Motivation

- Previous lectures: How to determine satisfiability of propositional formulas
- Sometimes need to efficiently represent all solutions (i.e., satisfying assignments) to the formula
- Binary decision diagrams (BDDs): compact representation of all satisfying assignments of formula

Historical Context

- Invented by Randal Bryant from CMU; introduced in very influential 1986 paper
- BDDs have many applications: hardware and software verification, computer aided design of circuits, relational databases, …
- Don Knuth: “One of the really fundamental data structures that came out in the last twenty years”

Binary Decision Trees

- Before talking about BDDs, let us first consider a simpler data structure called binary decision tree
- Binary decision tree: A tree data structure with two kinds of vertices, terminal and non-terminal
- Terminal vertices: boolean constants \top (1) and \bot (0)
- Non-terminal vertex labeled v corresponds to boolean variable v in propositional formula

Binary Decision Trees, cont.

- Each non-terminal vertex has two successors (i.e., edges)
- Low successor of non-terminal vertex v (labeled with dashed edge) corresponds to assigning 0 to v
- High successor of vertex v (labeled with solid edge) corresponds to assigning 1 to v
- Each path from root to a terminal node corresponds to an interpretation for the formula
- Paths ending in 1 correspond to satisfying interpretations
- Paths ending in 0 correspond to falsifying interpretations

Example: Binary Decision Tree

- Binary decision tree for formula with variables x_1, x_2, x_3:

 Question: Is interpretation $x_1 = \bot, x_2 = \bot, x_3 = \top$ satisfying?
 Question: What about $x_1 = \top, x_2 = \bot, x_3 = \top$?
 This BDT is ordered: Any path from the root to a terminal contains variables in the same order (order: $x_1 < x_2 < x_3$)
Binary Decision Tree vs. Truth Table

- Binary decision tree encodes all satisfying assignments, but how does it compare to truth tables?
- Good news: Not as bad as it looks; there is a lot of redundancy! (e.g., different subparts of the tree are isomorphic)
- Idea: Merge redundant subparts and compress BDT into a much more space-efficient DAG representation!

Reduced Ordered Binary Decision Diagram

- To create compact representation, start with an ordered binary decision tree and apply a set of reduction rules
- There are three reduction rules; we apply these rules until none of them can be further applied
- The resulting data structure is called a reduced ordered binary decision diagram (ROBDD)
- When we talk about BDDs, we really mean ROBDDs (and so does everyone else)

Reduction Rule #1

Reduction rule #1: Merge all terminal nodes 1 into one node, and merge all terminal nodes 0 into one node.

Example: Merging Isomorphic Subtrees

- Which subgraphs are isomorphic?

Reduction Rule #2

- Reduction rule #2: Merge isomorphic subgraphs
- Two subgraphs are isomorphic if:
 1. Their root represents the same variable
 2. The subgraphs rooted at their low successors are isomorphic
 3. The subgraphs rooted at their high successors are also isomorphic

Reduction Rule #3

- Reduction rule #3: Remove redundant nodes.
- Node \(v \) is redundant if its low and high successors are the same.
- Why?
- Eliminating redundant node \(v \): Remove \(v \) from the graph, and redirect incoming edge to \(v \) to \(v \)'s children
Example: Removing Redundant Nodes

Which nodes are redundant?

Exposing New Reductions

Question: Can removing redundant nodes expose new isomorphic subtrees? (i.e., do we need to apply reduction 2 again after reduction 3?)

Example: Are there any isomorphic subparts in this graph?

Exposing New Reductions, cont.

Question: Can merging isomorphic subgraphs expose new redundant nodes? (i.e., do we need to apply reduction 3 again after reduction 2?)

Example: Are there any redundant nodes in this graph?

Applying Reductions

As examples illustrate, we may need to apply reduction rules again after each reduction.

Thus, have to apply reductions 2 and 3 until no isomorphic subgraphs and no redundant nodes left.

Resulting data structure after exhaustive application of reduction rules is a ROBDD.

ROBDD is more space efficient compared to the binary decision tree because it eliminates redundancies.

Building ROBDDs

Starting with BDT and applying reduction rule useful way to understand BDD invariants.

But no one builds BDDs this way. Why?

