
Maximum Satisfiability

Ruben Martins

February 14, 2017

Automated Logical Reasoning, University of Texas at Austin

What is Boolean Satisfiability?

• Fundamental problem in Computer Science

• The first problem to be proven NP-Complete

• Has a wide range of applications

• Formula:

• ϕ = (¬x2 ∨ ¬x1) ∧ (x2 ∨ ¬x3) ∧ (x1) ∧ (x3)

• Boolean Satisfiability (SAT):

• Is there an assignment of true or false values to variables such

that ϕ evaluates to true?

Software Package Upgradeability Problem

Software Package Upgradeability Problem

Package Dependencies Conflicts

p1 {p2 ∨ p3} {p4}
p2 {p3} {}
p3 {p2} {p4}
p4 {p2 ∧ p3} {}

• Set of packages we want to install: {p1, p2, p3, p4}
• Each package pi has a set of dependencies:

• Packages that must be installed for pi to be installed

• Each package pi has a set of conflicts:

• Packages that cannot be installed for pi to be installed

NP Completeness

• Giving up?

• The problem is NP-hard, so let’s develop heuristics or

approximation algorithms.

• No! Current tools can find solutions for very large problems!

Software Package Upgradeability Problem as SAT

Package Dependencies Conflicts

p1 {p2 ∨ p3} {p4}
p2 {p3} {}
p3 {p2} {p4}
p4 {p2 ∧ p3} {}

How can we encode this problem to Boolean Satisfiability?

Software Package Upgradeability Problem as SAT

Formula ϕ:

Dependencies ¬p1 ∨ p2 ∨ p3 ¬p2 ∨ p3 ¬p3 ∨ p2

Conflicts ¬p4 ∨ p2 ¬p4 ∨ p3 ¬p1 ∨ ¬p4 ¬p3 ∨ ¬p4

Packages p1 p2 p3 p4

• Formula is unsatisfiable

• We cannot install all packages

• How many packages can we install?

What is Maximum Satisfiability?

• Maximum Satisfiability (MaxSAT):

• Clauses in the formula are either soft or hard

• Hard clauses: must be satisfied

(e.g. conflicts, dependencies)

• Soft clauses: desirable to be satisfied

(e.g. package installation)

• Goal: Maximize number of satisfied soft clauses

How to encode Software Package Upgradeability?

Software Package Upgradeability problem as MaxSAT:

• What are the hard constraints?

• (Hint) Dependencies, conflicts or installation packages?

• What are the soft constraints?

• (Hint) Dependencies, conflicts or installation packages?

How to encode Software Package Upgradeability?

Software Package Upgradeability problem as MaxSAT:

• What are the hard constraints?

• Dependencies and conflicts

• What are the soft constraints?

• Installation of packages

Software Package Upgradeability Problem as MaxSAT

MaxSAT Formula:

ϕh (Hard): ¬p1 ∨ p2 ∨ p3 ¬p2 ∨ p3 ¬p3 ∨ p2

¬p4 ∨ p2 ¬p4 ∨ p3 ¬p1 ∨ ¬p4 ¬p3 ∨ ¬p4

ϕs (Soft): p1 p2 p3 p4

• Dependencies and conflicts are encoded as hard clauses

• Installation of packages are encoded as soft clauses

• Optimal solution (3 out 4 packages are installed)

What is MaxSAT Complexity?

• Deciding whether k clauses can be satisfied: NP-Complete

• Input: A CNF formula ϕ, a positive integer k

• Question: Is there an assignment that satisfies at least k

clauses in ϕ?

• MaxSAT is FPNP-Complete

• The class of binary relations f (x , y) where given x we can

compute y in polynomial time with access to an NP oracle

• A SAT solver acts as the NP oracle most often in practice

• MaxSAT is hard to approximate (APX-Complete)

• APX: class of NP optimization problems that:

• admit a constant-factor approximation algorithm, but

• have no poly-time approximation scheme (unless NP=P)

Why is MaxSAT Important?

• Many real-world applications can be encoded to MaxSAT:

• Software package upgradeability

• Error localization in C code

• Haplotyping with pedigrees

• . . .

