
CS389L: Automated Logical Reasoning

Lecture 4: Applications of SAT

Işıl Dillig

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 4: Applications of SAT 1/27

Plan for Today

I Some challenges for current SAT solvers

I Applications of SAT: product configuration, hardware
manufacturing

I Variations on the satisfiability problem (e.g., MaxSAT)

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 4: Applications of SAT 2/27

SAT Solving Landscape Today

I Current CDCL based solvers able to solve problems with
hundred thousands or even millions of variables

I Check out satcompetition.org!

I SAT solvers routinely solve very large problems, but possible
to create very small instances that take very long!

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 4: Applications of SAT 3/27

Not Every Small SAT Problem is Easy

I An Example: the pigeonhole
problem

I Is it possible to place n
pigeons into m holes?

I Obvious for humans!

I But turns out to be very
difficult to solve for SAT
solvers!

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 4: Applications of SAT 4/27

Encoding Pigeonhole Problem in Propositional Logic

I Let’s encode this for m = n − 1.

I Let pi ,j stand for “pigeon i placed in j ’th hole”

I Given we have n − 1 holes, how do we say i ’th pigeon must
be placed in at least one hole?

I Given we have n pigeons, how do we say every pigeon must
be placed in one hole?

p1,1 ∨ p1,2 ∨ . . . p1,n−2 ∨ p1,n−1
∧ p2,1 ∨ p2,2 ∨ . . . p2,n−2 ∨ p2,n−1
...
∧ pn,1 ∨ pn,2 ∨ . . . pn,n−2 ∨ pn,n−1

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 4: Applications of SAT 5/27

Pigeon Hole Problem, cont.
I More concise of writing this:

∧

0≤k<n


 ∨

0≤l<n−1
pk ,l




I We also need to state that multiple pigeons cannot be placed
into same hole: ∧

k

∧

i

∧

j 6=i

¬pik ∨ ¬pjk

I With n > 25, this formula cannot be solved by competitive
SAT solvers!

I Problem: Conflict clauses talk about specific holes/pigeons,
but problem is symmetric!

I ⇒ Research on symmetry breaking

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 4: Applications of SAT 6/27

1



Why So Much Work on SAT solvers?

I Many interesting and computationally difficult problems can
be reduced to SAT

I Boolean satisfiability is one of the most basic of NP-complete
problems

I Idea: Write one really good SAT solver and reduce all other
NP-complete problems to SAT

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 4: Applications of SAT 7/27

Review of NP-Completeness

A problem A is NP-complete if:

I In complexity class NP:

I

I Also NP-hard:

I This poly-time transformation to A is called a reduction

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 4: Applications of SAT 8/27

Complexity Class of Validity

I Question: Is checking validity in propositional logic also
NP-complete?

I Answer:

I Checking validity in propositional logic is co-NP complete

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 4: Applications of SAT 9/27

Review of co-NP Completeness

A problem A is co-NP-complete if:

I In complexity class co-NP: its complement is in NP

I complement = decision problem resulting from swapping the
yes/no answers

I Another way of saying a problem is in co-NP: we can verify a
counterexample in polynomial time

I Checking validity is in co-NP because we can verify that an
interpretation is falsifying in polynomial time.

I Also co-NP hard: There is a polynomial time transformation
from any problem in co-NP to A (holds for validity)

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 4: Applications of SAT 10/27

Practical Applications of SAT

I Applications of SAT solvers: automated testing of circuits,
product configuration, package management, computational
biology, cryptanalysis, particle physics, solving many graph
problems . . .

I We will look at two example applications:

I Product configuration

I Automatic test pattern generation for hardware

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 4: Applications of SAT 11/27

Applications of SAT in Product Configuration

I Motivation: Some products, such as cars, are highly
customizable

I For example, Mercedes C class
has a total of >650 options!

I Leather interior, seat heating,
thermotronic comfort air
conditioning, high-capacity
battery, ventilated seats, heated
steering wheel, 64-color LED
ambient lighting, blind spot
assist...

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 4: Applications of SAT 12/27

2



Lots of Options = Lots of Dependecies

I But there may be intricate dependencies between these
configurations

I Example: “Thermotronic comfort air conditioning requires
high-capacity battery except when combined with gasoline
engines of 3.2 liter capacity”

I Customers may not be aware of all these dependencies, so
they may choose inconsistent configuration options

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 4: Applications of SAT 13/27

Using SAT Solvers to Check Configurations

I Since there are too many configurations and too many
dependencies, it is not feasible to have a human check them!

