CS389L: Automated Logical Reasoning

Lecture 10: First-Order Resolution and Intro to Theories

Işıl Dillig

Review

- Last lecture: Clausal form, first-order resolution
- ▶ How to convert formulas to clausal form?
- ► Resolution with Implicit Factorization:

$$\frac{\{A_1, \dots, A_n, B_1, \dots, B_k\}}{\{\neg C, D_1, \dots, D_k\}} (\sigma = mgu(A_1, \dots, A_n, C))$$

Resolution Derivation

- lacktriangle A clause C is derivable from a set of clauses Δ if there is a sequence of clauses Ψ_1, \ldots, Ψ_k terminating in C such that:
 - 1. $\Psi_i \in \Delta$, or
 - 2. Ψ_i is resolvent of some Ψ_j and Ψ_k such that $j < i \wedge k < i$
- ► Example: Consider clauses

$$\Delta = \{happy(x), sad(x)\}, \{\neg sad(y)\}$$

- ▶ Here, $\{happy(x)\}$ is derivable from Δ
- ▶ If a clause C is derivable from Δ , we write $\Delta \vdash C$

Resolution Refutation

- lacktriangle The derivation of the empty clause from a set of clauses Δ is called resolution refutation of Δ
- ▶ Consider set of clauses Δ :

$$\{happy(x), sad(x)\}\$$

 $\{\neg sad(y)\}\$
 $\{\neg happy(mother(joe))\}\$

Resolution refutation of Δ:

$$\frac{\{happy(x), sad(x)\} \quad \{\neg sad(y)\}}{\{happy(x)\}} \quad \{\neg happy(mother(joe))\}$$

Refutational Soundness and Completeness

- ▶ Theorem: Resolution is sound, i.e., if $\Delta \vdash C$, then $\Delta \models C$
- ▶ Corollary: If there is a resolution refutation of Δ , Δ is indeed unsatisfiable
- ▶ Resolution with implicit factorization is also complete, i.e., if $\Delta \models C$, then $\Delta \vdash C$
- ightharpoonup Corollary: If F is unsatisfiable, then there exists a resolution refutation of F using only resolution with factorization.
- ▶ This is called the refutational completeness of resolution.

Validity Proofs using Resolution

- ▶ How to prove validity FOL formula using resolution?
- Use duality of validity and unsatisfiability:

F is valid iff $\neg F$ is unsatisfiable

- ▶ We will use resolution to show $\neg F$ is unsatisfiable.
- ▶ First, convert $\neg F$ to clausal form C.
- ightharpoonup If there is a resolution refutation of C, then, by soundness, Fis valid.

Example

- ► Everybody loves somebody. Everybody loves a lover. Prove that everybody loves everybody.
- ► First sentence in FOL:
- Second sentence in FOL:
- ► Goal in FOL:
- ▶ Thus, want to prove validity of:

```
 \begin{array}{l} (\forall x. \exists y. loves(x,y) \land \forall u. \forall w. ((\exists v. loves(u,v)) \rightarrow loves(w,u))) \\ \qquad \rightarrow \forall z. \forall t. loves(z,t) \end{array}
```

Ist Dillie.

CS389L: Automated Logical Reasoning | Lecture 10: First-Order Resolution and Intro to Theories |

Example, cont.

► Want to prove negation unsatisfiable:

```
\neg((\forall x.\exists y.loves(x,y) \land \forall u.\forall w.((\exists v.loves(u,v)) \rightarrow loves(w,u))) \\ \rightarrow \forall z.\forall t.loves(z,t))
```

- ► Convert to PNF: in NNF, quantifiers in front
- ► Remove inner implication:

```
\neg ((\forall x. \exists y. loves(x, y) \land \forall u. \forall w. ((\neg (\exists v. loves(u, v)))) \lor loves(w, u)))) \\ \rightarrow \forall z. \forall t. loves(z, t))
```

► Remove outer implication:

```
\neg (\neg (\forall x. \exists y. loves(x,y) \land \forall u. \forall w. ((\neg (\exists v. loves(u,v))) \lor loves(w,u))) \lor \forall z. \forall t. loves(z,t))
```

