CS389L: Automated Logical Reasoning

Lecture 10: First-Order Resolution and
Intro to Theories

Isil Dillig

Review

» Last lecture: Clausal form, first-order resolution
» How to convert formulas to clausal form?

» Resolution with Implicit Factorization:

{Al,...An,Bl,...,Bk}
{=C,D,..., Dy}
{Bl Bk Dl Dk}O’ (U=mgu(A1,An,C))
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Resolution Derivation

v

A clause C is derivable from a set of clauses A if there is a
sequence of clauses Uy, ..., Uy terminating in C such that:

1. \IliGA, or

2. W, is resolvent of some W; and Wy, such that j <iAk <1

v

Example: Consider clauses

A = {happy(z), sad(z)}, {~sad(y)}

v

Here, {happy(z)} is derivable from A

v

If a clause C is derivable from A, we write A -

Resolution Refutation

» The derivation of the empty clause from a set of clauses A is
called resolution refutation of A

» Consider set of clauses A:

{happy(z), sad(z)}
{=sad(y)}
{=happy(mother(joe))}

» Resolution refutation of A:

{happy(z), sad(z)} {—sad(y)}
{happy(z)}

{—happy(mother(joe))}

{1
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Refutational Soundness and Completeness

» Theorem: Resolution is sound, i.e., if A C, then A = C

» Corollary: If there is a resolution refutation of A, A is indeed
unsatisfiable

» Resolution with implicit factorization is also complete, i.e., if
A C, then AFC

» Corollary: If F' is unsatisfiable, then there exists a resolution
refutation of F' using only resolution with factorization.

» This is called the refutational completeness of resolution.

Validity Proofs using Resolution

» How to prove validity FOL formula using resolution?

» Use duality of validity and unsatisfiability:

[ F is valid iff =F is unsatisfiable]|

» We will use resolution to show —F is unsatisfiable.
» First, convert —F to clausal form C.

> If there is a resolution refutation of C', then, by soundness, F’
is valid.

Isil Dillig, C5389L: Automated Logical Reasoning ~ Lecture 10: First-Order Resolution and Intro to Theories

5/33

Isil Dillg,

CS389L: Automated Logical Reasoning Lecture 10: First-Order Resolution and  Intro to Theories 6/33




Example

» Everybody loves somebody. Everybody loves a lover. Prove
that everybody loves everybody.

First sentence in FOL:

v

» Second sentence in FOL:

Goal in FOL:

v

» Thus, want to prove validity of:

(Vz.3y.loves(z, y) A VuYw.((Fv.loves(u, v)) — loves(w, u)))
— Vz.Vt.loves(z, t)

Example, cont.

» Want to prove negation unsatisfiable:

=((Vz.3y.loves(z, y) A VuNw.((Fv.loves(u,v)) — loves(w, u)))
— Vz.Vt.loves(z,t))

» Convert to PNF: in NNF, quantifiers in front

> Remove inner implication:
=((Vz.3y.loves(z, y) AVuNw.((—(Fv.loves(u, v))) V loves(w, u)))
— Vz.Vt.loves(z,t))
» Remove outer implication:

—(=(Vz.3y.loves(z, y) AVuVw.((=(Fv.loves(u, v))) V loves(w, u)
VW2 Vt.loves(z,t))
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Example, cont.

=(=(Vz.3y.loves(z, y) AVuNw.((=(Fv.loves(u, v))) V loves(w, u)))
V2. Vt.loves(z, t))
> Push innermost negation in:

—(=(Va.3y.loves(z, y) A VuNw.Vv.(=loves(u, v) V loves(w, u))
V2. Vi.loves(z, t))

» Push outermost negation in:

(== (Vz.3y.loves(z, y) A VuNw.Yv.~loves(u, v)) V loves(w, u))
A= (Vz.Vi.loves(z,t)))

Example, cont.

(==(Vz.3y.loves(z, y) A VuVw.Yv.~loves(u, v) V loves(w, u))
A= (Vz.Vt.loves(z,t)))
> Eliminate double negation:

((Vz.3y.loves(z, y) AVuNw.Nv.~loves(u, v) V loves(w, u))
A= (Vz.Vi.loves(z, t)))

» Push negation on second line in:

((Vz.3y.loves(z, y) AVuNw.Nv.=loves(u, v) V loves(w, u))
A(Fz.3t.~loves(z, t)))
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Example, cont.

((Vz.3y.loves(z, y) AVuNwNv.(=loves(u, v) V loves(w, u)))
A(Fz.3t.-loves(z,t)))

» Now, move quantifiers to front. Restriction:

Jz.3t.Vr.Jy VuVYw.Vu.
loves(z, y) A (—loves(u, v) V loves(w, u)) A —loves(z, t)

» Next, skolemize existentially quantified variables:

Yu.Yw.VoVz.
loves(z, lover(x)) A (mloves(u, v) V loves(w, u))
A=loves(joe, jane)

Example, cont.

