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Review

I Last lecture: Clausal form, first-order resolution

I How to convert formulas to clausal form?

I Resolution with Implicit Factorization:

{A1, . . .An ,B1, . . . ,Bk}
{¬C ,D1, . . . ,Dk}

{B1, . . . ,Bk ,D1, . . . ,Dk}σ
(σ = mgu(A1, . . .An ,C ))
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Resolution Derivation

I A clause C is derivable from a set of clauses ∆ if there is a
sequence of clauses Ψ1, . . . ,Ψk terminating in C such that:

1. Ψi ∈ ∆, or

2. Ψi is resolvent of some Ψj and Ψk such that j < i ∧ k < i

I Example: Consider clauses

∆ = {happy(x ), sad(x )}, {¬sad(y)}

I Here, {happy(x )} is derivable from ∆

I If a clause C is derivable from ∆, we write ∆ ` C
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Resolution Refutation

I The derivation of the empty clause from a set of clauses ∆ is
called resolution refutation of ∆

I Consider set of clauses ∆:

{happy(x ), sad(x )}
{¬sad(y)}
{¬happy(mother(joe))}

I Resolution refutation of ∆:

{happy(x ), sad(x )} {¬sad(y)}
{happy(x )} {¬happy(mother(joe))}

{ }
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Refutational Soundness and Completeness

I Theorem: Resolution is sound, i.e., if ∆ ` C , then ∆ |= C

I Corollary: If there is a resolution refutation of ∆, ∆ is indeed
unsatisfiable

I Resolution with implicit factorization is also complete, i.e., if
∆ |= C , then ∆ ` C

I Corollary: If F is unsatisfiable, then there exists a resolution
refutation of F using only resolution with factorization.

I This is called the refutational completeness of resolution.
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Validity Proofs using Resolution

I How to prove validity FOL formula using resolution?

I Use duality of validity and unsatisfiability:

F is valid iff ¬F is unsatisfiable

I We will use resolution to show ¬F is unsatisfiable.

I First, convert ¬F to clausal form C .

I If there is a resolution refutation of C , then, by soundness, F
is valid.
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Example

I Everybody loves somebody. Everybody loves a lover. Prove
that everybody loves everybody.

I First sentence in FOL:

I Second sentence in FOL:

I Goal in FOL:

I Thus, want to prove validity of:

(∀x .∃y .loves(x , y) ∧ ∀u.∀w .((∃v .loves(u, v))→ loves(w , u)))
→ ∀z .∀t .loves(z , t)
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Example, cont.
I Want to prove negation unsatisfiable:

¬((∀x .∃y .loves(x , y) ∧ ∀u.∀w .((∃v .loves(u, v))→ loves(w , u)))
→ ∀z .∀t .loves(z , t))

I Convert to PNF: in NNF, quantifiers in front

I Remove inner implication:

¬((∀x .∃y .loves(x , y) ∧ ∀u.∀w .((¬(∃v .loves(u, v))) ∨ loves(w , u)))
→ ∀z .∀t .loves(z , t))

I Remove outer implication:

¬(¬(∀x .∃y .loves(x , y) ∧ ∀u.∀w .((¬(∃v .loves(u, v))) ∨ loves(w , u)))
∨∀z .∀t .loves(z , t))
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Example, cont.

¬(¬(∀x .∃y .loves(x , y) ∧ ∀u.∀w .((¬(∃v .loves(u, v))) ∨ loves(w , u)))
∨∀z .∀t .loves(z , t))

I Push innermost negation in:

¬(¬(∀x .∃y .loves(x , y) ∧ ∀u.∀w .∀v .(¬loves(u, v) ∨ loves(w , u))
∨∀z .∀t .loves(z , t))

I Push outermost negation in:

(¬¬(∀x .∃y .loves(x , y) ∧ ∀u.∀w .∀v .¬loves(u, v)) ∨ loves(w , u))
∧¬(∀z .∀t .loves(z , t)))
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Example, cont.