Isl Dillis

S389L: Automated Logical Reasoning Lecture 10: First-Order Resolution and Intro to Theories

Example, cont.

$$\neg (\neg (\forall x. \exists y. loves(x, y) \land \forall u. \forall w. ((\neg (\exists v. loves(u, v)))) \lor loves(w, u))) \\ \lor \forall z. \forall t. loves(z, t))$$

▶ Push innermost negation in:

$$\neg (\neg (\forall x. \exists y. loves(x, y) \land \forall u. \forall w. \forall v. (\neg loves(u, v) \lor loves(w, u)) \\ \lor \forall z. \forall t. loves(z, t))$$

► Push outermost negation in:

$$(\neg \neg (\forall x. \exists y.loves(x,y) \land \forall u. \forall w. \forall v. \neg loves(u,v)) \lor loves(w,u)) \\ \land \neg (\forall z. \forall t.loves(z,t)))$$

Isl Dillig,

CS389L: Automated Logical Reasoning | Lecture 10: First-Order Resolution and Intro to Theories

Example, cont.

$$(\neg \neg (\forall x. \exists y. loves(x, y) \land \forall u. \forall w. \forall v. \neg loves(u, v) \lor loves(w, u)) \land \neg (\forall z. \forall t. loves(z, t)))$$

► Eliminate double negation:

```
 \begin{aligned} & ((\forall x. \exists y. loves(x,y) \land \forall u. \forall w. \forall v. \neg loves(u,v) \lor loves(w,u)) \\ & \land \neg (\forall z. \forall t. loves(z,t))) \end{aligned}
```

▶ Push negation on second line in:

```
 \begin{aligned} & ((\forall x. \exists y. loves(x,y) \land \forall u. \forall w. \forall v. \neg loves(u,v) \lor loves(w,u)) \\ & \land (\exists z. \exists t. \neg loves(z,t))) \end{aligned}
```

Ișil Dillig

CS389L: Automated Logical Reasoning | Lecture 10: First-Order Resolution and Intro to Theories

Example, cont.

$$\begin{array}{l} ((\forall x. \exists y. loves(x,y) \land \forall u. \forall w. \forall v. (\neg loves(u,v) \lor loves(w,u))) \\ \land (\exists z. \exists t. \neg loves(z,t))) \end{array}$$

▶ Now, move quantifiers to front. Restriction:

$$\exists z.\exists t. \forall x.\exists y. \forall u. \forall w. \forall v. \\ loves(x,y) \land (\neg loves(u,v) \lor loves(w,u)) \land \neg loves(z,t)$$

▶ Next, skolemize existentially quantified variables:

$$\begin{array}{c} \forall u. \forall w. \forall v. \forall x. \\ loves(x, \textcolor{red}{lover(x)}) \land (\neg loves(u, v) \lor loves(w, u)) \\ \land \neg loves(\textcolor{red}{joe}, \textcolor{red}{jane}) \end{array}$$

lşıl Dillig,

CS389L: Automated Logical Reasoning Lecture 10: First-Order Resolution and Intro to Theories

Example, cont.

$$\begin{aligned} &\forall u. \forall w. \forall v. \forall x. \\ loves(x, lover(x)) \wedge (\neg loves(u, v) \vee loves(w, u)) \\ &\wedge \neg loves(joe, jane) \end{aligned}$$

▶ Now, drop quantifiers:

$$\begin{aligned} loves(x, lover(x)) \wedge (\neg loves(u, v) \vee loves(w, u)) \\ \wedge \neg loves(joe, jane) \end{aligned}$$

- ► Convert to CNF: already in CNF!
- ▶ In clausal form:

 $\begin{cases} loves(x, lover(x)) \\ \{ \neg loves(u, v), loves(w, u) \} \\ \{ \neg loves(joe, jane) \} \end{cases}$

Ișil Dilli

CS389L: Automated Logical Reasoning Lecture 10: First-Order Resolution and Intro to Theories

40.000

Example, cont.

