Announcements

- Midterm is next Tuesday (March 3)
- Covers all lectures so far
- Exam is closed-book, closed-notes, closed-laptops
- But allowed to bring two sheets of notes prepared by you

Agenda for Today

- Properties of first order logic:
 - decidable fragments
 - compactness
 - inexpressibility of transitive closure in FOL
- Ingredients of first-order theorem proving:
 - unification
 - Most general unifiers

Decidable Fragments of First-Order Logic

- Although full-first order logic is not decidable, there are fragments of FOL that are decidable.
- A fragment of FOL is a syntactically restricted subset of full FOL: e.g., no functions, or only universal quantifiers, etc.
- Some decidable fragments:
 - Quantifier-free first order logic
 - Monadic first-order logic
 - Bernays-Schönfinkel class

Bernays-Schönfinkel Class

- The Bernays-Schönfinkel class is a fragment of FOL where:
 1. there are no function constants,
 2. only formulas of the form:
 \[\exists x_1, \ldots, \exists x_n, \forall y_1, \ldots, \forall y_m, P(x_1, \ldots, x_n, y_1, \ldots, y_m) \]
- Result: The Bernays-Schönfinkel fragment of FOL is decidable
- Database query language Datalog is based on Bernays-Schönfinkel class of FOL
- However, it has additional restriction that all clauses are Horn clauses (i.e., at most one positive literal in each clause)

Datalog

- Datalog is a programming language that allows adding/querying facts in a deductive databases
- An example Datalog program:

  ```datalog
  parent(bill, mary). % Bill is Mary’s parent
  parent(mary, john). % Mary is John’s parent
  ancestor(X,Y) :- parent(X,Y).
  ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).
  ?-ancestor(X,john).
  ```
- Last statement is a query: Is there anyone in the database who is John’s ancestor (and if so, who?)
Datalog, cont.

- `parent(bill, mary). % Bill is Mary's parent`
- `parent(mary, john). % Mary is John's parent`

- `ancestor(X,Y) :- parent(X,Y), ancestor(Y,Z).`
- `ancestor(X,Z) :- parent(X,Y), ancestor(X,Y).`
- `?-ancestor(X, john).`

- This program is just syntactic sugar for FOL:

 \[
 parent(bill, mary) \land parent(mary, john) \land \forall x, y. parent(x, y) \rightarrow ancestor(x, y) \land
 (\forall x, y, z. parent(x, y) \land parent(y, z) \rightarrow ancestor(x, z)) \land
 (\exists x. ancestor(x, john))
 \]

- Thus, if this formula is satisfiable, there is someone in our database who is John’s ancestor

Compactness of First-Order Logic

- Another important property of FOL is compactness.
- A logic is called compact if an infinite set of sentences \(\Gamma \) is satisfiable iff every finite subset of \(\Gamma \) is satisfiable.
- Theorem (due to Gödel): First-order logic is compact.
- Proof of compactness of FOL follows from the completeness of proof rules.

Consequences of Compactness

- Proof of compactness might look like a useless property, but it has very interesting consequences!
- Compactness can be used to show that a variety of interesting properties are not expressible in first-order logic.
- For instance, we can use compactness theorem to show that transitive closure is not expressible in first order logic.

Datalog and Logic Programming Languages

- A Datalog interpreter is nothing more than a solver for Bernays-Schönfinkel fragment of FOL
- Since this fragment is decidable, Datalog programs always terminate
- In general, interpreters for all logic programming languages decide satisfiability in FOL or a fragment
- A popular logic programming language is Prolog
- Unlike Datalog, it is based on full FOL, so Prolog programs may not terminate

