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Overview

I Agenda for today:

I Semantic argument method for proving FOL validity

I Important properties of FOL
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Motivation for semantic argument method

I So far, defined what it means for FOL formula to be valid, but
how to prove validity?

I Will extend semantic argument method from PL to FOL

I Recall: In propositional logic, satisfiability and validity are
dual concepts:

F is valid iff ¬F is unsatisfiable

I Since this duality also holds in FOL, we’ll focus on validity
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Semantic Argument Method to Prove Validity

I Recall: Semantic argument method is a proof by
contradiction.

I Basic idea: Assume that F is not valid, i.e., there exists some
S , σ such that S , σ 6|= F

I Then, apply proof rules.

I If can derive contradiction on every branch of proof, F is valid.
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New Proof Rules

I All proof rules from prop. logic carry over but need new rules
for quantifiers.

I Universal elimination I:

U , I , σ |= ∀x .F
U , I , σ[x 7→ o] |= F

(for any o ∈ U )

I Example: Suppose U , I , σ |= ∀x .hates(jack , x )

I Using the above proof rule, we can conclude:

U , I , σ[x 7→ I (jack)] |= hates(jack , x )

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 7: Validity Proofs and Properties of FOL 5/31

Universal Elimation Rule II

I Universal elimination II:

U , I , σ 6|= ∀x .F
U , I , σ[x 7→ o] 6|= F

(for a fresh o ∈ U )

I By a fresh object constant, we mean an object that has not
been previously used in the proof

I Why do we have this restriction?
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Existential Elimination Rule 1

I Existential elimination I:

U , I , σ |= ∃x .F
U , I , σ[x 7→ o] |= F

(for a fresh o ∈ U )

I Again, fresh means an object that has not been used before
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Existential Elimination Rule II

I Existantial elimination II:

U , I , σ 6|= ∃x .F
U , I , σ[x 7→ o] 6|= F

(for any o ∈ U )

I If U , I , σ do not entail ∃x .F , this means there does not exist
any object for which F holds

I Thus, no matter what object x maps to, it still won’t entail F

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 7: Validity Proofs and Properties of FOL 8/31

Final Proof Rule

I Finally, we need a rule for deriving for contradicitons

I Contradiction rule:

U , I , σ |= p(s1, . . . , sn)
U , I , σ 6|= p(t1, . . . , tn)
(I , σ)(si) = (I , σ)(ti) for all i ∈ [1,n]
U , I , σ |= ⊥

I Example: Suppose we have S , {x 7→ a} |= p(x ) and
S , {y 7→ a} 6|= p(y)

I The proof rule for contradiction allows us to derive ⊥
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Example 1: Proving Validity
I Prove the validity of formula:

F : (∀x .p(x )) → (∀y .p(y))

I We start by assuming it is not valid, i.e., there exists some
S , σ such that S , σ 6|= F .

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 7: Validity Proofs and Properties of FOL 10/31

Example 2

I Is this formula valid?

F : (∀x . (p(x ) ∨ q(x ))) → (∃x .p(x ) ∨ ∀x .q(x ))

I Informal argument: Suppose ∀x .(p(x ) ∨ q(x )) holds

I This means either q(x ) for all objects (i.e., ∀x .q(x ))

I Or if q(x ) does not hold for some object o, then p(x ) must
hold for that object o (i.e, ∃x .p(x ))
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Example 2, cont

I Let’s now prove validity using semantic argument method

F : (∀x . (p(x ) ∨ q(x ))) → (∃x .p(x ) ∨ ∀x .q(x ))

I Let’s assume there is some S , σ that does not entail φ, and
derive contradiction on all branches
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Example 3

I Is this formula valid?

F : (∀x .p(x , x )) → (∃x .∀y .p(x , y))

I How do you prove it’s not valid?

I Falsifying interpretation:
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Example 4

I Is the following formula valid?

(∀x .(p(x ) ∧ q(x ))) → (∀x .p(x )) ∧ (∀x .q(x ))

I

I

I
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Example 4, cont

I Let’s prove validity using semantic argument method:

F : (∀x .(p(x ) ∧ q(x ))) → (∀x .p(x )) ∧ (∀x .q(x ))

I Assume there is a S , σ such that S , σ 6|= F
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Soundness and Completeness of Proof Rules

I The proof rules we used are sound and complete.

I Soundness: If every branch of semantic argument proof
derives a contradiction, then F is indeed valid.

I Translation: The proof system does not reach wrong
conclusions

I Completeness: If formula F is valid, then there exists a
finite-length proof in which every branch derives ⊥

I Translation: There are no valid first-order formulas which we
cannot prove to be valid using our proof rules.
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Important Properties of First Order Logic

I Really important result: It is undecidable whether a first-order
formula is valid. (Church and Turing)

I Review: A problem is decidable iff there exists a procedure P
such that, for any input:

1. P halts and says “yes” if the answer is positive

2. halts and says “no” if the answer is negative

I But, what about the completeness result? Doesn’t this
contradict undecidability?

