Overview

- Today: How state-of-the-art SAT solvers work
- Many competitive solvers based on DPLL, but extend it in three important ways:
 1. Non-chronological backtracking
 2. Learning from past “mistakes”
 3. Heuristics for choosing variables and assignments

Non-Chronological Backtracking

- Recall basic DPLL: First try assigning p to \top; if doesn’t work, backtrack to most recent decision level and try $p = \bot$
- Called chronological backtracking but often sub-optimal
- Suppose made assignments $p_1, p_2, \ldots, p_{100}$ but discovered p_4 was a bad choice
- Backtracking to decision level associated with p_{100} is stupid...
- In non-chronological backtracking, can go back to earlier decision levels

Learning

- Learning = acquisition of new clauses to prevent similar bad assignments
- For instance, suppose we discover $p_5 = \top, p_{32} = \bot, p_{100} = \top$ is inconsistent, i.e.,
 $$\phi \Rightarrow \neg(p_5 \land \neg p_{32} \land p_{100})$$
- Can add this clause without changing satisfiability (why?)
- Such clauses called conflict clauses \Rightarrow SAT solver has database of conflict clauses

Decision Heuristics

- Basic DPLL chooses variables in random order
- But making assignment to certain variables can make formula much easier to solve!
- Modern solvers use more sophisticated heuristics
- This is something of a black art, but one of the most important elements in SAT solving . . .
The Plan

- We will talk about BCP and AnalyzeConflict first (related)
- Then: common decision heuristics used in the Decide step
- Finally: Implementation tricks to make all this fast

BCP in SAT Solvers

- Recall: BCP is all possible applications of unit resolution
- SAT solvers remember deductions performed in the BCP process ⇒ recorded as implication graph
- First some terminology . . .

Some Terminology and Conventions

- Decision variable: variable assigned in the Decide step
- The decision level of a decision variable is the level (order) in which it was assigned
- The decision level of a variable assigned due to BCP is the decision level of the last assigned decision variable
- Important note: Think of assignments as literals: Assignment \(p = \top \) is literal \(p \); assignment \(p = \bot \) as literal \(\neg p \)
- Also: An assignment corresponds to a new unit clause added to our set of clauses

Decision Level Example

\[(\neg x_1 \lor x_2) \land (\neg x_3 \lor \neg x_4) \]

- Decide assigns \(x_1 = \top \) ⇒ \(x_1 \) decision var at level 1
- BCP yields:
 - Decision level of \(x_2 \)?
 - Decide next assigns \(x_4 = \top \). BCP deduces:
 - \(x_3 \) decision variable with decision level:
 - \(x_3 ' \) s decision level:

Implication Graph

- An implication graph is a labeled directed acyclic graph
- Nodes: literals in the current partial assignment
- Node labels: Indicate assignment and decision level.
- Example: Node labeled \(\neg x : 3 \) means variable \(x \) was assigned to \(\bot \) at decision level 3
- Edges from \(l_1, \ldots, l_k \) to \(l \) labeled with \(c \): Assignments \(l_1, \ldots, l_k \) caused assignment \(l \) due to clause \(c \) during BCP
- A special node \(C \) is called the conflict node.
- Edge to conflict node labeled with \(c \): current partial assignment contradicts clause \(c \).

Implication Graph Example

- Consider the following set of clauses:
 - \(c_1 : (\neg a \lor c) \)
 - \(c_2 : (\neg a \lor \neg b) \)
 - \(c_3 : (\neg c \lor b) \)
- Assume \(Decide \) assigned \(a = \top \) at decision level 2
- BCP yields:
 - Assignment contradicts \(c_1 \)!
Another Example

Consider the following clauses:

\[c_1 : (\neg a \lor c) \quad c_2 : (\neg c \lor \neg a \lor b) \quad c_3 : (\neg c \lor d) \quad c_4 : (\neg d \lor \neg b) \]

Suppose Decide assigned \(a = \top \) at decision level 1.

Using clause \(c_1 \), BCP yields:

Using clause \(c_2 \), BCP yields:

Using clause \(c_3 \), BCP yields:

Assignment \(b = \top, d = \top \) contradicts:

Example cont.

Consider the following clauses:

\[c_1 : (\neg a \lor c) \quad c_2 : (\neg c \lor \neg a \lor b) \quad c_3 : (\neg c \lor d) \quad c_4 : (\neg d \lor \neg b) \]

Suppose Decide assigned \(a = \top \) at decision level 1.

