Overview

▶ An algorithm called DPLL for determining satisfiability
▶ Many SAT solvers used today based on DPLL
▶ However, requires converting formulas to a representation called normal forms

Normal Forms

▶ A normal form of a formula F is another formula F' such that F is equivalent to F', but F' obeys certain syntactic restrictions.
▶ There are three kinds of normal forms that are interesting in propositional logic:
 ▶ Negation Normal Form (NNF)
 ▶ Disjunctive Normal Form (DNF)
 ▶ Conjunctive Normal Form (CNF)

Negation Normal Form (NNF)

Negation Normal Form requires two syntactic restrictions:
▶ The only logical connectives are \neg, \land, \lor (i.e., no \to, \leftrightarrow)
▶ Negations appear only in literals
▶ i.e., negations not allowed inside \land, \lor, or any other \neg
▶ Is formula $p \lor (\neg q \land r \lor (\neg s))$ in NNF?
▶ What about $p \lor (\neg q \land \neg (r \land s))$?
▶ What about $p \lor (\neg q \land (\neg r \lor \neg s))$?

Conversion to NNF I

▶ To make sure the only logical connectives are \neg, \land, \lor, need to eliminate \to and \leftrightarrow
▶ How do we express $F_1 \to F_2$ using \lor, \land, \neg?
▶ How do we express $F_1 \leftrightarrow F_2$ using only \neg, \land, \lor?

Conversion to NNF II

▶ Also need to ensure negations appear only in literals: push negations in
▶ Use DeMorgan’s laws to distribute \neg over \land and \lor:
 $\neg(F_1 \land F_2) \equiv \neg F_1 \lor \neg F_2$
 $\neg(F_1 \lor F_2) \equiv \neg F_1 \land \neg F_2$
▶ We also disallow double negations:
 $\neg\neg F \equiv F$
NNF Example

Convert $F : \neg(p \rightarrow (p \land q))$ to NNF

Disjunctive Normal Form (DNF)

- A formula in disjunctive normal form is a disjunction of conjunction of literals.
 \[\bigvee_i \bigwedge_j \ell_{i,j} \] for literals $\ell_{i,j}$
 - i.e., \lor can never appear inside \land or \neg
 - Called disjunctive normal form because disjuncts are at the outer level
 - Each inner conjunction is called a clause

- **Question**: If a formula is in DNF, is it also in NNF?

Conversion to DNF

- To convert formula to DNF, first convert it to NNF.
 - Then, distribute \land over \lor:
 \[
 (F_1 \lor F_2) \land F_3 \iff (F_1 \land F_3) \lor (F_2 \land F_3) \\
 F_1 \land (F_2 \lor F_3) \iff (F_1 \land F_2) \lor (F_1 \land F_3)
 \]

Example

Convert $F : (q_1 \lor \neg q_2) \land (\neg r_1 \rightarrow r_2)$ into DNF

DNF and Satisfiability

- **Claim**: If formula is in DNF, trivial to determine satisfiability. How?

 - Idea: To determine satisfiability, convert formula to DNF and just do a syntactic check.

DNF and Blow-up in formula size

- This idea is completely impractical. Why?
 - Consider formula: $(F_1 \lor F_2) \land (F_3 \lor F_4)$
 - In DNF:
 \[
 (F_1 \land F_3) \lor (F_1 \land F_4) \lor (F_2 \land F_3) \lor (F_2 \land F_4)
 \]
 - Every time we distribute, formula size doubles!
 - **Moral**: DNF conversion causes exponential blow-up in size!
 - Checking satisfiability by converting to DNF is almost as bad as truth tables!
Conjunctive Normal Form (CNF)

- A formula in conjunctive normal form is a conjunction of disjunction of literals.
 \[\bigwedge_i \bigvee_j \ell_{ij} \text{ for literals } \ell_{ij} \]

- i.e., \(\land \) not allowed inside \(\lor, \neg \).
- Called conjunctive normal form because conjuncts are at the outer level
- Each inner disjunction is called a clause
- Is formula in CNF also in NNF?

Conversion to CNF

- To convert formula to CNF, first convert it to NNF.
- Then, distribute \(\lor \) over \(\land \):
 \[
 (F_1 \land F_2) \lor F_3 \iff (F_1 \lor F_3) \land (F_2 \lor F_3)

 F_1 \lor (F_2 \land F_3) \iff (F_1 \lor F_2) \land (F_1 \lor F_3)
 \]

CNF Conversion Example

Convert \(F : (p \leftrightarrow (q \rightarrow r)) \) into CNF

DNF vs. CNF

- Fact: Unlike DNF, it is not trivial to determine satisfiability of formula in CNF.
- Does CNF conversion cause exponential blow-up in size?
- News: But almost all SAT solvers first convert formula to CNF before solving!

