Overview

- Agenda for today:
 - Semantic argument method for proving FOL validity
 - Important properties of FOL

Motivation for semantic argument method

- So far, defined what it means for FOL formula to be valid, but how to prove validity?
- Will extend semantic argument method from PL to FOL
- Recall: In propositional logic, satisfiability and validity are dual concepts:
 \[\neg F \text{ is unsatisfiable} \]
- Since this duality also holds in FOL, we’ll focus on validity

Semantic Argument Method to Prove Validity

- Recall: Semantic argument method is a proof by contradiction.
- Basic idea: Assume that \(F \) is not valid, i.e., there exists some \(S, \sigma \) such that \(S, \sigma \nmodels \neg F \)
- Then, apply proof rules.
- If can derive contradiction on every branch of proof, \(F \) is valid.

Proof Rules I (Review)

- All proof rules from prop. logic carry over to first-order logic.
- As before, proof rules come in pairs, for each connective, we have one case for \(\models \), one case for \(\not\models \)
- Negation elimination:
 \[
 S, \sigma \models \neg F \\
 S, \sigma \not\models F
 \]
- And elimination rule:
 \[
 S, \sigma \models F \land G \\
 S, \sigma \not\models F \\
 S, \sigma \models G
 \]
 \[
 S, \sigma \not\models F \land G \\
 S, \sigma \models \neg F \\
 S, \sigma \models \neg G
 \]

Proof Rules II (Review)

- Or elimination:
 \[
 \frac{S, \sigma \models F \lor G}{S, \sigma \models F} \quad \frac{S, \sigma \not\models F \lor G}{S, \sigma \not\models G} \
 \]
- Implication elimination:
 \[
 \frac{S, \sigma \models F \rightarrow G}{S, \sigma \not\models F} \quad \frac{S, \sigma \models F \rightarrow G}{S, \sigma \models G}
 \]
- If and only if elimination:
 \[
 \frac{S, \sigma \models F \leftrightarrow G}{S, \sigma \models F \land \neg G} \\
 \frac{S, \sigma \models F \leftrightarrow G}{S, \sigma \models \neg F \land G}
 \]
Proof Rules III (New)

- We need new rules to eliminate universal and existential quantifiers.

 - Universal elimination I:
 \[U, I, \sigma \models \forall x. F \] (for any \(o \in U \))
 \[U, I, \sigma[x \mapsto o] \not\models \models F \]

- Example: Suppose \(U, I, \sigma \models \forall x. \text{hates}(\text{jack}, x) \)

- Using the above proof rule, we can conclude:
 \[U, I, \sigma[x \mapsto I(\text{jack})] \models \text{hates}(\text{jack}, x) \]

Existential Elimination Rule 1

- Existential elimination I:
 \[U, I, \sigma \not\models \exists x. F \] (for a fresh \(o \in U \))
 \[U, I, \sigma[x \mapsto o] \not\models F \]

 - Again, fresh means an object that has not been used before.

Proof Rules V (New)

- Finally, we need a rule for deriving for contradictions.

 - Contradiction rule:
 \[U, I, \sigma \models p(s_1, \ldots, s_n) \]
 \[U, I, \sigma \not\models p(t_1, \ldots, t_n) \]
 \[(I, \sigma)[s_i] = (I, \sigma)[t_i] \text{ for all } i \in [1, n] \]
 \[U, I, \sigma \not\models \bot \]

- Example: Suppose we have \(S, \{x \mapsto a\} \models p(x) \) and
 \(S, \{y \mapsto a\} \not\models p(y) \)

 - The proof rule for contradiction allows us to derive \(\bot \).

Universal Elimination Rule II

- Universal elimination II:
 \[U, I, \sigma \not\models \forall x. F \] (for a fresh \(o \in U \))
 \[U, I, \sigma[x \mapsto o] \not\models F \]

 - By a fresh object constant, we mean an object that has not been previously used in the proof.

 - Why do we have this restriction?

Example 1: Proving Validity

- Prove the validity of formula:
 \[F : (\forall x. p(x)) \rightarrow (\forall y. p(y)) \]

 - We start by assuming it is not valid, i.e., there exists some \(S, \sigma \) such that \(S, \sigma \not\models F \).
Example 2

- Is this formula valid?

