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Review

» What is a unifier?
» What is Prenex Normal Form?
» What is Skolem Normal Form?

» How do you convert formula to Clausal Normal Form?
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Clausal Normal Form Example

» Convert formula to clausal form:

Jw.¥z.((3z.q(w, 2)) = Jy.(=p(z, y) A r(y)))

» Step 1,2a: No free variables, convert to NNF:

FJw.Vz.(-(Fz.q(w, 2)) V y.(=p(z,y) Ar(y))) remove —
Jw.Vz.((Vz.mq(w, 2)) V y.(-p(z,y) A r(y))) push negations

» Step 2b: Move quantifiers out (necessary for PNF):

Jw.Vz. Iy Vz.((—q(w, 2)) V (=p(z,y) Ar(y)))
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Example, cont

» In Prenex Normal Form:
Jw.Ve.JyVz.((-g(w, 2)) V (—p(z, y) Ar(y)))
» Step 3a: Now, skolemize w:
Vo.3y.Vz.((—q(c, 2)) V (=p(z,y) Ar(y)))
» Step 3b: Skolemize y:

Ve Vz.((mg(c, 2)) V (mp(z, f(z)) Ar(f(2))))
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Example, cont

» In Skolem Normal Form:
Vo Vz.((=q(c, 2)) V (=p(e, f(2)) Ar(f(2))))
» Step 4: Convert inner formula to CNF
Va.Vz.(=q(c, 2) V =p(z, f(2))) A (2q(e, 2) V r(f(2)))

» Step 5: Drop universal quantifiers:

(mq(e, 2) vV op(a, f(2)) A (mgle, 2) V r(f(2))

» Step 6: Finally, write formula as a set of clauses

{~a(c, 2),~p(z, f(2))}
{male, 2), r(f(2))}
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A Word About Clausal Form
» Consider the clausal form {1, b, ... &}, ..., {0, &, ..., L}

» Assuming clauses contain variables zi, ... z,, what is the
meaning of this clausal form as a proper FOL formula?

| 0 P (ll\/lg...\/lk)/\.../\(l{\/lé...\/l{l)
» Recall: Universal quantifiers distribute over conjuncts:

V¥ W ANFy & VEF; AVIF,

» Thus above formula is equivalent to:

VI, ..., Ty, (ll\/lz...Vlk).../\
Vo, ooz WV G V)
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A Word About Clausal Form, cont.

Yy, ..., 2, (ll\/lz...\/lk).../\
Yy, .oz WV V)

» Recall: If we rename quantified variables, the resulting formula
is equivalent to original one

Ve.F < Vy.Fly/z]

» Hence, the above formula is equivalent to:

VI, ..., Ty, (ll\/ZQ...Vlk).../\
Yy (WY bV ) [G/E]

» Thus, if two different clauses C; and (5 contain same variable
2, we can rename z to some other z’ in one of C; or Cy
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Clausal Form and Renaming Variables

» In rest of lecture, we assume that we rename variables in each
clause so different clauses contain different variables.

» This is necessary to ensure that we don’t get conflicting
names as we do resolution.

» For instance, if we have two clauses {p(a,z)} and {-p(z,b)},
we assume they are renamed as {p(a,z)} and {-p(z,b)}
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First Order Resolution

» To apply first-order resolution, convert formula to clausal form

» Rename variables to ensure each clause contains different
variables

» Resolution:

{A,By,...,By} {~C.Di,...,D,}

(Bi,....Bu.Di,....Dulo (0 = mgu(4, 0))
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Example

Resolution:

{A,By,....By} {~C,Dy,...,D,}
{B],...,Bk,Dl,...,Dn}U

(0 = mgu(4, C))

» What is the result of performing resolution on the following
clauses?

Clause 1: {p(a,y),7(9(y))}
Clause 2: {—p(z,f(z)), q(g(x))}

» Mgu for p(a,y) and p(z, f(x)):

» Resolvent:
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Intuition about First-Order Resolution

» Intuition: Consider two clauses: {happy(z), sad(z)} and
{=happy(joe), happy(sally)}

» The first clause says:

» This implies: happy(joe) V sad(joe)

» The second clause says:

» Two possibilities: Either Joe is happy or not.

» If happy(joe), second clause implies happy(sally)
> If —happy(joe), then we have sad(joe)

» In either case, we have happy(sally) V sad(joe)
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Intuition about First-Order Resolution, cont.