Proof of Compactness

- Recall: Completeness means that if a formula is unsatisfiable, then there exists a finite-length proof of unsatisfiability.
- Suppose FOL was not compact, i.e., there is an infinite set of sentences \(\Gamma \) that are unsat, but every finite subset \(\Sigma \) is sat.
- By completeness of proof rules, if \(\Gamma \) is unsat, there exists a finite-length proof of unsatisfiability.
- But this means the proof must use a finite subset of sentences \(\Sigma \) of \(\Gamma \), otherwise proof could not be finite.
- But this implies there is also a proof of unsatisfiability of \(\Sigma \).
- Thus, by soundness of proof rules, \(\Sigma \) must be unsat. \(\square \)

Transitive Closure

- Given a directed graph \(G = (V, E) \), the transitive closure of \(G \) is defined as the graph \(G^* = (V, E^*) \) where:

 \[
 E^* = \{ (n, n') \mid \text{if there is a path from vertex } n \text{ to } n' \}
 \]
- Observe: A binary predicate \(p(t, t') \) be viewed as a graph containing an edge from node \(t \) to \(t' \)
- Thus, the concept of transitive closure applies to binary predicates as well
- A binary predicate \(T \) is the transitive closure of predicate \(p \) if \(\langle t_0, t_n \rangle \in T \) iff there exists some sequence \(t_0, t_1, \ldots, t_n \) such that \(\langle t_i, t_{i+1} \rangle \in p \)
“Expressing” Transitive Closure in FOL

- At first glance, it looks like transitive closure T of binary relation p is expressible in FOL:
 $$\forall x, \forall z, (T(x, z) \iff (p(x, z) \lor \exists y. p(x, y) \land T(y, z)))$$
- But this formula does not describe transitive closure at all!
- To see why, consider $U = \{a, b\}$, p equality predicate, and T is relation that is true for any number x, y.
- Clearly, this T is not the transitive closure of equality, but this structure is actually a model of the formula.
- Thus, the formula above is not a definition of transitive closure at all!

Proof I

- $\Psi^n(a, b)$ encode the proposition: there is no path of length n from a to b.
- In particular, $\Psi^1 = \neg p(a, b)$
- Similarly, $\Psi^n = \neg \exists x_1, \ldots, x_{n-1}. (p(a, x_1) \land p(x_1, x_2) \land \ldots \land p(x_{n-1}, b))$

Transitive Closure and FOL

- In fact, no matter how hard we try to correct this definition, we cannot express transitive closure in FOL.
- Will use compactness theorem to show that transitive closure is not expressible in FOL.
- Compactness: An infinite set of sentences Γ is satisfiable iff every finite subset of Γ is satisfiable.
- For contradiction, suppose transitive closure is expressible in first order logic.
- Let Γ be a (possibly infinite) set of sentences expressing that T is the transitive closure of p.

Proof II

- Recall: Γ is a set of propositions encoding T is transitive closure of p.
- Now, construct Γ' as follows:
 $$\Gamma' = \Gamma \cup \{ \Psi^1, \Psi^2, \Psi^3, \ldots \}$$
- Observe: Γ' is unsatisfiable because:
 1. Since Γ encodes that T is transitive closure of p, $T(a, b)$ says there is some path from a to b.
 2. The infinite set of propositions Ψ^1, Ψ^2, \ldots say that there is no path of any length from a to b.

Proof III

- Now, consider any finite subset of Γ':
 $$\Gamma'' = \Gamma' \cup \{ T(a, b), \Psi^1, \Psi^2, \Psi^3, \ldots \}$$
- Clearly, any finite subset does not contain Ψ_i for some i.
- Observe: This finite subset is satisfied by a model where there is a path of length i from a to b.
- Thus, every finite subset of Γ' is satisfiable.
- By the compactness theorem, this would imply Γ'' is also satisfiable.
- But we just showed that Γ'' is unsatisfiable.
- Thus, transitive closure cannot be expressed in FOL.