(¬¬(∀x .∃y .loves(x , y) ∧ ∀u.∀w .∀v .¬loves(u, v) ∨ loves(w , u))
∧¬(∀z .∀t .loves(z , t)))

I Eliminate double negation:

((∀x .∃y .loves(x , y) ∧ ∀u.∀w .∀v .¬loves(u, v) ∨ loves(w , u))
∧¬(∀z .∀t .loves(z , t)))

I Push negation on second line in:

((∀x .∃y .loves(x , y) ∧ ∀u.∀w .∀v .¬loves(u, v) ∨ loves(w , u))
∧(∃z .∃t .¬loves(z , t)))
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Example, cont.

((∀x .∃y .loves(x , y) ∧ ∀u.∀w .∀v .(¬loves(u, v) ∨ loves(w , u)))
∧(∃z .∃t .¬loves(z , t)))

I Now, move quantifiers to front. Restriction:

∃z .∃t .∀x .∃y .∀u.∀w .∀v .
loves(x , y) ∧ (¬loves(u, v) ∨ loves(w , u)) ∧ ¬loves(z , t)

I Next, skolemize existentially quantified variables:

∀u.∀w .∀v .∀x .
loves(x , lover(x )) ∧ (¬loves(u, v) ∨ loves(w , u))

∧¬loves(joe, jane)
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Example, cont.

∀u.∀w .∀v .∀x .
loves(x , lover(x )) ∧ (¬loves(u, v) ∨ loves(w , u))

∧¬loves(joe, jane)

I Now, drop quantifiers:

loves(x , lover(x )) ∧ (¬loves(u, v) ∨ loves(w , u))
∧¬loves(joe, jane)

I Convert to CNF: already in CNF!

I In clausal form:

{loves(x , lover(x ))}
{¬loves(u, v), loves(w , u)}
{¬loves(joe, jane)}
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Example, cont.

I Finally, we can do resolution:

{loves(x , lover(x ))}
{¬loves(u, v), loves(w , u)}
{¬loves(joe, jane)}

I Resolve first and second clauses. MGU:

I Resolvent:

I Resolve new clause with third clause.

I Mgu:

I Resolvent: {}

I Thus, we have proven the formula valid.
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Example II

I Use resolution to prove validity of formula:

¬(∃y .∀z .(p(z , y)↔ ¬∃x .(p(z , x ) ∧ p(x , z ))))

I Convert negation to clausal form:

∃y .∀z .(p(z , y)↔ ¬∃x .(p(z , x ) ∧ p(x , z )))

I To convert to NNF, get rid of ↔:

∃y .∀z .(¬p(z , y) ∨ ¬∃x .(p(z , x ) ∧ p(x , z ))∧
(p(z , y) ∨ ∃x .(p(z , x ) ∧ p(x , z ))))
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Example II, cont

∃y .∀z .(¬p(z , y) ∨ ¬∃x .(p(z , x ) ∧ p(x , z ))∧
(p(z , y) ∨ ∃x .(p(z , x ) ∧ p(x , z ))))

I Push negations in:

∃y .∀z .(¬p(z , y) ∨ ∀x .(¬p(z , x ) ∨ ¬p(x , z ))∧
(p(z , y) ∨ ∃x .(p(z , x ) ∧ p(x , z ))))

I Rename quantified variables:

∃y .∀z .(¬p(z , y) ∨ ∀x .(¬p(z , x ) ∨ ¬p(x , z ))∧
p(z , y) ∨ ∃w .(p(z ,w) ∧ p(w , z )))

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 10: First-Order Resolution and Intro to Theories 15/33

Example II, cont.

