abstraction \(B(F) \)
- Use SAT solver to decide if \(B(F) \) is unsat; if so \(F \) also unsat
- Otherwise, get satisfying assignment \(A \) to \(B(F) \)
- Query theory solver if \(B^{-1}(A) \) is sat; if so \(F \) is sat
- Otherwise, compute minimal unsat core \(C \) of \(B^{-1}(A) \)
- Use \(\neg C \) as theory conflict clause
 - i.e., construct new boolean abstraction as \(B(F \land \neg C) \)
 - Repeat until we decide sat or unsat
Discussion

- This strategy is much better than simplest strategy where we add $\neg B^{-1}(A)$ as theory conflict clause.
- Using simple strategy, we block just one assignment.
- Using minimal unsat cores, we block many assignments using one theory conflict clause.
- However, our strategy still not ideal because it waits for full assignment to boolean abstraction to generate conflict clause.

Motivation for Integration with DPLL

- Consider very large formula F containing $x = y$ and $x < y$ with corresponding boolean variables b_1 and b_2.
- Also, suppose $B(F)$ contains hundreds of boolean variables.
- As soon as sat solver makes assignment $b_1 = \top, b_2 = \top$, we are doomed because this is unsatisfiable in theory.
- Thus, no need to continue with SAT solving after this bad partial assignment.
- Idea: Don’t use SAT solver as “blackbox”.
- Instead, integrate theory solver right into the DPLL algorithm.

DPLL-Based SAT Solver Architecture

- Decide
- BCP
- Analyze Conflict
- SAT
- UNSAT
- backtrack if $d > 0$
- no conflict

DPLL(T) Framework

- Combination of DPLL-based SAT solver and decision procedure for conjunctive T formula called DPLL(T) framework.

Theory Propagation Lemmas

- Idea: Theory solver can communicate which literals are implied by current partial assignment.
- For instance, $\neg x < z$ implied by current partial assignment $x = y \land y = z$.
- Thus, can safely add $b_1 \land b_2 \rightarrow b_1$ to clause database.
- These kinds of clauses implied by theory are called theory propagation lemmas.

DPLL(T) Framework

- Suppose SAT solver has made assignment in Decide step and performed BCP.
- If no conflict detected, immediately invoke theory solver.
- If A is current partial assignment to boolean abstraction, ask theory solver if $B^{-1}(A)$ is sat.
- If $B^{-1}(A)$ unsat, add theory conflict clause to clause database.
Inferring Theory Propagation Lemmas

- How do we obtain theory propagation lemmas?
 - Option #1: Treat theory solver as blackbox, query whether particular literal a is implied by current partial assignment?
 - Option #2: Modify theory solver so that it can figure out implied literals
 - Second option is considered more efficient, but have to figure out how to do this for each different theory

Which Theory Propagation Lemmas to Add

- Which theory propagation lemmas do we add?
 - Option #1: Figure out and add all literals implied by current partial assignment; called exhaustive theory propagation
 - Option #2: Only figure out literals “obviously” implied by current partial assignment
 - Exhaustive theory propagation can be very expensive; second option considered preferable
 - Solvers use different strategies to obtain “obvious” implications

Summary

- SMT solvers decide satisfiability in boolean combinations of different theories
 - Instead of converting to DNF, they handle boolean structure using SAT solving techniques
 - Most common approach is to construct boolean abstraction and lazily infer theory conflict clauses
 - To do this, can either consider SAT solver as blackbox or can integrate with it
 - Latter strategy considered superior and known as DPLL(T) framework