First-Order Theorem Provers

- A first-order theorem prover is a computer program that proves the validity of formulas in first-order logic.
- Since validity in FOL is only semi-decidable, first-order theorem provers are not guaranteed to terminate.
- Despite this limitation, many automated theorem provers exist and are useful: Vampire, SPASS, Otter, . . .
- There are even annual competitions between these theorem provers! (just Google “CADE ATP competition”)
- Main applications: software verification and synthesis, artificial intelligence, and proving mathematical theorems.
Theorem Provers and Mathematical Theorems

- First-order theorem provers have been used to prove some mathematical theorems not previously proven by humans.
- Robbins conjecture (1933): Mathematician Herbert Robbins conjectured that a group of axioms he came up with are equivalent to boolean algebra.
- Neither he nor anyone else could prove this for decades.

Recall: Propositional Resolution

- Basis of first-order theorem provers: resolution
- Recall resolution in PL:

\[C_1 : (l_1 \lor \ldots \lor l_k) \quad C_2 : (l'_1 \lor \ldots \lor l'_m) \]

- Propositional resolution: Deduction of a new clause \(C_3 \), called resolvent:

\[C_3 : (l_1 \lor \ldots \lor l_k \lor l'_1 \lor \ldots \lor l'_m) \]

- First-order resolution is the same basic principle, but a little bit more involved

Unification

- Unification: problem of determining if two expressions can be made identical by appropriate substitutions for their variables
- Substitution: finite mapping from variables to terms
- Example: Can expressions \(p(x) \) and \(p(a) \) be unified?
- Can \(p(a) \) and \(p(b) \) be unified?
- We’ll write \(e \sigma \) to denote the application of substitution \(\sigma \) to expression \(e \)
- What is \(p(x)[x \mapsto a] \)?

Robbins Conjecture and Automated Theorem Proving

- 1996: Conjecture eventually proven by first-order theorem prover EQP after 8 days of search!
- That a computer can prove theorems that humans could not was shocking
- The automated proof of Robbins conjecture even appeared as New York Times article!
- Not the only success story: Proof of four color theorem; results in group theory, ...

First-Order Resolution Prerequisites

- To perform resolution in first-order logic, we need two new ingredients:
 1. Unification: Which expressions can be made identical?
 2. Clausal form: A new normal form for FOL
- Today, we’ll talk about unification
- Resolution, clausal form next lecture

Unification

- A substitution is a unifier for two expressions \(e \) and \(e' \) if \(e \sigma \) is syntactically identical to \(e' \sigma \)
- Two expressions \(e \) and \(e' \) are unifiable if they have a unifier; otherwise non-unifiable.
- Example: Are \(p(x, y) \) and \(p(a, v) \) unifiable?
- A unifier:
- Example 2: Are \(p(x, x) \) and \(p(a, b) \) unifiable?
- Example 3: Are \(p(x) \) and \(p(f(x)) \) unifiable?
Non-Uniqueness of Unifiers

- If two expressions are unifiable, they don’t necessarily have a unique unifier.
- Example: \(p(x, y) \) and \(p(a, v) \)
- Unifier 1: \([x \mapsto a, y \mapsto b, v \mapsto b]\)
- Unifier 2: \([x \mapsto a, y \mapsto v]\)
- Unifier 3: \([x \mapsto a, y \mapsto f(b), v \mapsto f(b)]\)
- But some unifiers are more desirable than others . . .

Composing Substitutions

- To explain what it means for one unifier to be better than another, we define the composition of substitutions.
- Composition of two substitutions \(\sigma \) and \(\delta \) is written \(\sigma \delta = \sigma' \)
- The composition \(\sigma \delta \) of substitutions \(\sigma \) and \(\delta \) is obtained by:
 1. applying \(\delta \) to the range of \(\sigma \)
 2. add to \(\sigma \) all mappings \(x \mapsto t \) from \(\delta \) where \(x \notin \text{dom}(\sigma) \).

