CS389L: Automated Logical Reasoning

Lecture 4: Applications of SAT

Isil Dillig

Plan for Today

» Some challenges for current SAT solvers

» Applications of SAT: product configuration, hardware
manufacturing

> Variations on the satisfiability problem (e.g., MaxSAT)

Isil Dillig, €5389L: Automated Logical Reasoning _Lecture 4: Applications of SAT

Isil Dillg, CS389L: Automated Logical Reasoning ~ Lecture 4: Applications of SAT 2727

SAT Solving Landscape Today

» Current CDCL based solvers able to solve problems with
hundred thousands or even millions of variables

» Check out satcompetition.org!

» SAT solvers routinely solve very large problems, but possible
to create very small instances that take very long!

Not Every Small SAT Problem is Easy

» An Example: the pigeonhole
problem

» Is it possible to place n
pigeons into m holes?

» Obvious for humans!

» But turns out to be very
difficult to solve for SAT
solvers!

Isil Dillig, €5389L: Automated Logical Reasoning _ Lecture 4: Applications of SAT

Isil Dillg, €S389L: Automated Logical Reasoning Lecture 4: Applications of SAT 421

Encoding Pigeonhole Problem in Propositional Logic
> Let's encode this for m = n — 1.
> Let p;; stand for “pigeon 7 placed in j'th hole”

» Given we have n — 1 holes, how do we say i'th pigeon must
be placed in at least one hole?

» Given we have n pigeons, how do we say every pigeon must
be placed in one hole?

p11Vpi2V...Pin—2V Pra-1
ANp21VpeaV...pan—2Vpan-1

AN Pp1Vpn2V...ppn-2V Pnn-1

Pigeon Hole Problem, cont.

» More concise of writing this:

/\ \/ Pr,1

0<k<n \0<Il<n—1

» We also need to state that multiple pigeons cannot be placed

into same hole:
/\ /\ /\ Pik V TPjk

ki g

» With n > 25, this formula cannot be solved by competitive
SAT solvers!

» Problem: Conflict clauses talk about specific holes/pigeons,
but problem is symmetric!

» = Research on symmetry breaking

Isil Dillig, €5389L: Automated Logical Reasoning _Lecture 4: Applications of SAT

Isil Dillg, CS389L: Automated Logical Reasoning Lecture 4: Applications of SAT 6/27

Why So Much Work on SAT solvers?

» Many interesting and computationally difficult problems can
be reduced to SAT

» Boolean satisfiability is one of the most basic of NP-complete
problems

» |dea: Write one really good SAT solver and reduce all other
NP-complete problems to SAT

Review of NP-Completeness

A problem A is NP-complete if:

» In complexity class NP:
>
» Also NP-hard:

» This poly-time transformation to A is called a reduction

Isil Dillig, €5389L: Automated Logical Reasoning _Lecture 4: Applications of SAT

Isil Dillg, CS389L: Automated Logical Reasoning ~ Lecture 4: Applications of SAT 8/27

Complexity Class of Validity

» Question: Is checking validity in propositional logic also
NP-complete?

» Answer:

» Checking validity in propositional logic is co-NP complete

Review of co-NP Completeness
A problem A is co-NP-complete if:
» In complexity class co-NP: its complement is in NP

» complement = decision problem resulting from swapping the
yes/no answers

» Another way of saying a problem is in co-NP: we can verify a
counterexample in polynomial time

» Checking validity is in co-NP because we can verify that an
interpretation is falsifying in polynomial time.

» Also co-NP hard: There is a polynomial time transformation
from any problem in co-NP to A (holds for validity)

Isil Dillig, €5389L: Automated Logical Reasoning Lecture 4: Applications of SAT

Isil Dillg, €S389L: Automated Logical Reasoning Lecture 4: Applications of SAT 10/27

Practical Applications of SAT

» Applications of SAT solvers: automated testing of circuits,
product configuration, package management, computational
biology, cryptanalysis, particle physics, solving many graph
problems . ..

» We will look at two example applications:

> Product configuration

> Automatic test pattern generation for hardware

Applications of SAT in Product Configuration

» Motivation: Some products, such as cars, are highly
customizable

» For example, Mercedes C class
has a total of >650 options!

» Leather interior, seat heating,
thermotronic comfort air
conditioning, high-capacity
battery, ventilated seats, heated
steering wheel, 64-color LED
ambient lighting, blind spot
assist...

