Motivation

- **Previous lectures**: How to determine satisfiability of propositional formulas
- **Sometimes need to efficiently represent all solutions (i.e., satisfying assignments) to the formula**
- **Binary decision diagrams (BDDs)**: compact representation of all satisfying assignments of formula

Historical Context

- Invented by Randal Bryant from CMU; introduced in very influential 1986 paper
- BDDs have many applications: hardware and software verification, computer aided design of circuits, relational databases, . . .
- Don Knuth in 2008: "One of the really fundamental data structures that came out in the last 25 years"

Binary Decision Trees

- Before talking about BDDs, let us first consider a simpler data structure called **binary decision tree**
- **Binary decision tree**: A tree data structure with two kinds of vertices, terminal and non-terminal
- Terminal vertices: boolean constants \top (1) and \bot (0)
- Non-terminal vertex labeled v corresponds to boolean variable v in propositional formula

Binary Decision Trees, cont.

- Each non-terminal vertex has two successors (i.e., edges)
- **Low successor** of non-terminal vertex v (labeled with dashed edge) corresponds to assigning 0 to v
- **High successor** of vertex v (labeled with solid edge) corresponds to assigning 1 to v
- Each path from root to a terminal node corresponds to an interpretation for the formula
- Paths ending in 1 correspond to satisfying interpretations
- Paths ending in 0 correspond to falsifying interpretations

Example: Binary Decision Tree

- Binary decision tree for formula with variables x_1, x_2, x_3:

 ![Binary Decision Tree Diagram]

 - **Question**: Is interpretation $x_1 = \bot, x_2 = \bot, x_3 = \top$ satisfying?
 - **Question**: What about $x_1 = \top, x_2 = \bot, x_3 = \top$?
 - **This BDT is ordered**: Any path from the root to a terminal contains variables in the same order (order: $x_1 < x_2 < x_3$)
Binary Decision Tree vs. Truth Table

- Binary decision tree encodes all satisfying assignments, but how does it compare to truth tables?
- Good news: Not as bad as it looks; there is a lot of redundancy! (e.g., different subparts of the tree are isomorphic)
- Idea: Merge redundant subparts and compress BDT into a much more space-efficient DAG representation!

Reduced Ordered Binary Decision Diagram

- To understand how to generate a more compact representation, start with an ordered binary decision tree and apply a set of reduction rules
- There are three reduction rules; we apply these rules until none of them can be further applied
- The resulting data structure is called a reduced ordered binary decision diagram (ROBDD)
- When we talk about BDDs, we really mean ROBDDs (and so does everyone else)

Reduction Rule #1

Reduction rule #1: Merge all terminal nodes 1 into one node, and merge all terminal nodes 0 into one node.

Example: Merging Isomorphic Subtrees

- Which subgraphs are isomorphic?

Reduction Rule #2

Reduction rule #2: Merge isomorphic subgraphs

- Two subgraphs are isomorphic if:
 1. Their root represents the same variable
 2. The subgraphs rooted at their low successors are isomorphic
 3. The subgraphs rooted at their high successors are also isomorphic

Reduction Rule #3

Reduction rule #3: Remove redundant nodes.

- Node v is redundant if its low and high successors are the same.
- Why?
- Eliminating redundant node v: Remove v from the graph, and redirect incoming edge to v to v's children
Example: Removing Redundant Nodes

Which nodes are redundant?

Exposing New Reductions

- Question: Can removing redundant nodes expose new isomorphic subtrees? (i.e., do we need to apply reduction 2 again after reduction 3?)
- Example: Are there any isomorphic subparts in this graph?

Applying Reductions

- As examples illustrate, we may need to apply reduction rules again after each reduction
- Thus, have to apply reductions 2 and 3 until no isomorphic subgraphs and no redundant nodes left
- Resulting data structure after exhaustive application of reduction rules is a ROBDD.
- ROBDD is more space efficient compared to the binary decision tree because it eliminates redundancies.

Building ROBDDs

- Starting with BDT and applying reduction rule useful way to understand BDD invariants
- But no one builds BDDs this way. Why?
- Idea: Build the ROBDD for a formula directly without building the binary decision tree!

