CS389L: Automated Logical Reasoning
Lecture 7: Validity Proofs and Properties of FOL

İsıl Dillig

Overview

- Last lecture: Started talking about formal semantics for FOL
- Agenda for today:
 - Finish semantics of FOL
 - Semantic argument method for proving FOL validity
 - Important properties of FOL

Review

- We evaluate formulas F under structure $S = (U, I)$ and variable assignment σ.
- If F evaluates to true under U, I, σ, we write $U, I, \sigma \models F$.
- If F evaluates to false under U, I, σ, we write $U, I, \sigma \not\models F$.

Example

- Consider universe $\{\star, \bullet\}$, variable assignment $\sigma: \{x \mapsto \star\}$, and interpretation I:

 \begin{align*}
 I(a) &= \star \\
 I(b) &= \bullet \\
 I(f) &= \{\{\star \mapsto \bullet, \bullet \mapsto \star\}\}
 \end{align*}

 Under U, I, σ, what do these formulas evaluate to?

 \begin{align*}
 \forall x. p(x, a) &= \\
 \exists x. p(a, x) &= \\
 \forall x. (p(a, x) \rightarrow p(b, x)) &= \\
 \exists x. (p(f(x), f(x)) \rightarrow p(x, x)) &=
 \end{align*}

Satisfiability and Validity of First-Order Formulas

- A first-order formula F is satisfiable iff there exists a structure S and variable assignment σ such that $S, \sigma \models F$.
- Otherwise, F is unsatisfiable.
- A structure S is a model of F, written $S \models F$, if for all variable assignments σ, $S, \sigma \models F$.
- A first-order formula F is valid, written $\models F$, if for all structures $S, S, \sigma \models F$.

Satisfiability and Validity Examples

- Is the formula $\forall x. \exists y. p(x, y)$ satisfiable?
- Satisfying interpretation:
 - Is this formula valid?
 - Falsifying interpretation:
 - Is the formula $\forall x. (p(x, x) \rightarrow \exists y. p(x, y))$ valid?
More Satisfiability and Validity Examples

- Is the formula \((\exists x. p(x)) \rightarrow p(x)\) contingent, unsat, or valid?
- Satisfying \(U, I, \sigma\):
- Falsifying interpretation:
- Is the formula \((\forall x. p(x)) \rightarrow p(x)\) contingent, unsat, or valid?
- What about \((\forall x. (p(x) \rightarrow q(x))) \rightarrow (\exists x. (p(x) \land q(x)))\)?
- Satisfying interpretation:
- Falsifying interpretation:

True/False Exercises

- Consider a formula \(F\) such that \(S, \sigma \models F\). Is \(S\) a model of \(F\)?
- Consider a sentence \(F\) such that \(S, \sigma \not\models F\). Is \(S\) a model of \(F\)?
- Consider a ground formula \(F\) such that \(S, \sigma \not\models F\). Is \(S\) a model of \(F\)?

Motivation for semantic argument method

- So far, defined what it means for FOL formula to be valid, but how to prove validity?
- Will extend semantic argument method from PL to FOL
- Recall: In propositional logic, satisfiability and validity are dual concepts:
 \(F\) is valid if \(-F\) is unsatisfiable
- Since this duality also holds in FOL, we’ll focus on validity

Semantic Argument Method to Prove Validity

- Recall: Semantic argument method is a proof by contradiction.
- Basic idea: Assume that \(F\) is not valid, i.e., there exists some \(S, \sigma\) such that \(S, \sigma \not\models F\)
- Then, apply proof rules.
- If can derive contradiction on every branch of proof, \(F\) is valid.

Proof Rules I (Review)

- All proof rules from prop. logic carry over to first-order logic.
- As before, proof rules come in pairs, for each connective, we have one case for \(\models\), one case for \(\not\models\):
 - Negation elimination:
 \[S, \sigma \models \neg F \quad S, \sigma \not\models \neg F \quad S, \sigma \models F \]
 - And elimination rule:
 \[S, \sigma \models F \land G \quad S, \sigma \models F \quad S, \sigma \models G \]

Proof Rules II (Review)

- Or elimination:
 \[S, \sigma \models F \lor G \quad S, \sigma \models F \quad S, \sigma \models G \quad S, \sigma \not\models F \lor G \quad S, \sigma \not\models F \quad S, \sigma \not\models G \]
- Implication elimination:
 \[S, \sigma \models F \rightarrow G \quad S, \sigma \models F \quad S, \sigma \models G \quad S, \sigma \not\models F \rightarrow G \quad S, \sigma \not\models F \quad S, \sigma \not\models G \]
- If and only if elimination:
 \[S, \sigma \models F \leftrightarrow G \quad S, \sigma \models F \leftrightarrow G \quad S, \sigma \models F \leftrightarrow G \quad S, \sigma \models F \leftrightarrow G \]