 \(F : (\forall x. (p(x) \lor q(x))) \rightarrow (\exists x. p(x) \lor \forall x. q(x)) \)

- Informal argument: Suppose \(\forall x. (p(x) \lor q(x)) \) holds

 This means either \(q(x) \) does not hold for some object \(o \), then \(p(x) \) must hold for that object \(o \) (i.e., \(\exists x. p(x) \))

Example 3

- Is this formula valid?

 \(F : (\forall x. (p(x, x)) \rightarrow (\exists x. \forall y. p(x, y)) \)

- How do you prove it’s not valid?

 Falsifying interpretation:

Example 4, cont

- Let’s now prove validity using semantic argument method

 \[F : (\forall x. (p(x) \lor q(x))) \rightarrow (\exists x. p(x) \lor \forall x. q(x)) \]

- Let’s assume there is some \(S, \sigma \) that does not entail \(\phi \), and derive contradiction on all branches

Example 4

- Is the following formula valid?

 \((\forall x. (p(x) \land q(x))) \rightarrow (\forall x. p(x)) \land (\forall x. q(x)) \)

Soundness and Completeness of Proof Rules

- The proof rules we used are sound and complete.

- Soundness: If every branch of semantic argument proof derives a contradiction, then \(F \) is indeed valid.

- Translation: The proof system does not reach wrong conclusions

- Completeness: If formula \(F \) is valid, then there exists a finite-length proof in which every branch derives \(\bot \)

- Translation: There are no valid first-order formulas which we cannot prove to be valid using our proof rules.
Important Properties of First Order Logic

▶ Really important result: It is undecidable whether a first-order formula is valid. (Church and Turing)

▶ Review: A problem is decidable iff there exists a procedure P such that, for any input:
1. P halts and says “yes” if the answer is positive
2. P halts and says “no” if the answer is negative

▶ But, what about the completeness result? Doesn’t this contradict undecidability?

Semidecidability of First-Order Logic

▶ First-order logic is semidecidable

▶ A decision problem is semidecidable iff there exists a procedure P such that, for any input:
1. P halts and says “yes” if the answer is positive
2. P may not terminate if the answer is negative

▶ Thus, there exists an algorithm that always terminates and says if any arbitrary FOL formula is valid

▶ But no algorithm is guaranteed to terminate if the FOL formula is not valid

Decidable Fragments of First-Order Logic

▶ Although full-first order logic is not decidable, there are fragments of FOL that are decidable.

▶ A fragment of FOL is a syntactically restricted subset of full FOL: e.g., no functions, or only universal quantifiers, etc.

▶ Some decidable fragments:
 ▶ Quantifier-free first order logic
 ▶ Monadic first-order logic
 ▶ Bernays-Schönfinkel class

Quantifier-Free Fragment of FOL

▶ The quantifier-free fragment of FOL is the syntactically restricted subset of FOL where formulas do not contain universal or existential quantifiers.

▶ Determining validity and satisfiability in quantifier-free FOL is decidable (NP-complete).

▶ This fragment can be reduced to a theory we will explore later, theory of equality with uninterpreted functions

Monadic First-Order Logic

▶ Pure monadic FOL: all predicates are monadic (i.e., arity 1) and no function constants.

▶ Impure monadic FOL: both monadic predicates and monadic function constants allowed

▶ Result: Monadic first-order logic is decidable (both versions)

▶ However, if we add even a single binary predicate, the logic becomes undecidable.

Bernays-Schönfinkel Class

▶ The Bernays-Schönfinkel class is a fragment of FOL where:
1. there are no function constants,
2. only formulas of the form:
$$\exists x_1, \ldots, \exists x_n, \forall y_1, \ldots, \forall y_m, F(x_1, \ldots, x_n, y_1, \ldots, y_m)$$

▶ Result: The Bernays-Schönfinkel fragment of FOL is decidable

▶ Database query language Datalog is based on Bernays-Schönfinkel class of FOL
Datalog

- Datalog is a programming language that allows adding/querying facts in a deductive databases
- An example Datalog program:

  ```datalog
  parent(bill, mary). % Bill is Mary’s parent
  parent(mary, john). % Mary is John’s parent
  ancestor(X, Y) :- parent(X, Y).
  ancestor(X, Z) :- parent(X, Y), ancestor(Y, Z).
  ?- ancestor(X, john).
  ```

- Last statement is a query: Is there anyone in the database who is John’s ancestor (and if so, who?)