YuVw.Vu.Vz.
loves(z, lover(x)) A (—loves(u, v) V loves(w, u))
A-loves(joe, jane)

> Now, drop quantifiers:

loves(z, lover(z)) A (—loves(u, v) V loves(w, u))
N=loves(joe, jane)

» Convert to CNF: already in CNF!

> In clausal form:

{loves(z, lover(z))}
{—loves(u, v), loves(w, u)}
{=loves(joe, jane)}
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Example, cont.
» Finally, we can do resolution:
{loves(z, lover(z))}
{—loves(u, v), loves(w, u)}
{—loves(joe, jane)}
» Resolve first and second clauses. MGU:
» Resolvent:

» Resolve new clause with third clause.

> Mgu:

v

Resolvent: {}

\{

Thus, we have proven the formula valid.

Example I

» Use resolution to prove validity of formula:
~(3y.Vz.(p(z,y) & —3z.(p(2,2) A p(z, 2))))
» Convert negation to clausal form:
Jy.Vz.(p(z, y) ¢ ~Jz.(p(z,2) A p(z, 2)))
» To convert to NNF, get rid of <»:

FyVz.(—p(z,y) vV -3z.(p(z,2) A p(z, 2))A
(p(z,9) vV Iz.(p(z,2) Ap(z,2))))
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Example Il, cont

JyVz.(=p(2,y) V =3z.(p(2,2) A p(, 2))A
(p(2,9) V Iz.(p(2,2) A p(, 2))))

> Push negations in:

Jy.Vz.(-p(z,y) VVz.(-p(z,z) V —p(z, 2))A
(p(2,y) vV I2.(p(2,2) A p(2, 2))))

» Rename quantified variables:

Jy.Vz.(=p(z,y) VVz.(-p(z,z) V —p(z, 2))A
p(z,y) vV 3w.(p(z, w) Ap(w, 2)))

Example Il, cont.

FyVz.(mp(z,y) VVz.(=p(z,2) V —p(z, 2))A
p(z,9) vV Iw.(p(z, w) A p(w, 2)))
» In PNF:

Fy vz IwNVe.(-p(z,y) V (mp(z,2) V -p(z, 2))A
p(z,y)V (p(z,w) A p(w, 2)))

» Skolemize existentials:

Ve V. (mp(z,a) V (-p(z,2) V —p(z, 2))A
p(z,0) vV (p(z,/(2)) A p(f(2),2)))
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Example Il, cont.

VzVz.(-p(z,a) V (-p(z,2) V —p(z, 2))A
p(z,a)V (p(2,f(2) Ap(f(2),2)))

» Drop quantifiers and convert to CNF:
(_‘p( ) ) (_‘p(za )\/_\ (I,Z))/\
p(2,a) V p(2, f(2))A

p(z,a) Vp(f(2),2))

> In clausal form (with renamed variables):

Example Il, cont.

1: {-p(z,a),~p(z,2),-p(z,2)}
C2: {p(y,a),p(y,f(y))}
C3: {p(w,a),p(f(w), w))}

> Resolve C'1 and C2 using factoring.

> What is the MGU for p(z, a), p(z, ), p(z, 2), p(y, a)?

» Resolvent:
1: {—|p(z7a),ﬁp(z,a:),—\p(x,z)}
C2: {p(y,a),p(y,f(¥))}
C3: {p(w,a),p(f(w),w))}




Example Il, cont.

C1: {ﬁp(z,a),ﬁp(z,x),ﬁp(z,z)}
C2: {p(y,a), p(y. f(¥)}

C3: {p(w,a),p(f(w),w))}

C4: {p(a,f(a))}

> Now, resolve C1 and C3 (using factoring).
» What is the MGU for p(z, a), p(z, z), p(z, 2), p(w, a)?

» Resolvent:

Example Il, cont.

Cl: {—|p(z,a),ﬂp(z,x),—\p(x,Z)}
C2: {p(y,a),p(y,f(y))}

C3: {p(w,a),p(f(w),w))}
C4: {p(a,f(a))}
C5: {p(f(a),a)}

> Resolve C1 and C5 (using factoring).
» What is the MGU of p(z, a),p(z,z) and p(f(a), a)?

» Resolvent:
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Example Il, cont.

C1: {-p(z,a),~p(z,x),-p(z,2)}
C2: {p(y,a),p(y,f(y))}

C3: {p(w,a),p(f(w), w))}

C4: {p(a,[f(a))}

C5: {p(f(a),a)}

C6: {-p(a,f(a))}

» Finally, resolve C4 and C6.
> Resolvent: {}

» Thus, the original formula is valid.