Recall: Semantic argument method is a proof by contradiction.
Basic idea: Assume that \(F\) is not valid, i.e., there exists some \(S, \sigma\) such that \(S, \sigma \not\models F\)
Then, apply proof rules.
If can derive contradiction on every branch of proof, \(F\) is valid.
Proof Rules III (New)

- We need new rules to eliminate universal and existential quantifiers.
 - Universal elimination I:
 \[U, I, \sigma \models \forall x.F \quad (\text{for any } o \in U) \]
 \[U, I, \sigma[x \rightarrow o] \models F \]
 - Example: Suppose \(U, I, \sigma \models \forall x.\text{hates}(jack, x) \)
 - Using the above proof rule, we can conclude:
 \[U, I, \sigma[x \rightarrow I(jack)] \models \text{hates}(jack, x) \]

Existential Elimination Rule 1

- Existential elimination I:
 \[U, I, \sigma \models \exists x.F \quad (\text{for a fresh } o \in U) \]
 \[U, I, \sigma[x \rightarrow o] \models F \]
- Again, fresh means an object that has not been used before
 - If \(U, I, \sigma \) entail \(\exists x.F \), we know there is some object for which \(F \) holds, but we don’t know which object
 - If we introduce an object \(o \) we have previously used, we might know something else about \(o \)

Proof Rules V (New)

- Finally, we need a rule for deriving for contradictions
 - Contradiction rule:
 \[U, I, \sigma \models p(s_1, \ldots, s_n) \]
 \[U, I, \sigma \not\models p(t_1, \ldots, t_n) \]
 \[(I, \sigma)(s_i) = (I, \sigma)(t_i) \text{ for all } i \in [1, n] \]
 \[U, I, \sigma \not\models \bot \]
 - Example: Suppose we have \(S, \{ x \rightarrow a \} \models p(x) \) and \(S, \{ y \rightarrow a \} \not\models p(y) \)
 - The proof rule for contradiction allows us to derive \(\bot \)

Universal Elimation Rule II

- Universal elimination II:
 \[U, I, \sigma \not\models \forall x.F \quad (\text{for a fresh } o \in U) \]
 \[U, I, \sigma[x \rightarrow o] \not\models F \]
 - By a fresh object constant, we mean an object that has not been previously used in the proof
 - Why do we have this restriction?
 - If \(U, I, \sigma \) do not entail \(\forall x.F \), we know there is some object for which \(F \) does not hold, but we don’t know which one
 - If we have have used an object \(o \) before in the proof, we might know something else about \(o \)

Existential Elimination Rule II

- Existential elimination II:
 \[U, I, \sigma \not\models \exists x.F \quad (\text{for any } o \in U) \]
 \[U, I, \sigma[x \rightarrow o] \not\models F \]
 - If \(U, I, \sigma \) do not entail \(\exists x.F \), this means there does not exist any object for which \(F \) holds
 - Thus, no matter what object \(x \) maps to, it still won’t entail \(F \)

Example 1: Proving Validity

- Prove the validity of formula:
 \[F : (\forall x.p(x)) \rightarrow (\forall y.p(y)) \]
- We start by assuming it is not valid, i.e., there exists some \(S, \sigma \) such that \(S, \sigma \not\models F \).
Example 2

- Is this formula valid?
 \[F : (\forall x. (p(x) \lor q(x))) \rightarrow (\exists x. p(x) \lor \forall x. q(x)) \]
 \[F : (\forall x. (p(x) \lor q(x))) \rightarrow (\exists x. p(x) \lor \forall x. q(x)) \]
 - Informal argument: Suppose \(\forall x. (p(x) \lor q(x)) \) holds
 - This means either \(q(x) \) for all objects (i.e., \(\forall x. q(x) \))
 - Or if \(q(x) \) does not hold for some object \(o \), then \(p(x) \) must hold for that object \(o \) (i.e., \(\exists x. p(x) \))
 - Thus, antecedent implies \(\exists p(x) \lor \forall x. q(x) \)

Example 2, cont

- Let’s now prove validity using semantic argument method
 \[F : (\forall x. (p(x) \lor q(x))) \rightarrow (\exists x. p(x) \lor \forall x. q(x)) \]
 - Let’s assume there is some \(S, \sigma \) that does not entail \(\phi \), and derive contradiction on all branches

Example 3

- Is this formula valid?
 \[F : (\forall x. p(x,x)) \rightarrow (\exists x. \forall y. p(x,y)) \]
 - How do you prove it’s not valid?
 - Falsifying interpretation:

Example 3, cont

- Let’s prove validity using semantic argument method:
 \[F : (\forall x. p(x,x)) \rightarrow (\exists x. \forall y. p(x,y)) \]
 - Assume there is a \(S, \sigma \) such that \(S, \sigma \not\models F \)

Example 4

- Is the following formula valid?
 \[(\forall x. (p(x) \land q(x))) \rightarrow (\forall x. p(x)) \land (\forall x. q(x)) \]
 -
 -
 -

Example 4, cont

- Let’s prove validity using semantic argument method:
 \[F : (\forall x. (p(x) \land q(x))) \rightarrow (\forall x. p(x)) \land (\forall x. q(x)) \]
 - Assume there is some \(S, \sigma \) that does not entail \(\phi \), and derive contradiction on all branches

Soundness and Completeness of Proof Rules

- The proof rules we used are sound and complete.
 - Soundness: If every branch of semantic argument proof derives a contradiction, then \(F \) is indeed valid.
 - Translation: The proof system does not reach wrong conclusions
 - Completeness: If formula \(F \) is valid, then there exists a finite-length proof in which every branch derives \(\perp \).
 - Translation: There are no valid first-order formulas which we cannot prove to be valid using our proof rules.
 - Completeness in this context also called refutational completeness
Important Properties of First Order Logic

- Really important result: It is undecidable whether a first-order formula is valid. (Church and Turing)
- Review: A problem is decidable iff there exists a procedure P such that, for any input:
 1. P halts and says "yes" if the answer is positive
 2. halts and says "no" if the answer is negative
- But, what about the completeness result? Doesn’t this contradict undecidability?

Semidecidability of First-Order Logic

- First-order logic is semidecidable
- A decision problem is semidecidable iff there exists a procedure P such that, for any input:
 1. P halts and says ‘yes’ if the answer is positive
 2. P may not terminate if the answer is negative
- Thus, there exists an algorithm that always terminates and says if any arbitrary FOL formula is valid
- But no algorithm is guaranteed to terminate if the FOL formula is not valid

Decidable Fragments of First-Order Logic

- Although full-first order logic is not decidable, there are fragments of FOL that are decidable.
- A fragment of FOL is a syntactically restricted subset of full FOL: e.g., no functions, or only universal quantifiers, etc.
- Some decidable fragments:
 - Quantifier-free first order logic
 - Monadic first-order logic
 - Bernays-Schönfinkel class

Quantifier-Free Fragment of FOL

- The quantifier-free fragment of FOL is the syntactically restricted subset of FOL where formulas do not contain universal or existential quantifiers.
- Determining validity and satisfiability in quantifier-free FOL is decidable (NP-complete).
- This fragment can be reduced to a theory we will explore later, theory of equality with uninterpreted functions

Monadic First-Order Logic

- Pure monadic FOL: all predicates are monadic (i.e., arity 1) and no function constants.
- Impure monadic FOL: both monadic predicates and monadic function constants allowed
- Result: Monadic first-order logic is decidable (both versions)
- However, if we add even a single binary predicate, the logic becomes undecidable.

Bernays-Schönfinkel Class

- The Bernays-Schönfinkel class is a fragment of FOL where:
 1. there are no function constants,
 2. only formulas of the form:
 $$\exists x_1, \ldots, \exists x_n, \forall y_1, \ldots, \forall y_m. F(x_1, \ldots, x_n, y_1, \ldots, y_m)$$
- Result: The Bernays-Schönfinkel fragment of FOL is decidable
- Database query language Datalog is based on Bernays-Schönfinkel class of FOL
- However, it has additional restriction that all clauses are Horn clauses (i.e., at most one positive literal in each clause)
Datalog

- Datalog is a programming language that allows adding/querying facts in a deductive databases
- An example Datalog program:

  ```
  parent(bill, mary). % Bill is Mary's parent
  parent(mary, john). % Mary is John's parent
  ancestor(X,Y) :- parent(X,Y).
  ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).
  ?-ancestor(X, john).
  ```

- Last statement is a query: Is there anyone in the database who is John's ancestor (and if so, who?)

Datalog, cont.

```
parent(bill, mary). % Bill is Mary's parent
parent(mary, john). % Mary is John's parent
ancestor(X,Y) := parent(X,Y).
ancestor(X,Z) := parent(X,Y), ancestor(Y,Z).
?-ancestor(X, john).
```

Proof of Compactness

- Recall: Completeness means that if a formula is unsatisfiable, then there exists a finite-length proof of unsatisfiability.
- Suppose FOL was not compact, i.e., there is an infinite set of sentences Γ that are unsat, but every finite subset Σ is sat.
- By completeness of proof rules, if Γ is unsat, there exists a finite-length proof of unsatisfiability.
- But this means the proof must use a finite subset of sentences Σ of Γ, otherwise proof could not be finite.
- But this implies there is also a proof of unsatisfiability of Σ.
- Thus, by soundness of proof rules, Σ must be unsat.