Idea: Build the ROBDD for a formula directly without building the binary decision tree!

Building BDDs directly from Formulas

Consider a formula ϕ of the form $\phi_1 \ast \phi_2$ where \ast is any boolean connective.

To construct the ROBDD for ϕ, first recursively construct the ROBDDs for ϕ_1 and ϕ_2.

Then, combine BDDs for ϕ_1 and ϕ_2 to form the BDD for ϕ.

To combine BDDs for ϕ_1 and ϕ_2, will use a technique called Shannon’s decomposition.
Cofactoring and Shannon’s Decomposition

- Shannon’s decomposition involves an operation called cofactoring.
- Cofactoring a boolean formula restricts the formula to a particular value of a variable.
- Example: What is the resulting formula when we restrict x_1 to \top in $x_1 \land x_2$?
- The positive cofactor $\phi \downarrow x_i$ is the resulting formula when x_i is replaced by \top.
- The negative cofactor $\phi \downarrow \neg x_i$ is ϕ with x_i replaced by \bot.
- Example: What is $(x_1 \lor (\neg x_2 \land x_3)) \downarrow \neg x_2$?

Cofactoring Using BDDs

- If we have a BDD for ϕ, it is easy to build BDD for positive and negative cofactors of ϕ with respect to x.
- Given BDD for ϕ, how do we build BDD for $\phi \downarrow x$?
- How do we build BDD for $\phi \downarrow \neg x$?

Shannon’s Decomposition

- Can now define Shannon’s decomposition using cofactors.
- Shannon’s decomposition:
 $$\phi \equiv (x \land \phi \downarrow x) \lor (\neg x \land \phi \downarrow \neg x)$$
- Basically a case analysis on x’s truth value.
- If x is \top, then the positive cofactor must be true.
- If x is \bot, then the negative cofactor must be true.

Using Shannon’s Decomposition to Build BDD

- Now, we can directly build BDD for a formula $\phi_1 \ast \phi_2$ using Shannon’s decomposition.
- First, build BDD for subformulas ϕ_1 and ϕ_2.
- Then, use operation called Apply to build BDD for ϕ from BDDs for ϕ_1 and ϕ_2.
- The Apply operation considers three cases.

Apply: Case #1

- Case #1: Suppose that the BDDs for ϕ_1 and ϕ_2 have root nodes x and x' and both are boolean constants.
- Then, what is the BDD for $\phi_1 \ast \phi_2$?
- This is the base case for our Apply procedure.
Apply: Case #2

- Case #2: Root nodes x and x' are not boolean constants, and either $x = x'$ or x precedes x' in the variable order.
- Since x comes first in variable order, we’ll first do a case analysis on x using Shannon’s decomposition.
- Using Shannon’s decom., what is $\phi_1 \land \phi_2$ equivalent to?
- Cofactoring distributes over connectives, so rewrite as:
 $$(x \land (\phi_1 \downarrow x \land \phi_2 \downarrow x)) \lor (\neg x \land (\phi_1 \downarrow \neg x \land \phi_2 \downarrow \neg x))$$

Apply: Case #2, continued

- Thus, we need to build BDD for:
 $$(x \land (\phi_1 \downarrow x \land \phi_2 \downarrow x)) \lor (\neg x \land (\phi_1 \downarrow \neg x \land \phi_2 \downarrow \neg x))$$
- We know how to build BDDs for $\phi_1 \downarrow x$ and $\phi_1 \downarrow \neg x$.
- How do we build BDDs for $\phi_1 \downarrow x$ and $\phi_1 \downarrow \neg x$?
 - What is the progress/termination argument?

Apply: Case #2, continued

- Now, assume we have the BDDs for $(\phi_1 \downarrow x \land \phi_2 \downarrow x)$ and $(\phi_1 \downarrow \neg x \land \phi_2 \downarrow \neg x)$.
- Using these, how do we build BDD for the whole formula?
 $$(x \land (\phi_1 \downarrow x \land \phi_2 \downarrow x)) \lor (\neg x \land (\phi_1 \downarrow \neg x \land \phi_2 \downarrow \neg x))$$
 1. Make a new non-terminal node for variable x.
 2. The low successor of this node is the BDD for the negative cofactor $(\phi_1 \downarrow \neg x \land \phi_2 \downarrow \neg x)$.
 3. The high successor of this node is the BDD for the positive cofactor $(\phi_1 \downarrow x \land \phi_2 \downarrow x)$.
- Note: We still need to apply the three reduction rules to ensure no redundancies.