Resulting implication graph:

Implication Graph Properties

- Root nodes in the implication graph correspond to what kind of variables?
- Edges and internal nodes arise due to BCP.
- If literal \(l \) has incoming edge labeled \(c \), what do we know about \(c \)?
- If literal \(l \) has outgoing edge labeled \(c \), what do we know about \(c \)?

Example 3

Based on this implication graph, what is \(c_4 \)?

What is \(c_3 \)?

What is \(c_1 \)?

What is \(c_2 \)?

Analyzing Conflicts

- Point of implication graph: analyze conflict.
- AnalyzeConflict has two goals:
 1. Learn new conflict clauses
 2. Figure out what level to backtrack to.

Conflict Clauses

- A conflict clause is a clause implied by the original formula.
- Point of conflict clause: Prevent bad partial assignments by deriving contradiction as quickly as possible.
- Question: To achieve this goal, are small or large conflict clauses better?
- Answer: Small ones because the smaller the clause, the quicker BCP forces variable assignments, and the quicker we derive contradictions!
- The implication graph is very useful for deriving small clauses implied by the original formula.
Using Implication Graph to Analyze Conflicts

What can we say about source of conflict based on this (partial) implication graph?

Are other decision variables relevant to conflict?

Simple Strategies to Derive Conflict Clause

One way to derive conflict clause: The negation of current partial assignment

Another way: Conjoin all literals associated with root nodes reaching conflict node, use negation as conflict clause

Question: Which one is better?

Analyzing Conflicts

This strategy is one of the earliest strategies proposed for inferring conflict clauses (e.g., the GRASP SAT solver)

But people have improved upon this; possible to derive even better conflict clauses!

A key concept is unique implication points

Unique Implication Point

A node \(N \) in the implication graph is a unique implication point (UIP) if all paths from current decision node to the conflict node must go through \(N \).

Is the current decision node a UIP?

Can there be multiple unique implication points?

First unique implication point: UIP closest to conflict node

UIP Example

Which nodes are UIP’s?

Which node is first UIP?
Using UIP and Resolution for Deriving Conflict Clause

- **Common heuristic to infer conflict clauses**: Start with clause labeling incoming edge to conflict node, derive new clauses via resolution until we find literal in first UIP
- **Specifically**: In current clause c, find last assigned literal l in c.
- Pick any incoming edge to l labeled with clause c'.
- Resolve c and c'.
- Set current clause be resolvent of c and c'.
- Repeat until current clause contains negation of the first UIP literal (as the single literal at current decision level)

Another Example

- What is c_1?
- Last assigned literal in c_1:
- Clause c_3 labeling incoming edge:
- Resolve c_1 and c_3:
- $\neg x_4$ only literal from decision level 8 $\Rightarrow x_2 \lor \neg x_4$ conflict clause

Another Example, cont.

- Current clause:
- Are we done?
- Pick last assigned literal: x_5
- Incoming edge to x_5:
- Resolve with current clause:
- Are we done?
- New conflict clause: $x_2 \lor \neg x_4 \lor x_10$

Why is this correct?

- Why are the clauses obtained this way implied by formula?
- Unclear if there is a deep reason why this works well, but seems effective in practice . . .

Backtracking

- Recall: AnalyzeConflict has two goals.
- **First goal**: Deriving conflict clauses ✓
- **Second goal**: Figure out what level to backtrack to
- **Backtrack to level d** means delete all variable assignments made after level d (but assignments at level d not deleted)
Backtracking and Asserting Clauses

- **A good strategy:** We want to backtrack to a level that makes conflict clause \(c \) an asserting clause in the next step.
- Asserting clause is a clause with exactly one unassigned literal.
- Hence, if we make \(c \) an asserting clause, BCP will force at least one assignment.

Choosing Backtracking Level

- **Question:** If we want to make conflict clause \(c \) an asserting clause in the next step, what level should we backtrack to?
- **Answer:** Since conflict clause contains only one literal, say \(l' \), from the first highest decision level, backtracking to \(d \) will assert \(l' \).

Going Back to Example

- Recall: We obtained the conflict clause \(x_2 \lor \neg x_4 \).
- What level do we backtrack to?
- What do we delete in the graph?
- After we add \(x_2 \lor \neg x_4 \) to clause database, BCP implies:
- Different assignment than before.

Recall: SAT Solver Architecture

- Decision heuristics for choosing variable order and truth assignment.

