Overview

- Today: How state-of-the-art SAT solvers work
- Many competitive solvers based on DPLL, but extend it in three important ways:
 1. Non-chronological backtracking
 2. Learning from past “mistakes”
 3. Heuristics for choosing variables and assignments

Non-Chronological Backtracking

- Recall basic DPLL: First try assigning p to \top; if doesn’t work, backtrack to most recent decision level and try $p = \bot$
- Called chronological backtracking but often sub-optimal
- Suppose made assignments $p_1, p_2, \ldots, p_{100}$ but discovered p_4 was a bad choice
- Backtracking to decision level associated with p_{100} is stupid...
- In non-chronological backtracking, can go back to earlier decision levels

Learning

- Learning = acquisition of new clauses to prevent similar bad assignments
- For instance, suppose we discover $p_5 = \top, p_{32} = \bot, p_{100} = \top$ is inconsistent, i.e.,
 $$\phi \Rightarrow \neg(p_5 \land \neg p_{32} \land p_{100})$$
- Can add this clause without changing satisfiability (why?)
- Such clauses called conflict clauses \Rightarrow SAT solver has database of conflict clauses

Decision Heuristics

- Basic DPLL chooses variables in random order
- But making assignment to certain variables can make formula much easier to solve!
- Modern solvers use more sophisticated heuristics
- This is something of a black art, but one of the most important elements in SAT solving . . .

Architecture of DPLL-Based SAT Solvers
The Plan

- We will talk about BCP and AnalyzeConflict first (related)
- Then: common decision heuristics used in the Decide step
- Finally: Implementation tricks to make all this fast

BCP in SAT Solvers

- Recall: BCP is all possible applications of unit resolution
- SAT solvers remember deductions performed in the BCP process ⇒ recorded as implication graph
- First some terminology . . .

Some Terminology and Conventions

- Decision variable: variable assigned in the Decide step
- The decision level of a decision variable is the level (order) in which it was assigned
- The decision level of a variable assigned due to BCP is the decision level of the last assigned decision variable
- Important note: Think of assignments as literals: Assignment $p = \top$ is literal p; assignment $p = \bot$ as literal $\neg p$
- Also: An assignment corresponds to a new unit clause added to our set of clauses

Decision Level Example

$$(\neg x_1 \lor x_2) \land (\neg x_3 \lor \neg x_4)$$

- Decide assigns $x_1 = \top$ ⇒ x_1 decision var at level 1
- BCP yields:
- Decision level of x_2?
- Decide next assigns $x_4 = \top$. BCP deduces:
 - x_3 decision variable with decision level:
 - x_3’s decision level:

Implication Graph

- An implication graph is a labeled directed acyclic graph
- Nodes: literals in the current partial assignment
- Node labels: Indicate assignment and decision level.
- Example: Node labeled $\neg x : 3$ means variable x was assigned to \bot at decision level 3
- Edges from l_1, \ldots, l_k to l labeled with c: Assignments l_1, \ldots, l_k caused assignment l due to clause c during BCP
- A special node C is called the conflict node.
- Edge to conflict node labeled with c: current partial assignment contradicts clause c.

Implication Graph Example

Consider the following set of clauses:

$\begin{align*}
 c_1 : (\neg a \lor c) \\
 c_2 : (\neg a \lor \neg b) \\
 c_3 : (\neg c \lor b)
\end{align*}$

- Assume Decide assigned $a = \top$ at decision level 2
- BCP yields:
 - Assignment contradicts c_3!

...
Another Example

Consider the following clauses:

\begin{align*}
 c_1 : & \ (\neg a \lor c) \\
 c_2 : & \ (\neg c \lor \neg a \lor b) \\
 c_3 : & \ (\neg c \lor d) \\
 c_4 : & \ (\neg d \lor \neg b)
\end{align*}

Suppose Decide assigned $a = \top$ at decision level 1

Using clause c_1, BCP yields:

Using clause c_2, BCP yields:

Using clause c_3, BCP yields:

Assignment $b = \top$, $d = \top$ contradicts:

Example cont.

Consider the following clauses:

\begin{align*}
 c_1 : & \ (\neg a \lor c) \\
 c_2 : & \ (\neg c \lor \neg a \lor b) \\
 c_3 : & \ (\neg c \lor d) \\
 c_4 : & \ (\neg d \lor \neg b)
\end{align*}

Suppose Decide assigned $a = \top$ at decision level 1

Resulting implication graph:

Example 3

Based on this implication graph, what is c_4?