Resolution and First-Order Theorem Provers

> Resolution (with factorization) forms the basis of most
automated first-order theorem provers.

» However, to make relational refutation more efficient, there
are typically two main improvements:

» Ordered resolution

» Removal of useless clauses (tautology elimination, identical
clause elimination etc.)

» Built-in reasoning about equality
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Motivation for First-Order Theories

» First-order logic is very powerful and very general.

» But in many settings, we have a particular application in mind
and do not need the full power of first order logic.

» For instance, instead of general predicates/functions, we
might only need an equality predicate or arithmetic operations.

» Also, might want to disallow some interpretations that are
allowed in first-order logic.

First-Order Theories

» First-order theories: Useful for formalizing and reasoning
about particular application domains

» e.g., involving integers, real numbers, lists, arrays, ...

» Advantage: By focusing on particular application domain, can
give much more efficient, specialized decision procedures
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Signature and Axioms of First-Order Theory

» A first-order theory T consists of:

1. Signature X7 set of constant, function, and predicate symbols
2. Axioms Ar: A set of FOL sentences over X1

» Y7 formula: Formula constructed from symbols of ¥ 7 and
variables, logical connectives, and quantifiers.

» Example: We could have a theory of heights Ty with
signature X : {taller} and axiom:

Vz,y. (taller(z,y) — —taller(y, z))
> Is Jz.Vz.taller(z, z) A taller(y, w) legal g formula?

» What about 3z.Vz.taller(z, z) A taller(joe, tom)?

Axioms of First-Order Theory
» The axioms Ap provide the meaning of symbols in X 7.

» Example: In our theory of heights, axioms define meaning of
predicate taller

» Specifically, axioms ensure that some interpretations legal in
standard FOL are not legal in T'

» Example: Consider relation constant taller, and
U={A,B,C}

> In FOL, possible interpretation: I(taller): {(A, B), (B, A)}

> In our theory of heights, this interpretation is not legal b/c
does not satisfy axioms

Models of T Satisfiability and Validity Modulo T’
> ASthture M = (U, 1) is a model of theory T\ or T-model, » Formula F is satisfiable modulo 7' if there exists a T-model
if M = A for every A€ Ar. M and variable assignment ¢ such that M,o E F
» Example: Consider structure consisting of universe » Formula F is valid modulo T if for all T-models M and
U = {4, B} and interpretation I(taller) : {(A, B), (B, A)} variable assignments o, M, o |= F
> s this a model of 77 > Question: How is validity modulo T different from
FOL-validity?
» Now, consider same U and interpretation (A, B). Is this a Y
model? » Answer: Disregards all structures that do not satisfy theory
axioms.
» Suppose our theory had another axiom:
Va,y, 2. (taller(z, y) A taller(y, z) — taller(z, 2)) > If a formula F is valid modulo theory T', we will write 7' = F.
> Consider I(taller) : {(A, BY, (B, C)}. Is (U, I) a model? » Theory T consists of all sentences that are valid in T'.
Questions Equivalence Modulo T

Consider some first order theory 7"

» If a formula is valid in FOL, is it also valid modulo 77
» If a formula is valid modulo 7, is it also valid in FOL?

» Counterexample: This formula is valid in “theory of heights™:

—taller(z, x)

» Two formulas F} and F» are equivalent modulo theory 7' if
for every T-model M and for every variable assignment o:

\ M,a):FliffM,ﬂ:Fz‘

» Another way of stating equivalence of F; and Fs modulo T':
T ': F1 <~ F2

» Example: Consider a theory T— with predicate symbol = and
suppose At gives the intended meaning of equality to =.

» Are £ =y and y = z equivalent modulo 7-7
» Are they equivalent according to FOL semantics?

» Falsifying interpretation: U = {0, A}, I(=) : {{A,0)}
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Completeness of Theory

Decidability of Theory

> A theory T is complete if for every sentence F, if T entails F'
or its negation: » A theory T is decidable if for every formula F', there exists an
‘ TEForTE—F ‘ algorithm that:
» Question: In first-order logic, for every closed formula F', is 1. always terminates and answers "yes” if I is valid modulo 7" and
either F' or =F valid?
2. terminates and answers "no" if F' is not valid modulo T'
> B . . . .
> Unlike full first-order logic, many of the first-order theories we
» Consider U = {o,+} will study are decidable.
- 9
» Falsifying interpretation for p(a): » For those that are not decidable, we are interested in
fragments of that theory that are decidable.
» Falsifying interpretation for —p(a):
Useful First-Order Theories
1. Theory of equality
2. Peano Arithmetic
3. Presburger Arithmetic
4. Theory of Rationals
5. Theory of Arrays
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