Why CNF?

- Interesting Question: If it is just as expensive to convert formula to CNF as to DNF, why do solvers convert to CNF although it is much easier to determine satisfiability in DNF?

Equisatisfiability

- Two formulas \(F \) and \(F' \) are equisatisfiable iff:
 \[
 F \text{ is satisfiable if and only if } F' \text{ is satisfiable}
 \]
- If two formulas are equisatisfiable, are they equivalent?
- Example:

- Equisatisfiability is a much weaker notion than equivalence.
- But useful if all we want to do is determine satisfiability.
The Plan

- To determine satisfiability of F, convert formula to equisatisfiable formula F' in CNF.
- Use an algorithm (DPLL) to decide satisfiability of F'.
- Since F' is equisatisfiable to F, F is satisfiable iff algorithm decides F' is satisfiable.
- Big question: How do we convert formula to equisatisfiable formula without causing exponential blow-up in size?

Tseitin’s Transformation

Tseitin’s transformation converts formula F to equisatisfiable formula F' in CNF with only a linear increase in size.

Tseitin’s Transformation I

- Step 1: Introduce a new variable p_G for every subformula G of F (unless G is already an atom).
- For instance, if $F = G_1 \land G_2$, introduce two variables p_{G_1} and p_{G_2} representing G_1 and G_2 respectively.
- p_{G_1} is said to be representative of G_1 and p_{G_2} is representative of G_2.
- Given original formula F, let p_F be its representative and let S_F be the set of all subformulas of F (including F itself).
- Then, introduce the formula
 \[p_F \land \bigwedge_{G=(G_1 \lor G_2) \in S_F} \text{CNF}(p_{G_1} \leftrightarrow p_{G_1} \lor p_{G_2}) \]
- Claim: This formula is equisatisfiable to F.
- The proof is by structural induction.
- Formula is also in CNF because conjunction of CNF formulas is in CNF.

Tseitin’s Transformation II

- Step 2: Consider each subformula G.
 - Stipulate representative of G is equivalent to representative of $G_1 \lor G_2$.
 - $p_G \leftrightarrow p_{G_1} \lor p_{G_2}$.
- Step 3: Convert $p_G \leftrightarrow p_{G_1} \lor p_{G_2}$ to equivalent CNF (by converting to NNF and distributing \lor’s over \land’s).
- Observe: Since $p_G \leftrightarrow p_{G_1} \lor p_{G_2}$ contains at most three propositional variables and exactly two connectives, size of this formula in CNF is bounded by a constant.

Tseitin’s Transformation and Size

- Using this transformation, we converted F to an equisatisfiable CNF formula F'.
- What about the size of F'?
 \[p_F \land \bigwedge_{G=(G_1 \lor G_2) \in S_F} \text{CNF}(p_{G_1} \leftrightarrow p_{G_1} \lor p_{G_2}) \]
- $|S_F|$ is bound by the number of connectives in F.
- Each formula $\text{CNF}(p_{G_1} \leftrightarrow p_{G_1} \lor p_{G_2})$ has constant size.
- Thus, transformation causes only linear increase in formula size.
- More precisely, the size of resulting formula is bound by $30n + 2$ where n is size of original formula.
Tseitin’s Transformation Example

Convert $F : (p \lor q) \rightarrow (p \land \neg r)$ to equisatisfiable CNF formula.

1.
2.
3.

SAT Solvers

- Almost all SAT solvers today are based on an algorithm called DPLL (Davis-Putnam-Logemann-Loveland)

DPLL: Historical Perspective

- 1962: the original algorithm known as DP (Davis-Putnam) ⇒ “simple” procedure for automated theorem proving
 - Davis and Putnam hired two programmers, George Logemann and David Loveland, to implement their ideas on the IBM 704.
 - Not all of their ideas worked out as planned ⇒ refined algorithm to what is known today as DPLL

DPLL insight

- There are two distinct ways to approach the boolean satisfiability problem:
 - Search
 - Find satisfying assignment in by searching through all possible assignments ⇒ most basic incarnation: truth table!
 - Deduction
 - Deduce new facts from set of known facts ⇒ application of proof rules, semantic argument method
 - DPLL combines search and deduction in a very effective way!