What is c_3?

What is c_1?

What is c_2?

Implication Graph Properties

Root nodes in the implication graph correspond to what kind of variables?

Edges and internal nodes arise due to BCP

If literal l has incoming edge labeled c, what do we know about c?

If literal l has outgoing edge labeled c, what do we know about c?

Analyzing Conflicts

Point of implication graph: analyze conflict

AnalyzeConflict has two goals:

1. Learn new conflict clauses
2. Figure out what level to backtrack to

Conflict Clauses

A conflict clause is a clause implied by the original formula

Point of conflict clause: Prevent bad partial assignments by deriving contradiction as quickly as possible

Suppose the current partial assignment is $l_1 \land \ldots \land l_p$, and we detect a contradiction. What obvious conflict clause can we learn?
Implication Graph and Conflict Clauses

- Idea: Use implication graph to learn better conflict clauses
- Question: Are small or large conflict clauses better?
- What’s the simplest way we can use implication graph to learn better conflict clauses?

Using Implication Graph to Analyze Conflicts

- What conflict clause can we learn based on this (partial) implication graph?

Analyzing Conflicts

- This strategy is one of the earliest strategies proposed for inferring conflict clauses (e.g., the GRASP SAT solver)
- But people now use a heuristic that (empirically) yields smaller conflict clauses
- A key concept is unique implication points

Unique Implication Point

- A node N in the implication graph is a unique implication point (UIP) if all paths from current decision node to the conflict node must go through N
- Is the current decision node a UIP?
- Can there be multiple unique implication points?
- First unique implication point: UIP closest to conflict node

UIP Example

- Which nodes are UIP’s?
- Which node is first UIP?

Using UIP and Resolution for Deriving Conflict Clause

- Inferring better conflict clauses: Start with clause labeling incoming edge to conflict node, derive new clauses via resolution until we find literal in first UIP
- Specifically: In current clause c, find last assigned literal l in c.
- Pick any incoming edge to l labeled with clause c'.
- Resolve c and c'.
- Set current clause be resolvent of c and c'.
- Repeat until current clause contains negation of the first UIP literal (as the single literal at current decision level)
Analyzing Conflict via Resolution Example

- What is c_1?
 - Last assigned literal in c_1:
 - Clause c_3 labeling incoming edge:
 - Resolve c_1 and c_3:
 - $\neg x_4$ only literal from decision level 8 $\Rightarrow x_2 \lor \neg x_4$ conflict clause

Why is this correct?

- Why are the clauses obtained this way implied by formula?
- Why is the conflict clause guaranteed to prevent current assignment?
- In practice, this heuristic seems to yield good conflict clauses

Another Example

- What is the first UIP?
 - Start with clause c_4:
 - Suppose we pick $\neg x_7$
 - Clause on incoming edge to $\neg x_7$:
 - Resolve c_3, c_4:
 - Suppose x_6 assigned later, pick x_6
 - Clause on incoming edge:
 - Resolve current clause with c_2:

Another Example, cont.

- Current clause:
 - Are we done?
 - Pick last assigned literal: x_5
 - Incoming edge to x_5:
 - Resolve with current clause:
 - Are we done?
 - New conflict clause: $x_2 \lor \neg x_4 \lor x_{10}$

Backtracking

- Recall: AnalyzeConflict has two goals.
- First goal: Deriving conflict clauses ✓
- Second goal: Figure out what level to backtrack to
- Backtrack to level d means delete all variable assignments made after level d (but assignments at level d not deleted)

Backtracking and Asserting Clauses

- A good strategy: We want to backtrack to a level that makes conflict clause c an asserting clause in the next step
- Asserting clause is a clause with exactly one unassigned literal
- Hence, if we make c an asserting clause, BCP will force at least one assignment
Choosing Backtracking Level

▶ **Question:** If we want to make conflict clause \(c \) an asserting clause in the next step, what level should we backtrack to?

▶ **Answer:**

Since conflict clause contains only one literal, say \(l' \), from the first highest decision level, backtracking to \(d \) will assert \(l'! \)

Going Back to Example

Recall: We obtained the conflict clause \(x_2 \lor \neg x_4 \)

▶ What level do we backtrack to?

▶ What do we delete in the graph?