∃y .∀z .(¬p(z , y) ∨ ∀x .(¬p(z , x ) ∨ ¬p(x , z ))∧
p(z , y) ∨ ∃w .(p(z ,w) ∧ p(w , z )))

I In PNF:

∃y .∀z .∃w .∀x .(¬p(z , y) ∨ (¬p(z , x ) ∨ ¬p(x , z ))∧
p(z , y) ∨ (p(z ,w) ∧ p(w , z )))

I Skolemize existentials:

∀z .∀x .(¬p(z , a) ∨ (¬p(z , x ) ∨ ¬p(x , z ))∧
p(z , a) ∨ (p(z , f (z )) ∧ p(f (z ), z )))
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Example II, cont.

∀z .∀x .(¬p(z , a) ∨ (¬p(z , x ) ∨ ¬p(x , z ))∧
p(z , a) ∨ (p(z , f (z )) ∧ p(f (z ), z )))

I Drop quantifiers and convert to CNF:

(¬p(z , a) ∨ (¬p(z , x ) ∨ ¬p(x , z ))∧
p(z , a) ∨ p(z , f (z ))∧
p(z , a) ∨ p(f (z ), z ))

I In clausal form (with renamed variables):

C1 : {¬p(z , a),¬p(z , x ),¬p(x , z )}
C2 : {p(y , a), p(y , f (y))}
C3 : {p(w , a), p(f (w),w))}
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Example II, cont.

C1 : {¬p(z , a),¬p(z , x ),¬p(x , z )}
C2 : {p(y , a), p(y , f (y))}
C3 : {p(w , a), p(f (w),w))}

I Resolve C1 and C2 using factoring.

I What is the MGU for p(z , a), p(z , x ), p(x , z ), p(y , a)?

I Resolvent:
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Example II, cont.

C1 : {¬p(z , a),¬p(z , x ),¬p(x , z )}
C2 : {p(y , a), p(y , f (y))}
C3 : {p(w , a), p(f (w),w))}
C4 : {p(a, f (a))}

I Now, resolve C1 and C3 (using factoring).

I What is the MGU for p(z , a), p(z , x ), p(x , z ), p(w , a)?

I Resolvent:
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Example II, cont.

C1 : {¬p(z , a),¬p(z , x ),¬p(x , z )}
C2 : {p(y , a), p(y , f (y))}
C3 : {p(w , a), p(f (w),w))}
C4 : {p(a, f (a))}
C5 : {p(f (a), a)}

I Resolve C1 and C5 (using factoring).

I What is the MGU of p(z , a), p(z , x ) and p(f (a), a)?

I Resolvent:
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Example II, cont.

C1 : {¬p(z , a),¬p(z , x ),¬p(x , z )}
C2 : {p(y , a), p(y , f (y))}
C3 : {p(w , a), p(f (w),w))}
C4 : {p(a, f (a))}
C5 : {p(f (a), a)}
C6 : {¬p(a, f (a))}

I Finally, resolve C4 and C6.

I Resolvent: {}

I Thus, the original formula is valid.
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Resolution and First-Order Theorem Provers

I Resolution (with factorization) forms the basis of most
automated first-order theorem provers.

I However, to make relational refutation more efficient, there
are typically two main improvements:

I Ordered resolution

I Removal of useless clauses (tautology elimination, identical
clause elimination etc.)

I Built-in reasoning about equality
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Motivation for First-Order Theories

I First-order logic is very powerful and very general.

I But in many settings, we have a particular application in mind
and do not need the full power of first order logic.

I For instance, instead of general predicates/functions, we
might only need an equality predicate or arithmetic operations.

I Also, might want to disallow some interpretations that are
allowed in first-order logic.
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First-Order Theories

I First-order theories: Useful for formalizing and reasoning
about particular application domains

I e.g., involving integers, real numbers, lists, arrays, . . .

I Advantage: By focusing on particular application domain, can
give much more efficient, specialized decision procedures
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Signature and Axioms of First-Order Theory

I A first-order theory T consists of:

1. Signature ΣT : set of constant, function, and predicate symbols

2. Axioms AT : A set of FOL sentences over ΣT

I ΣT formula: Formula constructed from symbols of ΣT and
variables, logical connectives, and quantifiers.