Datalog and Logic Programming Languages

- A Datalog interpreter is nothing more than a solver for Bernays-Schönfinkel fragment of FOL
- Since this fragment is decidable, Datalog programs always terminate
- In general, interpreters for all logic programming languages decide satisfiability in FOL or a fragment
- A popular logic programming language is Prolog
- Unlike Datalog, it is based on full FOL, so Prolog programs may not terminate

Compactness of First-Order Logic

- Another important property of FOL is compactness.
- A logic is called compact if an infinite set of sentences Γ is satisfiable iff every finite subset of Γ is satisfiable.
- Theorem (due to Gödel): First-order logic is compact.
- Proof of compactness of FOL follows from the completeness of proof rules.

Consequences of Compactness

- Proof of compactness might look like a useless property, but it has very interesting consequences!
- Compactness can be used to show that a variety of interesting properties are not expressible in first-order logic.
- For instance, we can use compactness theorem to show that transitive closure is not expressible in first order logic.
Transitive Closure

- Given a directed graph $G = (V, E)$, the transitive closure of G is defined as the graph $G^* = (V, E^*)$ where:
 $$E^* = \{(n, n') \mid \text{if there is a path from vertex } n \text{ to } n'\}$$

- Observe: A binary predicate $p(t, t')$ be viewed as a graph containing an edge from node t to t'

- Thus, the concept of transitive closure applies to binary predicates as well.

- A binary predicate T is the transitive closure of predicate p if
 $$\langle t_0, t_n \rangle \in T \text{ iff there exists some sequence } t_0, t_1, \ldots, t_n \text{ such that } (t_i, t_{i+1}) \in p$$

"Expressing" Transitive Closure in FOL

- At first glance, it looks like transitive closure T of binary relation p is expressible in FOL:
 $$\forall x, \forall z, (T(x, z) \leftrightarrow (p(x, z) \lor \exists y. p(x, y) \land T(y, z)))$$

- But this formula does not describe transitive closure at all!

- To see why, consider $U = \mathbb{N}$, p is equality predicate, and T is relation that is true for any number x, y.

- Clearly, this T is not the transitive closure of equality, but this structure is actually a model of the formula.

- Thus, the formula above is not a definition of transitive closure at all!

Transitive Closure and FOL

- In fact, no matter how hard we try to correct this definition, we cannot express transitive closure in FOL.

- Will use compactness theorem to show that transitive closure is not expressible in FOL.

- Compactness: An infinite set of sentences Γ is satisfiable iff every finite subset of Γ is satisfiable.

- For contradiction, suppose transitive closure is expressible in first order logic.

- Let Γ' be a (possibly infinite) set of sentences expressing that T is the transitive closure of p.

Proof I

- $\Psi^n(a, b)$ encode the proposition: there is no path of length n from a to b.

- In particular, $\Psi^1 = \neg p(a, b)$

- Similarly,
 $$\Psi^n = \neg \exists x_1, \ldots, x_{n-1}. (p(a, x_1) \land p(x_1, x_2) \land \ldots \land p(x_{n-1}, b))$$

Proof II

- Recall: Γ is a set of propositions encoding T is transitive closure of p.

- Now, construct Γ' as follows:
 $$\Gamma' = \Gamma \cup \{T(a, b), \Psi^1, \Psi^2, \Psi^3, \ldots\}$$

- Observe: Γ' is unsatisfiable because:
 1. Since Γ encodes that T is transitive closure of p, $T(a, b)$ says there is some path from a to b
 2. The infinite set of propositions Ψ^1, Ψ^2, \ldots say that there is no path of any length from a to b

Proof III

- Now, consider any finite subset of Γ':
 $$\Gamma'' = \Gamma' \cup \{T(a, b), \Psi^1, \Psi^2, \Psi^3, \ldots\}$$

- Clearly, any finite subset does not contain Ψ_i for some i.

- Observe: This finite subset is satisfied by a model where there is a path of length i from a to b

- Thus, every finite subset of Γ'' is satisfiable.

- By the compactness theorem, this would imply Γ'' is also satisfiable.

- But we just showed that Γ' is unsatisfiable!

- Thus, transitive closure cannot be expressed in FOL!
Summary

- Semantic argument method for proving validity in FOL
- Soundness and completeness of semantic argument method
- Important properties of FOL: undecidability, semidecidability, compactness
- Compactness: useful to show what is not expressible in FOL
- Next lecture: Basics of automated first-order theorem provers (much less theoretical)