Building BDDs directly from Formulas

- Consider a formula ϕ of the form $\phi_1 \ast \phi_2$ where \ast is any boolean connective
- To construct the ROBDD for ϕ, first recursively construct the ROBDDs for ϕ_1 and ϕ_2
- Then, combine BDDs for ϕ_1 and ϕ_2 to form the BDD for ϕ
- To combine BDDs for ϕ_1 and ϕ_2, will use a technique called Shannon’s decomposition
Cofactoring and Shannon’s Decomposition

- Shannon’s decomposition involves an operation called cofactoring.
- Cofactoring a boolean formula restricts the formula to a particular value of a variable.
- Example: What is the resulting formula when we restrict x_1 to \top in $x_1 \land x_2$?
- The positive cofactor $\phi \downarrow x_i$ is the resulting formula when x_i is replaced by \top.
- The negative cofactor $\phi \downarrow \neg x_i$ is ϕ with x_i replaced by \bot.
- Example: What is $(x_1 \lor (\neg x_2 \land x_3)) \downarrow \neg x_2$?

Cofactoring Using BDDs

- If we have a BDD for ϕ, it is easy to build BDD for positive and negative cofactors of ϕ with respect to x.
- Given BDD for ϕ, how do we build BDD for $\phi \downarrow x$?
- How do we build BDD for $\phi \downarrow \neg x$?

Cofactoring Example

What is the BDD representing $\phi \downarrow \neg x_2$?

Using Shannon’s Decomposition to Build BDD

- Now, we can directly build BDD for a formula $\phi_1 \ast \phi_2$ using Shannon’s decomposition.
- First, build BDD for subformulas ϕ_1 and ϕ_2.
- Then, use operation called Apply to build BDD for ϕ from BDDs for ϕ_1 and ϕ_2.
- The Apply operation considers three cases.

Shannon’s Decomposition

- Can now define Shannon’s decomposition using cofactors.
- Shannon’s decomposition:
 $\phi \equiv (x \land \phi \downarrow) \lor (\neg x \land \phi \downarrow \neg x)$
- Basically a case analysis on x’s truth value.
- If x is \top, then the positive cofactor must be true.
- If x is \bot, then the negative cofactor must be true.

Apply: Case #1

- Case #1: Suppose that the BDDs for ϕ_1 and ϕ_2 have root nodes x and x' and both are boolean constants.
- Then, what is the BDD for $\phi_1 \ast \phi_2$?
- This is the base case for our Apply procedure.
Apply: Case #2

- **Case #2**: Root nodes x and x' are not boolean constants, and either $x = x'$ or x precedes x' in the variable order.
- Since x comes first in variable order, we’ll first do a case analysis on x using Shannon’s decomposition.
- Using Shannon’s decomp., what is $\phi_1 \ast \phi_2$ equivalent to?

- Cofactoring distributes over connectives, so rewrite as:

 $$(x \land (\phi_1 \downarrow x \ast \phi_2 \downarrow x) \lor (\neg x \land (\phi_1 \downarrow \neg x \ast \phi_2 \downarrow \neg x)))$$

Apply: Case #2, continued

- Thus, we need to build BDD for:

 $$(x \land (\phi_1 \downarrow x \ast \phi_2 \downarrow x)) \lor (\neg x \land (\phi_1 \downarrow \neg x \ast \phi_2 \downarrow \neg x))$$

- We know how to build BDDs for $\phi_1 \downarrow x$ and $\phi_1 \downarrow \neg x$.
- How do we build BDDs for $(\phi_1 \downarrow x) \ast (\phi_1 \downarrow \neg x)$ and $(\phi_1 \downarrow \neg x) \ast (\phi_1 \downarrow x)$?

- What is the progress/termination argument?

Apply: Case #2, continued

- Now, assume we have the BDDs for $(\phi_1 \downarrow x \ast \phi_2 \downarrow x)$ and $(\phi_1 \downarrow \neg x \ast \phi_2 \downarrow \neg x)$.
- Using these, how do we build BDD for the whole formula?

 $$(x \land (\phi_1 \downarrow x \ast \phi_2 \downarrow x)) \lor (\neg x \land (\phi_1 \downarrow \neg x \ast \phi_2 \downarrow \neg x))$$

 1. Make a new non-terminal node for variable x.
 2. The low successor of this node is the BDD for the negative cofactor $(\phi_1 \downarrow \neg x \ast \phi_2 \downarrow \neg x)$.
 3. The high successor of this node is the BDD for the positive cofactor $(\phi_1 \downarrow x \ast \phi_2 \downarrow x)$.