I Example: We could have a theory of heights TH with
signature ΣH : {taller} and axiom:

∀x , y . (taller(x , y)→ ¬taller(y , x ))

I Is ∃x .∀z .taller(x , z ) ∧ taller(y ,w) legal ΣH formula?

I What about ∃x .∀z .taller(x , z ) ∧ taller(joe, tom)?
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Axioms of First-Order Theory

I The axioms AT provide the meaning of symbols in ΣT .

I Example: In our theory of heights, axioms define meaning of
predicate taller

I Specifically, axioms ensure that some interpretations legal in
standard FOL are not legal in T

I Example: Consider relation constant taller , and
U = {A,B ,C}

I In FOL, possible interpretation: I (taller) : {〈A,B〉, 〈B ,A〉}

I In our theory of heights, this interpretation is not legal b/c
does not satisfy axioms
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Models of T

I A structure M = 〈U , I 〉 is a model of theory T , or T -model,
if M |= A for every A ∈ AT .

I Example: Consider structure consisting of universe
U = {A,B} and interpretation I (taller) : {〈A,B〉, 〈B ,A〉}

I Is this a model of T?

I Now, consider same U and interpretation 〈A,B〉. Is this a
model?

I Suppose our theory had another axiom:

∀x , y , z . (taller(x , y) ∧ taller(y , z )→ taller(x , z ))

I Consider I (taller) : {〈A,B〉, 〈B ,C 〉}. Is (U , I ) a model?
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Satisfiability and Validity Modulo T

I Formula F is satisfiable modulo T if there exists a T -model
M and variable assignment σ such that M , σ |= F

I Formula F is valid modulo T if for all T -models M and
variable assignments σ, M , σ |= F

I Question: How is validity modulo T different from
FOL-validity?

I Answer: Disregards all structures that do not satisfy theory
axioms.

I If a formula F is valid modulo theory T , we will write T |= F .

I Theory T consists of all sentences that are valid in T .
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Questions

Consider some first order theory T :

I If a formula is valid in FOL, is it also valid modulo T?

I If a formula is valid modulo T , is it also valid in FOL?

I Counterexample: This formula is valid in “theory of heights”:

¬taller(x , x )

Işıl Dillig, CS389L: Automated Logical Reasoning Lecture 10: First-Order Resolution and Intro to Theories 29/33

Equivalence Modulo T

I Two formulas F1 and F2 are equivalent modulo theory T if
for every T -model M and for every variable assignment σ:

M , σ |= F1 iff M , σ |= F2

I Another way of stating equivalence of F1 and F2 modulo T :

T |= F1 ↔ F2

I Example: Consider a theory T= with predicate symbol = and
suppose AT gives the intended meaning of equality to =.

I Are x = y and y = x equivalent modulo T=?

I Are they equivalent according to FOL semantics?

I Falsifying interpretation: U = {�,4}, I (=) : {〈4,�〉}
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Completeness of Theory

I A theory T is complete if for every sentence F , if T entails F
or its negation:

T |= F or T |= ¬F

I Question: In first-order logic, for every closed formula F , is
either F or ¬F valid?

I

I Consider U = {◦, ?}

I Falsifying interpretation for p(a):

I Falsifying interpretation for ¬p(a):
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Decidability of Theory

I A theory T is decidable if for every formula F , there exists an
algorithm that:

1. always terminates and answers ”yes” if F is valid modulo T and

2. terminates and answers ”no” if F is not valid modulo T

I Unlike full first-order logic, many of the first-order theories we
will study are decidable.

I For those that are not decidable, we are interested in
fragments of that theory that are decidable.
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Useful First-Order Theories

1. Theory of equality

2. Peano Arithmetic

3. Presburger Arithmetic

4. Theory of Rationals

5. Theory of Arrays
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