Decision Heuristics

- Important part of SAT solvers, but something of a black art.
- Can come up with hundreds of heuristics with varying tradeoffs.
- We’ll only talk about two:
 1. dynamic largest individual sum (DLIS)
 2. variable state independent decaying sum (VSIDS)

Dynamic Largest Individual Sum (DLIS)

- This heuristic chooses the literal that satisfies the largest number of currently unsatisfied clauses.
- Example: \((x_1 \lor \neg x_2) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3)\)
- What assignment would DLIS pick for this formula? (assuming no assignments so far)
- How is this heuristic dynamic?
- Thus, overhead can be high and must be implemented carefully to minimize bookkeeping.
Variable State Independent Decaying Sum (VSIDS)

- Similar to DLIS, but tries to reduce overhead and favor literals involved in conflicts (i.e. conflict-driven)
- Count number of clauses in which the literal appears, but disregard if the clause it appears in is satisfied or not
- Specifically, initialize the score of each literal to the number of clauses in which literal appears
- Every time we add a conflict clause involving literal l, increase the score of that literal by 1
- Periodically divide scores of all literals by 2 ⇒ decaying sum

Variable State Independent Decaying Sum (VSIDS), cont.

- Favors literals involved in conflicts
- If a literal doesn’t appear in recent conflict, its score will decay over time
- On the other hand, if literal appears in recent conflict, its score will be increased, so its score won’t decay as much
- Much cheaper compared to DLIS because we don’t need to scan all clauses to figure out which ones are satisfied
- Introduced in the CHAFF SAT solver from Princeton, written by undergrads!

Implementation Tricks

- To build competitive SAT solvers, it is important to minimize overhead of implementing Decide, BCP, and Analyze Conflict
- Very important because SAT solver might be searching through hundreds of thousands of assignments!
- We’ll talk about two issues:
 1. number of conflict clauses
 2. trick to perform BCP fast: watch literals

Conflict Clauses

- Recall: After analyzing conflict, we add new conflict clause to our clause database
- Pro: Conflict clauses quickly block bad assignments and prevent future mistakes
- Con: More clauses = more overhead
- ⇒ Tradeoff between conflict prevention and minimizing overhead

Conflict Clauses, cont.

- For this reason, many SAT solvers do not keep all the conflict clauses they derive
- For example, they put a limit on the number of conflict clauses they derive
- Typically, keep most recent conflict clauses since they are most relevant to current part of search space

Implementing BCP

- Implementing BCP efficiently is very important because SAT solvers spend a lot of time doing BCP
- Naive implementation of BCP: Requires scanning all currently unsatisfied clauses
- But industrial SAT contain hundreds of thousands of clauses, so scanning all unsatisfied clauses too expensive!
- A more intelligent implementation: Keep mapping from each literal to all clauses in which each literal appears (because we perform unit resolution after each variable assignment)
- But this is still very expensive because typically each literals appears in many clauses
The Trick: Watch Literals

- Modern SAT solvers use a much more clever trick to perform BCP fast: watch literals
- Observe: Ultimate purpose of BCP is to figure out which variable assignments imply which others
- Question: If we are performing unit resolution between \(l \) and clause \(c = (\neg l \lor l_1 \lor \ldots \lor l_k) \), under what condition will a new assignment be implied?
- Answer:
 - Idea: Suffices to look at clauses that have at most two unassigned literals!

Watch Literals

- Select two unassigned literals in each unsatisfied clause as watch literals
- If a watch literal is assigned and clause has other unassigned literals, choose any unassigned literal in clause to be new watch literal
- If a watch literal is assigned and there are no other unassigned non-watch literals left, BCP implies an assignment to the only remaining watch literal!

Watch Literals, cont.

- **Upshot:** To determine if assignment \(l \) implies new assignment, only look at those clauses in which \(\neg l \) appears as a watch literal
 - If \(\neg l \) does not appear, we can't perform unit resolution
 - If \(\neg l \) appears but is not a watch literal, then clause has more than two unassigned literals \(\Rightarrow \) won't imply new assignment!
- Yielded huge improvement in SAT solver performance!

Practical SAT Solving Summary

- Modern SAT solvers extend DPLL in three ways: non-chronological backtracking, conflict clause learning, decision heuristics, engineering tricks (watch literals)
- Referred to as CDCL: conflict-driven clause learning
- Many competitive SAT solvers based on CDCL