► Finally, we can do resolution:

$$\begin{cases} \{loves(x, lover(x))\} \\ \{\neg loves(u, v), loves(w, u)\} \\ \{\neg loves(joe, jane)\} \end{cases}$$

- ▶ Resolve first and second clauses. MGU:
- ► Resolvent:
- ▶ Resolve new clause with third clause.
- ► Mgu:
- ► Resolvent: {}
- ▶ Thus, we have proven the formula valid.

L: Automated Logical Reasoning Lecture 10: First-Order Resolution and Intro to Theories

Example II

▶ Use resolution to prove validity of formula:

$$\neg(\exists y. \forall z. (p(z,y) \leftrightarrow \neg \exists x. (p(z,x) \land p(x,z))))$$

► Convert negation to clausal form:

$$\exists y. \forall z. (p(z,y) \leftrightarrow \neg \exists x. (p(z,x) \land p(x,z)))$$

► To convert to NNF, get rid of ↔:

$$\exists y. \forall z. (\neg p(z, y) \lor \neg \exists x. (p(z, x) \land p(x, z)) \land (p(z, y) \lor \exists x. (p(z, x) \land p(x, z))))$$

Isl Dillie.

CS389L: Automated Logical Reasoning | Lecture 10: First-Order Resolution and Intro to Theories

Example II, cont

$$\exists y. \forall z. (\neg p(z,y) \lor \neg \exists x. (p(z,x) \land p(x,z)) \land (p(z,y) \lor \exists x. (p(z,x) \land p(x,z))))$$

► Push negations in:

$$\exists y. \forall z. (\neg p(z,y) \lor \forall x. (\neg p(z,x) \lor \neg p(x,z)) \land (p(z,y) \lor \exists x. (p(z,x) \land p(x,z))))$$

► Rename quantified variables:

$$\exists y. \forall z. (\neg p(z,y) \vee \forall x. (\neg p(z,x) \vee \neg p(x,z)) \wedge \\ p(z,y) \vee \exists w. (p(z,w) \wedge p(w,z)))$$

Isl Dillig,

CS389L: Automated Logical Reasoning | Lecture 10: First-Order Resolution and Intro to Theories

Example II, cont.

$$\exists y. \forall z. (\neg p(z, y) \lor \forall x. (\neg p(z, x) \lor \neg p(x, z)) \land p(z, y) \lor \exists w. (p(z, w) \land p(w, z)))$$

► In PNF:

$$\exists y. \forall z. \exists w. \forall x. (\neg p(z,y) \lor (\neg p(z,x) \lor \neg p(x,z)) \land p(z,y) \lor (p(z,w) \land p(w,z)))$$

► Skolemize existentials:

$$\forall z. \forall x. (\neg p(z, \mathbf{a}) \lor (\neg p(z, x) \lor \neg p(x, z)) \land p(z, \mathbf{a}) \lor (p(z, \mathbf{f(z)}) \land p(\mathbf{f(z)}, z)))$$

lpl Dillig

CS389L: Automated Logical Reasoning | Lecture 10: First-Order Resolution and | Intro to Theories

Example II, cont.

$$\forall z. \forall x. (\neg p(z, a) \lor (\neg p(z, x) \lor \neg p(x, z)) \land p(z, a) \lor (p(z, f(z)) \land p(f(z), z)))$$

▶ Drop quantifiers and convert to CNF:

$$(\neg p(z, a) \lor (\neg p(z, x) \lor \neg p(x, z)) \land p(z, a) \lor p(z, f(z)) \land p(z, a) \lor p(f(z), z))$$

▶ In clausal form (with renamed variables):

$$\begin{array}{ll} C1: \ \{\neg p(z,a), \neg p(z,x), \neg p(x,z)\} \\ C2: \ \{p(y,a), p(y,f(y))\} \\ C3: \ \{p(w,a), p(f(w),w))\} \end{array}$$

Ipl Dillig,

CS389L: Automated Logical Reasoning Lecture 10: First-Order Resolution and Intro to Theories

Example II, cont.