{A,By,...,By} {~C,Di,..., Dy}
{Bl,...,Bk,Dl,...,Dk}U

(0 = mgu(4, C))

» What happens if we apply resolution to {happy(z), sad(z)}
and {—happy(joe), happy(sally)} ?

» |nstantiate resolution rule with our clauses:

{happy(z), sad(z)} {—happy(joe), happy(sally)}
{sad(x), happy(sally)}[z — joe]{sad(joe), happy(sally)}

» Same conclusion as before!
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Intuition about First-Order Resolution, summary
» Just like propositional resolution, first-order resolution
corresponds to a simple case analysis
» But more involved due to universal quantifiers

» To perform deduction, often need to instantiate universal
quantifier with something specific like joe

» The use of unifiers in resolution corresponds to instantiation
of universally quantifiers

» Quantifier instantiation is demand-driven; we only unify when
it is possible to perform deduction
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Why Most General Unifiers?

» Why do we need most general unifiers, not just any unifier?

» Example: Consider clauses: {happy(z), sad(z)} {—sad(y)}
» Most general unifier:
» Resolvent:

» What does this mean in English?
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Why Most General Unifiers?

Clauses: {happy(x), sad(z)} {—sad(y)}

» Now, suppose we use a less general unifier, e.g.
[z +— joe, y — joe]

» Resolvent:

» Since "Everyone is happy” implies "Joe is happy”, former
deduction is much better!

» Using most general unifiers ensures our deductions are as
general as possible
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Incompleteness

» The inference rule for resolution so far is sound,but not
complete: there are valid deductions it cannot derive.

» Consider the following clauses:

Clause 1 :{p(z), p(y)}
Clause 2 :{-p(a),~p(d)}

» What does the first clause say?
» Simpler way of saying the same thing:
» Clearly contradicts the second clause!

» So, we should derive the empty clause, i.e., contradiction
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Incompleteness Example

» What can we deduce using resolution from these clauses?

Clause 1 :{p(z),p(y)}
Clause 2 :{-p(a),~p(b)}

» Using mgu for p(z) and p(a),

» Using mgu for p(z) and p(b),

» Using mgu for p(y), p(a),

» Using mgu for p(y), p(b),

» More deductions possible using new clauses, but redundant

» Conclusion: Using inference rule for resolution alone, we
cannot derive the empty clause
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Solution: Factoring

» To ensure we can deduce all valid facts, we need another
inference rule for factoring.

» Factorization:

{AvBa Cl-"a Ck}
{A, Cl,... Ck}O'

(0 = mgu(4, B))

» Soundness of factorization: For any clause C' and any
substitution o, C'o is always a valid deduction

> Why?
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Revisiting the Example

» Consider again the problematic example:

Clause 1 {p(z),p(y)}
Clause 2 :{-p(a),-p(d)}

» Use factoring on first clause
» Mgu for p(z) and p(y):
» Result of factoring:

» Now, do resolution between clause 2 and 3.
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Resolution with Implicit Factoring

» Can formulate resolution and factoring as single inference rule.

» Resolution with Implicit Factorization:

{41,...4,,B1,..., By}
{=C,Dy,..., Dy}

{B],...,Bk7D1,...,Dk}O'

(0 = mgu(4y,...A,, C))

» From now on, by "resolution”, we mean resolution with
implicit factorization
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Resolution with Implicit Factoring Example

» Consider the example we looked at before:

{p(z),p(y)}

{ﬂp{(j;’(;f}(b)} (2 = mgu(p(x), p(y), p(a)))

» Now, apply resolution with implicit factoring one more time:

{p(z),p(y)}

{ﬂ?}b)} (2 = mgu(p(x), p(y). p(b)))
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Resolution Derivation

» A clause C is derivable from a set of clauses A if there is a
sequence of clauses ¥y, ..., ¥y terminating in C such that:

1. ¥, € A, or
2. W, is resolvent of some W; and Wy, such that j < i Ak <4

» Example: Consider clauses

A = {happy(z), sad(z)}, {—sad(y)}
» Here, {happy(z)} is derivable from A

» If a clause C is derivable from A, we write A - C
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Resolution Refutation

» The derivation of the empty clause from a set of clauses A is
called resolution refutation of A

» Consider set of clauses A:

{happy(z), sad(z)}
{—sad(y)}
{=happy(mother(joe))}

» Resolution refutation of A:

{happy(z), sad(z)} {—sad(y)} .
{happy(z)} {=happy(mother(joe))}

{}
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Refutational Soundness and Completeness
» Theorem: Resolution is sound, i.e., if A+ C, then A = C

» Corollary: If there is a resolution refutation of A, A is indeed
unsatisfiable

» In other words, we cannot conclude a satisfiable formula is
unsatisfiable using resolution

» Resolution with implicit factorization is also complete, i.e., if
A= C, then A C

» Corollary: If F' is unsatisfiable, then there exists a resolution
refutation of F' using only resolution with factorization.

» This is called the refutational completeness of resolution.
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Validity Proofs using Resolution

» How to prove validity FOL formula using resolution?

» Use duality of validity and unsatisfiability:

| F is valid iff =F is unsatisfiable |

» We will use resolution to show —F' is unsatisfiable.
» First, convert —F to clausal form C.

» If there is a resolution refutation of C, then, by soundness, F’
is valid.
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Example

» Everybody loves somebody. Everybody loves a lover. Prove
that everybody loves everybody.

» First sentence in FOL:
» Second sentence in FOL:
» Goal in FOL:

» Thus, want to prove validity of:

(Vz.3y.loves(z, y) AVuNw.((Fv.loves(u, v)) — loves(w, u)))
— Vz.Vt.loves(z,t)
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Example, cont.

» Want to prove negation unsatisfiable:

=((Va.3y.loves(z, y) A VuNw.((Fv.loves(u,v)) — loves(w, u)))
— Vz.Vt.loves(z,t))

» Convert to PNF: in NNF, quantifiers in front

» Remove inner implication:
=((Vz.y.loves(z, y) A VuNw.((=(3v.loves(u, v))) V loves(w, u)))
— Vz.Vt.loves(z,t))
» Remove outer implication:

—(=(Vz.Jy.loves(z, y) AVu.Yw.((—(Fv.loves(u, v))) V loves(w, )
VW2 Vt.loves(z,t))
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Example, cont.

=(=(Vz.3y.loves(z, y) AVuVYw.((—(Fv.loves(u, v))) V loves(w, u)))
VW2 Vt.loves(z,t))
» Push innermost negation in:

—(=(Vz.Jy.loves(z, y) AVuYw.Yv.(—loves(u, v) V loves(w, u))
VW2 Vt.loves(z,t))

» Push outermost negation in:

(== (Vz.Fy.loves(z, y) AVu.Yw.Vv.~loves(u, v)) V loves(w, u))
A=(Vz.Vi.loves(z, t)))

Isil Dillig, CS389L: Automated Logical Reasoning Lecture 9: First-Order Resolution 28/41

Example, cont.

(== (Vz.3y.loves(z, y) A Vu.Vw.Vv.=loves(u, v) V loves(w, u))
A—(Vz.Vi.loves(z, t)))
» Eliminate double negation:

((Vz.3y.loves(z, y) AVuYw.Nv.—loves(u, v) V loves(w, u))
A—(Vz.Vt.loves(z, t)))

» Push negation on second line in:

((Vz.Fy.loves(z, y) AVuNw.Vv.—loves(u,v) V loves(w, u))
A(Fz.3t.~loves(z, t)))
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Example, cont.

((Vz.3y.loves(z, y) AVuNw.Vv.(—loves(u,v) V loves(w, u)))
A(Jz.3t.—loves(z, t)))

» Now, move quantifiers to front. Restriction:

Jz.3t.Vz.Jy Vu.Vw. V.
loves(z,y) A (—loves(u, v) V loves(w, u)) A —loves(z, t)

> Next, skolemize existentially quantified variables:

Yu.Vw.Vo.Vz.
loves(z, lover(z)) A (—loves(u, v) V loves(w, u))
A=loves(joe, jane)
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Example, cont.

Yu.Yw.Yo V.
loves(z, lover(z)) A (—loves(u, v) V loves(w, u))
A—-loves(joe, jane)

» Now, drop quantifiers:

loves(z, lover(z)) A (mloves(u, v) V loves(w, u))
N=loves(joe, jane)

» Convert to CNF: already in CNF!

» In clausal form:

{loves(z, lover(z))}
{=loves(u, v), loves(w, u)}
{=loves(joe, jane)}
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Example, cont.