Isil Dillig, C5380L: Automated Logical Reasoning Lecture 4: Applications of SAT

11/27

Isil Dillg, €S389L: Automated Logical Reasoning Lecture 4: Applications of SAT 12/27

Lots of Options = Lots of Dependecies

» But there may be intricate dependencies between these
configurations

» Example: “Thermotronic comfort air conditioning requires
high-capacity battery except when combined with gasoline
engines of 3.2 liter capacity”

» Customers may not be aware of all these dependencies, so
they may choose inconsistent configuration options

Using SAT Solvers to Check Configurations

» Since there are too many configurations and too many
dependencies, it is not feasible to have a human check them!

» |dea: Use SAT solver to check if the user picks consistent
configuration options

» Encode the dependencies between configurations as a
propositional formula v

» Encode user-selected options as propositional formula ¢
» Use SAT solver to check if ¥ A ¢ is satisfiable

» If yes, then chosen configuration is fine

Isil Dillig, C5380L: Automated Logical Reasoning Lecture 4: Applications of SAT

13/27

Isil Dillg, €S389L: Automated Logical Reasoning Lecture 4: Applications of SAT

14/27

Example: Encoding Dependencies as Boolean Formulas

» Recall the dependency: “Thermotronic comfort air
conditioning requires high-capacity battery except when
combined with gasoline engines of 3.2 liter capacity”

» Introduce propositional variable for different options
t = thermotronic comfort air conditioning
b = high-capacity battery
g = gasoline engine with 3.2 liter capacity

» Consistency of configuration requires:

» If user chooses comfort AC, small battery, but not the 3.2It.
engine, user configuration encoded as:

» Since ¥ A ¢ unsat, user must pick different configuration

Another Application of SAT Solvers: ATPG

» Another industrical application of SAT solvers:
testing integrated circuits

» When manufacturing an integrated circuit, many
things can go wrong: complex process involving
photolithography, etching, dicing ...

» One common problem: component in circuit
stuck at fault (i.e., output of the component is 0
or 1 regardless of input)

> Automatic test pattern generation (ATPG) tries
to construct inputs to check for a particular
component being stuck at fault

Isil Dillig, C5380L: Automated Logical Reasoning Lecture 4: Applications of SAT

15/27

Isil Dillg, €S389L: Automated Logical Reasoning Lecture 4: Applications of SAT

16/27

ATPG using SAT

» To formulate ATPG using boolean satisfiability, we consider
two variations of the circuit.

» The first one, “the good circuit”, represents the circuit without
any stuck-at-fault components.

» The second one, “the faulty circuit”, represents the circuit with
a particular component stuck at fault.

Good vs. Faulty Circuit

» Good circuit:

» Faulty circuit:

» Here, the OR component is stuck at 0.

Isil Dillig, C5380L: Automated Logical Reasoning Lecture 4: Applications of SAT

17/21

il Dillg, €5389L: Automated Logical Reasoning _Lecture 4: Applications of SAT

18/27

Circuit as Propositional Formula

» Now, represent both the good and faulty circuit using
propositional formulas Fg and Fr.

» Good circuit:

» Faulty circuit:

Finding an Input to Detect Fault

» To detect if manufactured circuit is faulty, we need an input
for which the outputs of the good and faulty circuits differ.

» But such an input must be a satisfying assignment to the
formula:
(FG /\—‘FF) V (—‘FG /\FF)

» Thus, to detect if manufactured circuit is stuck at fault, test
on inputs that are sat assignments to above formula

» Moral: Boolean satisfiability useful for finding hardware
defects!

Isil Dillig, C5389L: Automated Logical Reasoning _Lecture 4: Applications of SAT 19/27

Isil Dillg, €S389L: Automated Logical Reasoning Lecture 4: Applications of SAT 20/27

Variations on the Boolean Satisfiability Problem

» So far, we considered the basic boolean satisfiability problem:
Given a propositional formula F, is F satisfiable?

» There are also some common variations of SAT: Maximum
Satisfiability (MaxSAT), Partial MaxSAT, Weighted MaxSAT,
min unsat core, ...

Maximum Satisfiability (MaxSAT)

» The MaxSAT problem: Given formula F' in CNF, find
assignment maximizing the number of satisfied clauses of F.

» Observe: If F is satisfiable, the solution to the MaxSAT
problem is the number of clauses in F'.