 $C1: \{\neg p(z, a), \neg p(z, x), \neg p(x, z)\}\$ $C2: \{p(y, a), p(y, f(y))\}\$ $C3: \{p(w, a), p(f(w), w)\}\$

- ightharpoonup Resolve C1 and C2 using factoring.
- ▶ What is the MGU for p(z, a), p(z, x), p(x, z), p(y, a)?
- ► Resolvent:

Ișil Dillig

CS389L: Automated Logical Reasoning Lecture 10: First-Order Resolution and Intro to Theories

18/33

Example II, cont.

 $C1: \{ \neg p(z, a), \neg p(z, x), \neg p(x, z) \}$ $C2: \{p(y, a), p(y, f(y))\}$ C3: $\{p(w, a), p(f(w), w)\}$ $C4: \{p(a, f(a))\}$

- ▶ Now, resolve C1 and C3 (using factoring).
- ▶ What is the MGU for p(z, a), p(z, x), p(x, z), p(w, a)?
- ► Resolvent:

Example II, cont.

 $C1: \{\neg p(z, a), \neg p(z, x), \neg p(x, z)\}$ $C2: \{p(y, a), p(y, f(y))\}$ $C3: \{p(w, a), p(f(w), w)\}$ $C4: \{p(a, f(a))\}$ $C5: \{p(f(a), a)\}$

▶ Resolve C1 and C5 (using factoring).

Resolution and First-Order Theorem Provers

automated first-order theorem provers.

are typically two main improvements:

Built-in reasoning about equality

Ordered resolution

clause elimination etc.)

- ▶ What is the MGU of p(z, a), p(z, x) and p(f(a), a)?
- Resolvent:

▶ Resolution (with factorization) forms the basis of most

▶ However, to make relational refutation more efficient, there

▶ Removal of useless clauses (tautology elimination, identical

Example II, cont.

 $C1: \{\neg p(z, a), \neg p(z, x), \neg p(x, z)\}$ $C2: \{p(y,a), p(y,f(y))\}$ C3: $\{p(w, a), p(f(w), w)\}$ $C4: \{p(a, f(a))\}$ $C5: \{p(f(a), a)\}$ $C6:\ \{\neg p(a,f(a))\}$

- ightharpoonup Finally, resolve C4 and C6.
- ▶ Resolvent: {}
- ▶ Thus, the original formula is valid.

Motivation for First-Order Theories

- First-order logic is very powerful and very general.
- ▶ But in many settings, we have a particular application in mind and do not need the full power of first order logic.
- ▶ For instance, instead of general predicates/functions, we might only need an equality predicate or arithmetic operations.
- ▶ Also, might want to disallow some interpretations that are allowed in first-order logic.

First-Order Theories

- ► First-order theories: Useful for formalizing and reasoning about particular application domains
 - e.g., involving integers, real numbers, lists, arrays, ...
- ► Advantage: By focusing on particular application domain, can give much more efficient, specialized decision procedures

Signature and Axioms of First-Order Theory

- ► A first-order theory *T* consists of:
 - 1. Signature Σ_T : set of constant, function, and predicate symbols
 - 2. Axioms A_T : A set of FOL sentences over Σ_T
- $ightharpoonup \Sigma_T$ formula: Formula constructed from symbols of Σ_T and variables, logical connectives, and quantifiers.
- ▶ Example: We could have a theory of heights T_H with signature Σ_H : $\{taller\}$ and axiom:

$$\forall x, y. (taller(x, y) \rightarrow \neg taller(y, x))$$

- ▶ Is $\exists x. \forall z. taller(x, z) \land taller(y, w)$ legal Σ_H formula?
- ▶ What about $\exists x. \forall z. taller(x, z) \land taller(joe, tom)$?

L L DON

CS389L: Automated Logical Reasoning | Lecture 10: First-Order Resolution and Intro to Theories

Axioms of First-Order Theory

- ▶ The axioms A_T provide the meaning of symbols in Σ_T .
- Example: In our theory of heights, axioms define meaning of predicate taller
- $\,\blacktriangleright\,$ Specifically, axioms ensure that some interpretations legal in standard FOL are not legal in T
- ▶ Example: Consider relation constant taller, and $U = \{A, B, C\}$
- ▶ In FOL, possible interpretation: I(taller) : $\{\langle A, B \rangle, \langle B, A \rangle\}$
- ▶ In our theory of heights, this interpretation is not legal b/c does not satisfy axioms