After we add \(x_2 \lor \neg x_4 \) to clause database, BCP implies:

Decision Heuristics

▶ Important part of SAT solvers, but something of a black art

▶ Can come up with hundreds of heuristics with varying tradeoffs

▶ We’ll only talk about two:

1. dynamic largest individual sum (DLIS)
2. variable state independent decaying sum (VSIDS)

Dynamic Largest Individual Sum (DLIS)

▶ This heuristic chooses the literal that satisfies the largest number of currently unsatisfied clauses.

▶ Example: \((x_1 \lor \neg x_2) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3)\)

▶ What assignment would DLIS pick for this formula? (assuming no assignments so far)

▶ How is this heuristic is dynamic?

▶ Thus, overhead can be high and must be implemented carefully to minimize bookkeeping

Variable State Independent Decaying Sum (VSIDS)

▶ Similar to DLIS, but tries to reduce overhead and favor literals involved in conflicts (i.e. conflict-driven)

▶ Count number of clauses in which the literal appears, but disregard if the clause it appears in is satisfied or not

▶ Specifically, initialize the score of each literal to the number of clauses in which literal appears

▶ Every time we add a conflict clause involving literal \(l \), increase the score of that literal by 1

▶ Periodically divide scores of all literals by 2

⇒ decaying sum
Variable State Independent Decaying Sum (VSIDS), cont.

- Favors literals involved in conflicts
- If a literal doesn’t appear in recent conflict, its score will decay over time
- On the other hand, if literal appears in recent conflict, its score will be increased, so its score won’t decay as much
- Much cheaper compared to DLIS because we don’t need to scan all clauses to figure out which ones are satisfied

Implementation Tricks

- To build competitive SAT solvers, it is important to minimize overhead of implementing Decide, BCP, and Analyze Conflict
- We’ll talk about two issues:
 1. number of conflict clauses
 2. trick to perform BCP fast: watch literals

Conflict Clauses

- Recall: After analyzing conflict, we add new conflict clause to our clause database
- Pro: Conflict clauses quickly block bad assignments and prevent future mistakes
- Con: More clauses = more overhead
 ⇒ Tradeoff between conflict prevention and minimizing overhead
- For this reason, many SAT solvers only keep last \(n \) conflict clauses

Implementing BCP

- Implementing BCP efficiently is very important because SAT solvers spend a lot of time doing BCP
- Naive implementation of BCP: Requires scanning all currently unsatisfied clauses
- But industrial SAT instances can contain millions of clauses, so scanning all unsatisfied clauses too expensive!
- A more intelligent implementation: Keep mapping from each literal to all clauses in which each literal appears
- But this is still very expensive because typically each literals appears in many clauses

The Trick: Watch Literals

- Modern SAT solvers use a much more clever trick to perform BCP fast: watch literals
- Observe: Ultimate purpose of BCP is to figure out which variable assignments imply which others
- Question: If we are performing unit resolution between \(l \) and clause \(c = (\neg l \lor l_1 \ldots \lor l_k) \), under what condition will a new assignment be implied?
- Answer:
- Idea: Only need to look at clauses that have at most two unassigned literals!

Watch Literals

- To efficiently detect clauses with at most two unassigned literals, select two unassigned literals in each unsatisfied clause as watch literals
- Invariant: Watch literals are always unassigned!
- To maintain invariant: If a watch literal is assigned and clause has other unassigned literals, choose any unassigned literal in clause to be new watch literal
- What happens if there are no other watch literals?
Watch Literals, cont.

- **Question:** Given this invariant, if we make assignment \(l \), which clauses can imply new variable assignments?
 - **Answer:**
 - If \(\neg l \) does not appear, we can’t perform unit resolution
 - If \(\neg l \) appears but is not a watch literal, then clause has more than two unassigned literals \(\Rightarrow \) won’t imply new assignment!
 - Watch literal trick makes BCP much faster because much fewer clauses contain negation of current literal as a watch literal!
 - Yielded huge improvement in SAT solver performance!

Practical SAT Solving Summary

- Most competitive solvers today are based on DPLL
 - But they extend DPLL in three ways: non-chronological backtracking, conflict clause learning, decision heuristics, engineering tricks (watch literals)
 - Referred to as **CDCL**: conflict-driven clause learning
 - Many competitive SAT solvers based on CDCL
 - There are also other kinds of SAT solvers not based on CDCL, for instance, perform stochastic search (e.g., WalkSAT)
 - Stochastic SAT solvers perform well on randomly-generated SAT instances, but not so well on industrial ones