I Idea: Use SAT solver to check if the user picks consistent
configuration options

I Encode the dependencies between configurations as a
propositional formula ψ

I Encode user-selected options as propositional formula φ

I Use SAT solver to check if ψ ∧ φ is satisfiable

I If yes, then chosen configuration is fine

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 4: Applications of SAT 14/27

Example: Encoding Dependencies as Boolean Formulas

I Recall the dependency: “Thermotronic comfort air
conditioning requires high-capacity battery except when
combined with gasoline engines of 3.2 liter capacity”

I Introduce propositional variable for different options
t = thermotronic comfort air conditioning
b = high-capacity battery
g = gasoline engine with 3.2 liter capacity

I Consistency of configuration requires:

I If user chooses comfort AC, small battery, but not the 3.2lt.
engine, user configuration encoded as:

I Since ψ ∧ φ unsat, user must pick different configuration

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 4: Applications of SAT 15/27

Another Application of SAT Solvers: ATPG

I Another industrical application of SAT solvers:
testing integrated circuits

I When manufacturing an integrated circuit, many
things can go wrong: complex process involving
photolithography, etching, dicing . . .

I One common problem: component in circuit
stuck at fault (i.e., output of the component is 0
or 1 regardless of input)

I Automatic test pattern generation (ATPG) tries
to construct inputs to check for a particular
component being stuck at fault

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 4: Applications of SAT 16/27

ATPG using SAT

I To formulate ATPG using boolean satisfiability, we consider
two variations of the circuit.

I The first one, “the good circuit”, represents the circuit without
any stuck-at-fault components.

I The second one, “the faulty circuit”, represents the circuit with
a particular component stuck at fault.

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 4: Applications of SAT 17/27

Good vs. Faulty Circuit

I Good circuit:

I Faulty circuit:

I Here, the OR component is stuck at 0.

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 4: Applications of SAT 18/27

3



Circuit as Propositional Formula

I Now, represent both the good and faulty circuit using
propositional formulas FG and FF .

I Good circuit:

I Faulty circuit:

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 4: Applications of SAT 19/27

Finding an Input to Detect Fault

I To detect if manufactured circuit is faulty, we need an input
for which the outputs of the good and faulty circuits differ.

I But such an input must be a satisfying assignment to the
formula:

(FG ∧ ¬FF ) ∨ (¬FG ∧ FF )

I Thus, to detect if manufactured circuit is stuck at fault, test
on inputs that are sat assignments to above formula

I Moral: Boolean satisfiability useful for finding hardware
defects!

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 4: Applications of SAT 20/27

Variations on the Boolean Satisfiability Problem

I So far, we considered the basic boolean satisfiability problem:
Given a propositional formula F , is F satisfiable?

I There are also some common variations of SAT: Maximum
Satisfiability (MaxSAT), Partial MaxSAT, Weighted MaxSAT,
min unsat core, . . .

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 4: Applications of SAT 21/27

Maximum Satisfiability (MaxSAT)

I The MaxSAT problem: Given formula F in CNF, find
assignment maximizing the number of satisfied clauses of F .

I Observe: If F is satisfiable, the solution to the MaxSAT
problem is the number of clauses in F .

I If F is unsatisfiable, we want to find a maximum subset of
F ’s clauses whose conjunction is satisfiable.

I Example: What is a solution for the MaxSAT problem
(a ∨ b) ∧ ¬a ∧ ¬b?

I Question: How could MaxSAT be useful for product
configuration?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 4: Applications of SAT 22/27

Partial MaxSAT

I Similar to MaxSAT, but we distinguish between two kinds of
clauses.

I Hard clauses: Clauses that must be satisfied

I Soft clauses: Clauses that we would like to, but do not have
to, satisfy

I Partial MaxSAT problem: Given CNF formula F where each
clause is marked as hard or soft, find an assignment that
satisfies all hard clauses and maximizes the number satisfied
soft clauses

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 4: Applications of SAT 23/27

More on Partial MaxSAT

I Observe: Both regular SAT and MaxSAT are special cases of
partial MaxSAT

I In normal SAT, all clauses are hard clauses

I In MaxSAT, all claues are implicitly soft clauses

I In this sense, Partial MaxSAT is a generalization over both
SAT and MaxSAT

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 4: Applications of SAT 24/27

4



Partial Weighted MaxSAT

I There is even one more generalization over Partial MaxSAT:
Partial Weighted MaxSAT

I In addition to being hard and soft, clauses also have weights
(e.g., indicating their importance)

I Partial Weighted MaxSAT problem: Find assignment
maximizing the sum of weights of satisfied soft clauses

I Partial MaxSAT is an instance of partial weighted MaxSAT
where all clauses have equal weight

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 4: Applications of SAT 25/27

An Application of Partial MaxSAT

I Software package installation: Suppose you want to install
software package A, but it has some dependencies

I For example, suppose A requires B but it is not compatible
with package C

I B in turn requires D ;E is not compatible with F

I Furthermore, some of these packages may already be installed
on your computer (e.g., package C )

I You want to know (i) if it is possible to install package A, and
(ii) if not, which software should you uninstall to install A?

I How can we formulate this partial MaxSAT?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 4: Applications of SAT 26/27

A Funny Story...

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 4: Applications of SAT 27/27

5