Datalog, cont.

- parent(bill, mary). % Bill is Mary’s parent
- parent(mary, john). % Mary is John’s parent
- ancestor(X, Y) :- parent(X, Y).
- ancestor(X, Z) :- parent(X, Y), ancestor(Y, Z).
- ?- ancestor(X, john).

- This program is just syntactic sugar for FOL:

  ```datalog
  parent(bill, mary) ∧ parent(mary, john) ∧
  (∀x, y. parent(x, y) → ancestor(x, y)) ∧
  (∀x, y, z. parent(x, y) ∧ parent(y, z) → ancestor(x, z)) ∧
  (∃x. ancestor(x, john))
  ```

- Thus, if this formula is satisfiable, there is someone in our database who is John’s ancestor

Datalog and Logic Programming Languages

- A Datalog interpreter is nothing more than a solver for Bernays-Schönfinkel fragment of FOL
- Since this fragment is decidable, Datalog programs always terminate
- In general, interpreters for all logic programming languages decide satisfiability in FOL or a fragment
- A popular logic programming language is Prolog
- Unlike Datalog, it is based on full FOL, so Prolog programs may not terminate

Compactness of First-Order Logic

- Another important property of FOL is compactness.
- A logic is called compact if an infinite set of sentences Γ is satisfiable if every finite subset of Γ is satisfiable.
- Theorem (due to Gödel): First-order logic is compact.

Consequences of Compactness

- Proof of compactness might look like a useless property, but it has very interesting consequences!
- Compactness can be used to show that a variety of interesting properties are not expressible in first-order logic.
- For instance, we can use compactness theorem to show that transitive closure is not expressible in first order logic.

Transitive Closure

- Given a directed graph \(G = (V, E) \), the transitive closure of \(G \) is defined as the graph \(G^+ = (V, E^+) \) where:

 \[E^+ = \{(n, n') \mid \text{there is a path from vertex } n \text{ to } n'\} \]

- Observe: A binary predicate \(p(t, t') \) can be viewed as a graph containing an edge from node \(t \) to \(t' \)
- Thus, the concept of transitive closure applies to binary predicates as well
- A binary predicate \(T \) is the transitive closure of predicate \(p \) if \(\langle t_0, t_0 \rangle \in T \) if there exists some sequence \(t_0, t_1, \ldots, t_n \) such that \(\langle t_i, t_{i+1} \rangle \in p \)
“Expressing” Transitive Closure in FOL

- **Proof I**
 - At first glance, it looks like transitive closure T of binary relation p is expressible in FOL:
 \[\forall x, \forall y, (T(x, z) \iff (p(x, z) \lor \exists y, p(x, y) \land T(y, z))) \]
 - But this formula does not describe transitive closure at all!
 - To see why, consider $U = \mathbb{N}$, p is equality predicate, and T is relation that is true for any number x, y.
 - Clearly, this T is not the transitive closure of equality, but this structure is actually a model of the formula.
 - Thus, the formula above is not a definition of transitive closure at all!

- **Proof II**
 - Recall: Γ is a set of propositions encoding T is transitive closure of p.
 - Now, construct Γ' as follows:
 \[\Gamma' = \Gamma \cup \{ T(a, b), \Psi^1, \Psi^2, \Psi^3, \ldots \} \]
 - **Observe:** Γ' is unsatisfiable because:
 1. Since Γ encodes that T is transitive closure of p, $T(a, b)$ says there is some path from a to b
 2. The infinite set of propositions Ψ^1, Ψ^2, \ldots say that there is no path of any length from a to b

- **Proof III**
 - Now, consider any finite subset of Γ':
 \[\Gamma'' = \Gamma \cup \{ T(a, b), \Psi^1, \Psi^2, \Psi^3, \ldots \} \]
 - Clearly, any finite subset does not contain Ψ_i for some i.
 - **Observe:** This finite subset is satisfied by a model where there is a path of length i from a to b
 - Thus, every finite subset of Γ'' is satisfiable.
 - By the compactness theorem, this would imply Γ' is also satisfiable
 - But we just showed that Γ' is unsatisfiable!
 - Thus, transitive closure cannot be expressed in FOL!