Deduction in DPLL

- Deductive principle underlying DPLL is propositional resolution
- Resolution can only be applied to formulas in CNF
- SAT solvers convert formulas to CNF to be able to perform resolution

Propositional Resolution

- Consider two clauses in CNF:
 $C_1 : (l_1 \lor \ldots \lor l_k)$
 $C_2 : (l'_1 \lor \ldots \lor l'_n)$
- From these, we can deduce a new clause C_3, called resolvent:
 $C_3 : (l_1 \lor \ldots \lor l_k \lor l'_1 \lor \ldots \lor l'_n)$
- Correctness:
 - Suppose p is assigned \top: Since C_2 must be satisfied and since $\neg p$ is \bot, $(l'_1 \lor \ldots \lor l'_n)$ must be true.
 - Suppose p is assigned \bot: Since C_1 must be satisfied and since p is \bot, $(l_1 \lor \ldots \lor l_k)$ must be true.
 - Thus, C_3 must be true.
Unit Resolution

- DPLL uses a restricted form of resolution, known as unit resolution.
- Unit resolution is propositional resolution, but one of the clauses must be a unit clause (i.e., contains only one literal).
- $C_1: p$ $C_2: (l_1 \lor \ldots \lor \neg p \lor \ldots \lor l_n)$
- Resolvent: $(l_1 \lor \ldots \lor l_n)$
- Performing unit resolution on C_1 and C_2 is same as replacing p with true in the original clauses.
- In DPLL, all possible applications of unit resolution called Boolean Constraint Propagation (BCP).

Basic DPLL

```c
bool DPLL(\phi)
{
  1. \phi' = BCP(\phi)
  2. if(\phi' = \top) then return SAT;
  3. else if(\phi' = \bot) then return UNSAT;
  4. p = choose_var(\phi');
  5. if(DPLL(\phi'[p \rightarrow \top])) then return SAT;
  6. else return DPLL(\phi'[p \rightarrow \bot]);
}
```

- Recursive procedure; input is formula in CNF
- Formula is \top if no more clauses left
- Formula becomes \bot if we derive \bot due to unit resolution

Boolean Constraint Propagation (BCP) Example

- Apply BCP to CNF formula:
 $$(p) \land (\neg p \lor q) \land (r \lor \neg q \lor s)$$
- Resolvent of first and second clause:
 - New formula:
 - Apply unit resolution again:
 - No more unit resolution possible, so this is the result of BCP.

An Optimization: Pure Literal Propagation

- If variable p occurs only positively in the formula (i.e., no $\neg p$), p must be set to \top
- Similarly, if p occurs only negatively (i.e., only appears as $\neg p$), p must be set to \bot
- This is known as Pure Literal Propagation (PLP).

DPLL with Pure Literal Propagation

```c
bool DPLL(\phi)
{
  1. \phi' = BCP(\phi)
  2. \phi'' = PLP(\phi')
  3. if(\phi'' = \top) then return SAT;
  4. else if(\phi'' = \bot) then return UNSAT;
  5. p = choose_var(\phi'');
  6. if(DPLL(\phi''[p \rightarrow \top])) then return SAT;
  7. else return DPLL(\phi''[p \rightarrow \bot]);
}
```

Example

$F : (\neg p \lor q \lor r) \land (\neg q \lor r) \land (\neg q \lor \neg r) \land (p \lor \neg q \lor \neg r)$

- No BCP possible because no unit clause
- No PLP possible because there are no pure literals
- Choose variable q to branch on:
 $F[q \rightarrow \top]: (r) \land (\neg r) \land (p \lor \neg r)$
- Unit resolution using (r) and $(\neg r)$ deduces $\bot \Rightarrow$ backtrack
Example Cont.

\[F : (\neg p \lor q \lor r) \land (\neg q \lor r) \land (\neg q \lor \neg r) \land (p \lor \neg q \lor \neg r) \]

Now, try \(q = \bot \)

\[F[q \mapsto \bot] : (\neg p \lor r) \]

By PLP, set \(p \) to \(\bot \) and \(r \) to \(\top \)

\[F[q \mapsto \bot, p \mapsto \bot, r \mapsto \top] : \top \]

Thus, \(F \) is satisfiable and the assignment \([q \mapsto \bot, p \mapsto \bot, r \mapsto \top]\) is a model (i.e., a satisfying interpretation) of \(F \).

Summary

- Normals forms: NNF, DNF, CNF (will come up again)
- For every formula, there exists an equivalent formula in normal form
- But equivalence-preserving transformation to DNF and CNF causes exponential blowup
- However, Tseitin’s transformation gives an equisatisfiable formula in CNF with only linear increase in size
- Almost all SAT solvers work on CNF formulas to perform BCP
- DPLL basis of most state-of-the-art SAT solvers

Next Lecture

- Substantial improvements over basic DPLL used by modern SAT solvers: non-chronological backtracking and learning
- Implementation tricks used to perform BCP very efficiently
- Useful heuristics for choosing variable to branch on