Isl Dillis

S389L: Automated Logical Reasoning Lecture 10: First-Order Resolution and Intro to Theories

Models of T

- ▶ A structure $M = \langle U, I \rangle$ is a model of theory T, or T-model, if $M \models A$ for every $A \in A_T$.
- ▶ Example: Consider structure consisting of universe $U = \{A, B\}$ and interpretation $I(taller) : \{\langle A, B \rangle, \langle B, A \rangle\}$
- ▶ Is this a model of T?
- \blacktriangleright Now, consider same U and interpretation $\langle A,B\rangle.$ Is this a model?
- ► Suppose our theory had another axiom:

$$\forall x, y, z. \ (taller(x, y) \land taller(y, z) \rightarrow taller(x, z))$$

▶ Consider I(taller) : $\{\langle A, B \rangle, \langle B, C \rangle\}$. Is (U, I) a model?

Isl Dillig,

CS389L: Automated Logical Reasoning | Lecture 10: First-Order Resolution and Intro to Theories

Satisfiability and Validity Modulo T

- Formula F is satisfiable modulo T if there exists a T-model M and variable assignment σ such that $M, \sigma \models F$
- ► Formula F is valid modulo T if for all T-models M and variable assignments σ , M, $\sigma \models F$
- ightharpoonup Question: How is validity modulo T different from FOL-validity?
- Answer: Disregards all structures that do not satisfy theory axioms.
- ▶ If a formula F is valid modulo theory T, we will write $T \models F$.
- lacktriangleright Theory T consists of all sentences that are valid in T.

lşıl Dillig,

CS389L: Automated Logical Reasoning | Lecture 10: First-Order Resolution and | Intro to Theories

28/33

Questions

Consider some first order theory T:

- ▶ If a formula is valid in FOL, is it also valid modulo T?
- ▶ If a formula is valid modulo T, is it also valid in FOL?
- ► Counterexample: This formula is valid in "theory of heights":

$$\neg taller(x, x)$$

Equivalence Modulo T

▶ Two formulas F_1 and F_2 are equivalent modulo theory T if for every T-model M and for every variable assignment σ :

$$M, \sigma \models F_1 \text{ iff } M, \sigma \models F_2$$

▶ Another way of stating equivalence of F_1 and F_2 modulo T:

$$T \models \mathit{F}_1 \leftrightarrow \mathit{F}_2$$

- ightharpoonup Example: Consider a theory $T_{=}$ with predicate symbol = and suppose A_T gives the intended meaning of equality to =.
- Are x = y and y = x equivalent modulo $T_{=}$?
- ▶ Are they equivalent according to FOL semantics?
- ▶ Falsifying interpretation: $U = \{\Box, \triangle\}, I(=) : \{\langle \triangle, \Box \rangle\}$

Ișil Dillig,

CS389L: Automated Logical Reasoning Lecture 10: First-Order Resolution and Intro to Theories

4......

CS389L: Automated Logical Reasoning | Lecture 10: First-Order Resolution and | Intro to Theories

Completeness of Theory

lacktriangle A theory T is complete if for every sentence F, if T entails For its negation:

$$T \models F \text{ or } T \models \neg F$$

ightharpoonup Question: In first-order logic, for every closed formula F, is either F or $\neg F$ valid?

- ▶ Consider $U = \{\circ, \star\}$
- ▶ Falsifying interpretation for p(a):
- ▶ Falsifying interpretation for $\neg p(a)$:

Decidability of Theory

- lacktriangle A theory T is decidable if for every formula F, there exists an algorithm that:
 - 1. always terminates and answers "yes" if ${\it F}$ is valid modulo ${\it T}$ and
 - 2. terminates and answers "no" if ${\cal F}$ is not valid modulo ${\cal T}$
- ▶ Unlike full first-order logic, many of the first-order theories we will study are decidable.
- ▶ For those that are not decidable, we are interested in fragments of that theory that are decidable.

Useful First-Order Theories

- 1. Theory of equality
- 2. Peano Arithmetic
- 3. Presburger Arithmetic
- 4. Theory of Rationals
- 5. Theory of Arrays