Generality of Unifiers

- We prefer unifiers that are as general as possible.
- A unifier \(\sigma \) is at least as general as unifier \(\sigma' \) if there exists another substitution \(\delta \) such that \(\sigma \delta = \sigma' \)
- Intuition: \(\sigma \) more general than \(\sigma' \) if \(\sigma' \) can be obtained from \(\sigma \) through another substitution
- Which unifier is more general? \(\sigma = [x \mapsto a, y \mapsto v] \) or \(\sigma' = [x \mapsto a, y \mapsto f(c), v \mapsto f(c)] \)?
- Which unifier is more general? \(\sigma = [x \mapsto a, y \mapsto z] \) or \(\sigma' = [x \mapsto a, y \mapsto w] \)?

Most General Unifiers

- A substitution \(\sigma \) is a most general unifier (mgu) of two expressions \(e, e' \) iff \(\sigma \) is at least as general as any other unifier of \(e \) and \(e' \).
- Intuition: A unifier is most general if it only contains mappings necessary to unify, but nothing extra!
- Consider again \(p(x, y) \) and \(p(a, c) \).
- Is \([x \mapsto a, y \mapsto b, v \mapsto b]\) an mgu?
- Is \([x \mapsto a, y \mapsto v]\) an mgu?
- Is \([x \mapsto a, y \mapsto v, v \mapsto y]\) an mgu?

Uniqueness of Most General Unifiers

- Theorem: If two expressions \(e \) and \(e' \) are unifiable, then they have an mgu that is unique up to variable permutation.
- "Unique up to variable permutation" means only difference between two most general unifiers is variable names
- What are all possible most general unifiers of \(p(x, y) \) and \(p(a, v) \)?
Algorithm to Compute MGU

- We’ll now give an algorithm to find most general unifiers.
- Function \texttt{find_mgu}(e, e') takes expressions e, e' and returns substitution \(\sigma \) that is mgu of e, e' or \(\bot \).
- **Case 1:** \(e = e' \). Then \(\sigma = [] \).
- **Case 2:** e is variable \(x \). If \(e' \) does not contain \(x \) then \([x \mapsto e']\), otherwise \(\bot \).
- **Case 3:** \(e' \) is variable \(y \). If \(e \) does not contain \(y \) then \([y \mapsto e]\), otherwise \(\bot \).
- **Case 4:** \(e \) or \(e' \) is a constant. Return \(\bot \).

Example of Computing MGUs

- Apply algorithm to find mgu for \(p(f(x), f(x)) \) and \(p(y, f(a)) \)
- Predicates match; unify the arguments.
- Unify first arguments \(f(x) \) and \(y \)
- Result:
- Apply unifier to second arguments \(f(x) \) and \(f(a) \) (unchanged)
- Then, unify \(f(x) \) and \(f(a) \):
- Compose \([y \mapsto f(x)]\) and \([x \mapsto a]\)
- Final result:

Algorithm to Compute MGU, continued

- **Case 5:** \(e = \tau(e_1, \ldots, e_k) \).
 1. If \(e' \neq \tau(e'_1, \ldots, e'_k) \), then \(\bot \).
 2. Otherwise result of unifying \([e_1 \ldots e_k]\) and \([e'_1 \ldots e'_k]\)
- **Case 6:** \(e \) is expression list \([h \ T] \).
 1. If \(e' \) is not expression list of the form \([h' \ T']\), return \(\bot \).
 2. Let \(\sigma = \text{find_mgu}(h, h') \).
 3. Apply \(\sigma \) to \(T, T' \)
 4. Recursively compute MGU \(\sigma' \) for \(\sigma T \) and \(\sigma T' \)
 5. Return composition of \(\sigma \) and \(\sigma' \).

Another Example

- Apply algorithm to find mgu for \(p(x, x) \) and \(p(y, f(y)) \)
- Predicates match; unify the arguments.
- Unify first arguments \(x \) and \(y \); result:
- Apply unifier to second arguments \(x \) and \(f(y) \):
- Now unify \(y \) and \(f(y) \):
- Thus \(p(x, x) \) and \(p(y, f(y)) \) not unifiable