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 7: Validity Proofs and Properties of FOL 17/31

Semidecidability of First-Order Logic

I First-order logic is semidecidable

I A decision problem is semidecidable iff there exists a
procedure P such that, for any input:

1. P halts and says “yes” if the answer is positive

2. P may not terminate if the answer is negative

I Thus, there exists an algorithm that always terminates and
says if any arbitrary FOL formula is valid

I But no algorithm is guaranteed to terminate if the FOL
formula is not valid
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Decidable Fragments of First-Order Logic

I Although full-first order logic is not decidable, there are
fragments of FOL that are decidable.

I A fragment of FOL is a syntactially restricted subset of full
FOL: e.g., no functions, or only universal quantifiers, etc.

I Some decidable fragments:

I Quantifier-free first order logic

I Monadic first-order logic

I Bernays-Schönfinkel class
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Quantifier-Free Fragment of FOL

I The quantifier-free fragment of FOL is the syntactically
restricted subset of FOL where formulas do not contain
universal or existential quantifiers.

I Determining validity and satisfiability in quantifier-free FOL is
decidable (NP-complete).
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Monadic First-Order Logic

I Pure monadic FOL: all predicates are monadic (i.e., arity 1)
and no function constants.

I Impure monadic FOL: both monadic predicates and monadic
function constants allowed

I Result: Monadic first-order logic is decidable (both versions)

I However, if we add even a single binary predicate, the logic
becomes undecidable.
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Bernays-Schönfinkel Class

I The Bernays-Schönfinkel class is a fragment of FOL where:

1. there are no function constants,

2. only formulas of the form:

∃x1, . . . ,∃xn .∀y1, . . . ,∀ym .F (x1, . . . , xn , y1, . . . ym)

I Result: The Bernays-Schönfinkel fragment of FOL is decidable

I Also known as Effectively Propositional Logic
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Compactness of First-Order Logic

I Another important property of FOL is compactness.

I A logic is called compact if an infinite set of sentences Γ is
satisfiable iff every finite subset of Γ is satisfiable.

I Theorem (due to Gödel): First-order logic is compact.
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Consequences of Compactness

I Proof of compactness might look like a useless property, but it
has very interesting consequences!

I Compactness can be used to show that a variety of interesting
properties are not expressible in first-order logic.

I For instance, we can use compactness theorem to show that
transitive closure is not expressible in first order logic.
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Transitive Closure

I Given a directed graph G = (V ,E ), the transitive closure of
G is defined as the graph G∗ = (V ,E ∗) where:

E ∗ = {(n,n ′) | if there is a path from vertex n to n′}

I Observe: A binary predicate p(t , t ′) be viewed as a graph
containing an edge from node t to t ′

I Thus, the concept of transitive closure applies to binary
predicates as well

I A binary predicate T is the transitive closure of predicate p if
〈t0, tn〉 ∈ T iff there exists some sequence t0, t1 . . . , tn such
that 〈ti , ti+1〉 ∈ p
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“Expressing” Transitive Closure in FOL

I At first glance, it looks like transitive closure T of binary
relation p is expressible in FOL:

∀x ,∀z .(T (x , z ) ↔ (p(x , z ) ∨ ∃y .p(x , y) ∧ T (y , z )))

I But this formula does not describe transitive closure at all!

I To see why, consider U = N, p is equality predicate, and T is
relation that is true for any number x , y .

I Clearly, this T is not the transitive closure of equality, but this
structure is actually a model of the formula.

I Thus, the formula above is not a definition of transitive
closure at all!
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Transitive Closure and FOL

I In fact, no matter how hard we try to correct this definition,
we cannot express transitive closure in FOL

I Will use compactness theorem to show that transitive closure
is not expressible in FOL

I Compactness: An infinite set of sentences Γ is satisfiable iff
every finite subset of Γ is satisfiable.

I For contradiction, suppose transitive closure is expressible in
first order logic

I Let Γ be a (possibly infinite) set of sentences expressing that
T is the transitive closure of p.
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Proof I

I Ψn(a, b) encode the proposition: there is no path of length n
from a to b.

I In particular, Ψ1 = ¬p(a, b)

I Similarly,

Ψn = ¬∃x1, . . . . xn−1.(p(a, x1) ∧ p(x1, x2) ∧ . . . ∧ p(xn−1, b))
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Proof II

I Recall: Γ is a set of propositions encoding T is transitive
closure of p.

I Now, construct Γ′ as follows:

Γ′ = Γ ∪ {T (a, b),Ψ1,Ψ2,Ψ3, . . . , }

I Observe: Γ′ is unsatisfiable because:

1. Since Γ encodes that T is transitive closure of p, T (a, b) says
there is some path from a to b

2. The infinite set of propositions Ψ1,Ψ2, . . . say that there is no
path of any length from a to b
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Proof III

I Now, consider any finite subset of Γ′:

Γ′ = Γ ∪ {T (a, b),Ψ1,Ψ2,Ψ3, . . . , }

I Clearly, any finite subset does not contain Ψi for some i .

I Observe: This finite subset is satisfied by a model where there
is a path of length i from a to b

I Thus, every finite subset of Γ′ is satisfiable.

I By the compactness theorem, this would imply Γ′ is also
satisfiable

I But we just showed that Γ′ is unsatisfiable!

I Thus, transitive closure cannot be expressed in FOL!
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Summary

I Semantic argument method for proving validity in FOL

I Important properties: semi-decidability, compactness

I Next lecture: Basics of modern first-order theorem proving
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