» If I is unsatisfiable, we want to find a maximum subset of
F"s clauses whose conjunction is satisfiable.

» Example: What is a solution for the MaxSAT problem
(aVb)AN—aNh-b?

» Question: How could MaxSAT be useful for product
configuration?

Isil Dillig, C5389L: Automated Logical Reasoning Lecture 4: Applications of SAT 21/27

Isil Dillg, €S389L: Automated Logical Reasoning Lecture 4: Applications of SAT 22/27

Partial MaxSAT

» Similar to MaxSAT, but we distinguish between two kinds of
clauses.

» Hard clauses: Clauses that must be satisfied

» Soft clauses: Clauses that we would like to, but do not have
to, satisfy

» Partial MaxSAT problem: Given CNF formula F' where each
clause is marked as hard or soft, find an assignment that
satisfies all hard clauses and maximizes the number satisfied
soft clauses

More on Partial MaxSAT

» Observe: Both regular SAT and MaxSAT are special cases of
partial MaxSAT

» In normal SAT, all clauses are hard clauses
» In MaxSAT, all claues are implicitly soft clauses

» In this sense, Partial MaxSAT is a generalization over both
SAT and MaxSAT

Isil Dillig, C5380L: Automated Logical Reasoning Lecture 4: Applications of SAT 23/27

Isil Dillg, €S389L: Automated Logical Reasoning Lecture 4: Applications of SAT 2427

Partial Weighted MaxSAT

There is even one more generalization over Partial MaxSAT:
Partial Weighted MaxSAT

In addition to being hard and soft, clauses also have weights
(e.g., indicating their importance)

Partial Weighted MaxSAT problem: Find assignment
maximizing the sum of weights of satisfied soft clauses

Partial MaxSAT is an instance of partial weighted MaxSAT
where all clauses have equal weight

An Application of Partial MaxSAT

» Software package installation: Suppose you want to install
software package A, but it has some dependencies

» For example, suppose A requires B but it is not compatible
with package C

» B in turn requires D; E is not compatible with F'

» Furthermore, some of these packages may already be installed
on your computer (e.g., package C)

> You want to know (i) if it is possible to install package A, and
(i) if not, which software should you uninstall to install A?

» How can we formulate this partial MaxSAT?

Isil Dillg, C5389L: Automated Logical Reasoning _Lecture 4: Applications of SAT 25/21 Isil Dillg C5389L: Automated Logical Reasoning Lecture 4: Applications of SAT 26/27
Ruben Martins Justine Sherry
Camegie Mellon University Camegie Mellon University
rubennécs . cma. edu sherrybcs.cmu.edu
Abstraci—Having a perfect seating arrangement for weddings

s ‘not an cany task. Can Alce sit next to Bob? Can we VoerYm=1

hat Charles and his ex-girlfriend Eve not be seated =%
together? Meeting such constraints is classically one of the
most difficult tasks in planning ing ‘guests will + Each table will have at most u guests:
ot accept “i’s NP-completel’ as an excuse for poor seat
arrangements. We discuss how MaxSAT can provide the optimal v,
Scating arrangement for a perfect wedding, saving brides and ey psu
rooms (ineluding the authors) from hours of struggle. k=3

+ Each table will have at least [guests:
L. INTRODUCTION
‘This benchmark description describes the encoding used for Ve Snzt
the wedding seating arrangement for our wedding in Lisbon =
We s s s
ot For exple. b o b e iy sty e some gusts may have disrecments it cuch ot
it togethers rends ho went 1 school together should sic %€ als0 included some exclusion consrints that guarantee
; that guests which have conflcts with each other are not seated
ogether; individuals with a history of conflict should be seated :
apart: ete. We wanted to maximivethe happiness of ourguests " the same table. For every pait of guests p and p/ hat have
i bettr . 1o o that. tha tomcde e peobyom & conlict with cach other we nclude the following constaints
into MaxSAT! MaxSAT was an ideal solution for our own (Mt guarantee that they will not seat together:
wedding: i) it saved us tens of hours, i) it was siress free, and v, ,
i) in the rare case that a guest complained about their scating ter(petpi <1)
arrangement, we just blamed the algorithm!" To enforce that if a person p is seated at table ¢ then ¢
Isil Dillg, C5389L: Automated Logical Reasoning _Lecture 4: Applications of SAT 27/21