- *Note:* We still need to apply the three reduction rules to ensure no redundancies.

Apply: Case #3

- **Case #3**: Root nodes x and x' are not boolean constants, and x' precedes x in the variable order.
- This case is completely symmetric to previous case, and we again handle it using Shannon’s decomposition.
- Only difference: perform Shannon’s decomposition using x' instead of x.

An Example

- Consider formula $\phi_1 \lor \phi_2$ where ϕ_1 is $x_1 \leftrightarrow x_2$, and ϕ_2 is $\neg x_2$.
- Suppose x_1 precedes x_2 in variable order.
- Assume we have BDDs for ϕ_1 and ϕ_2:

 ![BDD Example](image)

- We want to use Apply to compute BDD for $\phi_1 \lor \phi_2$.

Example, continued

- Since x_1 precedes x_2 in variable order, what do we perform case split on?
- How do we decompose $\phi_1 \lor \phi_2$ using Shannon’s decomposition?
- Thus, we recursively compute BDDs for $(\phi_1 \downarrow \neg x_1 \lor \phi_2 \downarrow \neg x_2)$ and $(\phi_1 \downarrow x_1 \lor \phi_2 \downarrow x_1)$.
Example, continued

- Assuming we computed the BDDs for negative and positive cofactors, BDD for $\phi_1 \lor \phi_2$ looks like:

- Here, the positive cofactor is just 1
- Negative cofactor is:

- What is the final BDD?

Example 2

- Give the BDD representing the negation of the following BDD:

Rest Of Lecture

- So far: talked about what BDDs are and how to construct them
- In addition to compactly representing all satisfying interpretations, BDDs have some other useful properties
- Rest of lecture:
 Talk about some interesting properties of BDDs

Important Property of BDDs: Canonicity

- BDDs are a canonical representation of boolean formulas.
- Canonical means two equivalent formulas have same representation
- Thus, if we construct BDDs for two equivalent formulas using same variable order, resulting BDDs are the same!
- Are any of the normal forms we talked about (NNF, CNF, DNF) canonical?
- Example:

Consequences of Canonicity

- Corollary 1: Given BDDs for ϕ_1 and ϕ_2 constructed with same variable order, equivalence of ϕ_1 and ϕ_2 just syntactic check
- Corollary 2: Given BDD for formula ϕ, ϕ is unsatisfiable if and only if its BDD representation is the boolean constant 0.
- How does this corollary follow from canonicity?
- Corollary 3: Given BDD for formula ϕ, ϕ is valid if and only if its BDD representation is the boolean constant 1.
BDD Size and Variable Order

- Another important BDD property: Size of a BDD for a given formula ϕ is very sensitive to variable order!
- For some variable orders, the size of the BDD may be only polynomial in the number of variables.
- For some other variable orders, the size of the BDD for same formula may be exponential.
- Furthermore, there are boolean formulas for which any variable order causes an exponential blow-up.

Choosing Variable Order

- Since size of BDD is so sensitive to variable order, we would like to construct BDD using a good variable order.
- Unfortunately, NP-complete to decide whether a given order is optimal.
- Typically, heuristics are used to predict good variable order.
- Heuristics for finding good variable order can be either static (i.e., determined up-front) or dynamic (i.e., change as BDD operations proceed).
- Dynamic orders typically yield more compact BDDs, but slower.

Summary

- BDDs can be used to compactly represent all satisfying assignments to a boolean formula.
- **Pros:**
 - Canonical representation \Rightarrow checking equivalence, validity, satisfiability constant time operations once BDD is built.
 - If we have good variable order, can yield a compact representation of all satisfying assignments of formula.
- **Cons:**
 - Compactness very sensitive to variable order.
 - Can cause an exponential blow-up in the representation of the formula.