» Finally, we can do resolution:
{loves(z, lover(z))}
{=loves(u, v), loves(w, u)}
{—loves(joe, jane)}
» Resolve first and second clauses. MGU:
» Resolvent:

» Resolve new clause with third clause.

> Mgu:

v

Resolvent: {}

» Thus, we have proven the formula valid.
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Example Il

» Use resolution to prove validity of formula:
—(FyVz.(p(z,y) < —3z.(p(2,2) A p(z, 2))))
» Convert negation to clausal form:
Jy.Vz.(p(z,y) < —3z.(p(z,2) A p(z,2)))
» To convert to NNF, get rid of <

Fy.Vz.(-p(z,y) V -3z.(p(z,2) A p(z, 2))A
(p(z,9) V 3z.(p(2,2) A p(z, 2))))
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Example Il, cont

Fy.Vz.(—p(z,y) V-3z.(p(z,2) A p(z, 2))A
(p(2,9) vV Iz.(p(2,2) A p(2,2))))
» Push negations in:

JyVz.(-p(z,y) VVz.(-p(z,2) V -p(z, 2))A
(p(z,y) vV Iz.(p(2,7) A p(z,2))))

» Rename quantified variables:

FyVz.(-p(z,y) VVz.(-p(z,2) V —p(z, 2))A
p(2,y) V 3w.(p(z, w) A p(w, 2)))
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Example Il, cont.

Fy.Vz.(—p(z,y) VV.(—p(z,2) V —p(z, 2))A
p(z,y) vV Iw.(p(z, w) A p(w, 2)))
> In PNF:

Jy Nz 3w Ve.(—-p(z,y) V (-p(z,2) V —p(z, 2))A
p(z,9) V (p(z, w) A p(w, 2)))

» Skolemize existentials:

VzVa.(-p(z,a) V (-p(z,2) V op(z, 2))A
p(z, )V (p(z,f(2)) A p(f(2),2)))
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Example Il, cont.

VzVz.(-p(z,a) V (mp(z,z) V —p(z, 2))A
p(z,a) V (p(z,f(2)) A p(f(2),2)))

» Drop quantifiers and convert to CNF:

(=p(2,0) vV (=p(2,2) V =p(z, 2))A
p(z,a) V p(z,f(2))A
p(z,0) Vp(f(2),2))

» In clausal form (with renamed variables):

Cl: {_‘p(zva)v_'p(zax)aﬂp(zvz)}
C2: {p(y,a),p(y, f(y)}
C3: {p(w,a),p(f(w),w))}
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Example Il, cont.

Cl: {-p(z,a),~p(z,z),p(z,2)}
C2: {p(y,a),p(y.f(y))}
C3: {p(w,a),p(f(w),w))}

» Resolve C'1 and C2 using factoring.

» What is the MGU for p(z, a), p(z,2), p(z, 2), p(y, a)?

» Resolvent:
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Example Il, cont.

Cl: {—\p(z,a),ﬁp(z,x),—'p(x,z)}
C2: {p(y,a),p(y.f(y))}

C3: {p(w,a),p(f(w),w))}

C4: {p(a,f(a)}

» Now, resolve C1 and C'3 (using factoring).
» What is the MGU for p(z, a), p(z,z), p(z, 2), p(w, a)?

» Resolvent:
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Example Il, cont.

C1l: {-p(z,a),7p(z,z),~p(z,2)}
C2: {p(y,a),p(y,f(y)}

C3: {p(w,a),p(f(w),w))}

C4: {p(a,f(a))}

C5: {p(f(a),a)}

» Resolve C1 and C5 (using factoring).
» What is the MGU of p(z, a), p(z,z) and p(f(a), a)?

» Resolvent:
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Example Il, cont.

Cl: {—\p(z,a),ﬁp(z,x),—'p(x,z)}
C2: {p(y,a),p(y.f(y))}

C3: {p(w,a),p(f(w), w))}

C4: {p(a,f(a))}

C5: {p(f(a),a)}

C6: {-p(a,f(a))}

» Finally, resolve C'4 and C6.
» Resolvent: {}

» Thus, the original formula is valid.
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Summary

» First-order theorem provers work by converting to clausal form
and trying to find resolution refutation

» But there are no termination guarantees — may diverge if
formula is satisfiable

» Next lecture: First-order theories
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