Apply: Case #3

- Case #3: Root nodes x and x' are not boolean constants, and x' precedes x in the variable order.
- This case is completely symmetric to previous case, and we again handle it using Shannon’s decomposition.
- Only difference: perform Shannon’s decomposition using x' instead of x.

An Example

- Consider formula $\phi_1 \lor \phi_2$ where ϕ_1 is $x_1 \leftrightarrow x_2$, and ϕ_2 is $\neg x_2$.
- Suppose x_1 precedes x_2 in variable order.
- Assume we have BDDs for ϕ_1 and ϕ_2:

$$\begin{array}{c}
\phi_1 \downarrow \phi_2 \\
\phi_1 \downarrow x_1 \\
\phi_2 \uparrow \phi_1 \\
\phi_2 \uparrow x_2
\end{array}$$

- We want to use Apply to compute BDD for $\phi_1 \lor \phi_2$.

Example, continued

- Since x_1 precedes x_2 in variable order, what do we perform case split on?
- How do we decompose $\phi_1 \lor \phi_2$ using Shannon’s decomposition?
- Thus, we recursively compute BDDs for $(\phi_1 \downarrow \neg x_1 \lor \phi_2 \downarrow \neg x_1)$ and $(\phi_1 \downarrow x_1 \lor \phi_2 \downarrow x_1)$.
Example, continued

- Assuming we computed the BDDs for negative and positive cofactors, BDD for $\phi_1 \lor \phi_2$ looks like:

- Here, the positive cofactor is just 1
- Negative cofactor is:

- What is the final BDD?

Example 2

- Give the BDD representing the negation of the following BDD:

Rest Of Lecture

- So far: talked about what BDDs are and how to construct them
- In addition to compactly representing all satisfying interpretations, BDDs have some other useful properties
- Rest of lecture: Talk about some interesting properties of BDDs

Important Property of BDDs: Canonicity

- BDDs are a canonic representation of boolean formulas.
- Canonical means two equivalent formulas have same representation
- Thus, if we construct BDDs for two equivalent formulas using same variable order, resulting BDDs are the same!
- Are any of the normal forms we talked about (NNF, CNF, DNF) canonical?
- Example:

Consequences of Canonicity

- Corollary 1: Given BDDs for ϕ_1 and ϕ_2 constructed with same variable order, equivalence of ϕ_1 and ϕ_2 just syntactic check
- Corollary 2: Given BDD for formula ϕ, ϕ is unsatisfiable if and only if its BDD representation is the boolean constant 0.
- How does this corollary follow from canonicity?
- Corollary 3: Given BDD for formula ϕ, ϕ is valid if and only if its BDD representation is the boolean constant 1.
BDD Size and Variable Order

- Another important BDD property: Size of a BDD for a given formula ϕ is very sensitive to variable order!
- For some variable orders, the size of the BDD may be only polynomial in the number of variables.
- For some other variable orders, the size of the BDD for the same formula may be exponential.
- Furthermore, there are boolean formulas for which any variable order causes an exponential blow-up.

Choosing Variable Order

- Since size of BDD is so sensitive to variable order, we would like to construct BDD using a good variable order.
- Unfortunately, NP-complete to decide whether a given order is optimal.
- Typically, heuristics are used to predict good variable order.
- Heuristics for finding good variable order can be either static (i.e., determined up-front) or dynamic (i.e., change as BDD operations proceed).
- Dynamic orders typically yield more compact BDDs, but slower.

Summary

- BDDs can be used to compactly represent all satisfying assignments to a boolean formula.
- **Pros:**
 - Canonical representation \Rightarrow checking equivalence, validity, satisfiability constant time operations once BDD is built.
 - If we have a good variable order, can yield a compact representation of all satisfying assignments of formula.
- **Cons:**
 - Compactness very sensitive to variable order.
 - Can cause an exponential blow-up in the representation of the formula.