• MaxSAT algorithms are very effective for solving real-word

problems

The MaxSAT (r)evolution – Partial MaxSAT

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 200 400 600 800 1000 1200

se
co

nd
s

instances

Open-WBO (2015)
MaxHS (2016)
MSCG (2015)

Eva (2014)
Open-WBO (2014)

Z3 (Microsoft 2016)
QMaxSAT (2013)

WPM2 (2013)
PM2 (2010)

QMaxSAT (2011-12)
QMaxSAT (2010)

CPLEX (IBM 2013)
SAT4J (2009-10)

IncWMaxSatz (2008)

• Best solver can solve 3× more benchmarks than in 2008!

• Better than tools like CPLEX (IBM) and Z3 (Microsoft)!

The MaxSAT (r)evolution – Partial Weighted MaxSAT

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600 700 800

se
co

nd
s

instances

MaxHS (2016)
LHMS (2015-16)

MSCG (2015)
MaxHS (2013)

Eva (2014)
QMaxSAT (2014)

Z3 (Microsoft)
CPLEX (IBM)
WPM2 (2013)

WPM1 (2011-12)
WBO (2010)

IncWMaxSatz (2008)
SAT4J (2009-10)

• Best solver can solve 2.5× more benchmarks than in 2008!

• Better than tools like CPLEX (IBM) and Z3 (Microsoft)!

Outline

• MaxSAT Algorithms:

• Upper bound search on the number of unsatisfied soft clauses

• Lower bound search on the number of unsatisfied soft clauses

• Partitioning in MaxSAT:

• Use the structure of the problem to guide the search

• Using MaxSAT solvers

SAT Solvers

Formula SAT Solver

Satisfying

assignment

Unsatisfiable

subformula

SAT

UNSAT

Satisfying assignment

Formula:

x1 x2 ∨ ¬x1 ¬x3 ∨ x1 ¬x3 ∨ ¬x1 x2 ∨ ¬x3

x1 x2 ∨ ¬x1 ¬x3 ∨ x1 ¬x3 ∨ ¬x1 x2 ∨ ¬x3

• Satisfying assignment:

• Assignment to the variables that evaluates the formula to true

• µ = {x1 = 1, x2 = 1, x3 = 0}

Unsatisfiable subformula

Formula:

x1 x3 x2 ∨ ¬x1 ¬x3 ∨ x1 ¬x2 ∨ ¬x1 x2 ∨ ¬x3

x1 x3 x2 ∨ ¬x1 ¬x3 ∨ x1 ¬x2 ∨ ¬x1 x2 ∨ ¬x3

• Formula is unsatisfiable

• Unsatisfiable subformula (core):

• ϕ′ ⊆ ϕ, such that ϕ′ is unsatisfiable

MaxSAT Algorithms

• MaxSAT algorithms build on SAT solver technology

• MaxSAT algorithms use constraints not defined in causal
form:

• AtMost1 constraints,
∑n

j=1
xj ≤ 1

• General cardinality constraints,
∑n

j=1
xj ≤ k

• Pseudo-Boolean constraints,
∑n

j=1
ajxj ≤ k

• Efficient encodings to CNF

CNF Encodings

Sequential counters (Sinz [CP’05])

• AtMost1 constraints:

• Clauses/Variables: O(n)

• General cardinality constraints:

• Clauses/Variables: O(n k)

Sequential weighted counters (Hölldobler et al. [KI’12])

• Pseudo-Boolean constraints:

• Clauses/Variables: O(n k)

Upper Bound Search for MaxSAT

ϕ

Find upper bound k for

#unsatisfied soft clauses

SAT Solver

Unsatisfiable

subformula

Satisfying

assignment
Refinement

Optimal

Solution

UNSAT

SAT

ϕ

Can we unsatisfy

less than k clauses?

SAT Solver

Unsatisfiable

subformula

Satisfying

assignment
Refinement

Optimal

Solution

UNSAT

SAT

ϕ ϕ′

ϕ′

Can we unsatisfy less

than j (< k) clauses?

SAT Solver

Unsatisfiable

subformula

Satisfying

assignment
Refinement

Optimal

Solution

UNSAT

SAT

ϕ′′

Can we unsatisfy less

than j (< k) clauses?

SAT Solver

Unsatisfiable

subformula

Satisfying

assignment
Refinement

Optimal

Solution

UNSAT

SAT

Can we unsatisfy less than 2 soft clauses? No!

Partial MaxSAT Formula:

ϕh: ¬x2 ∨ ¬x1 x2 ∨ ¬x3

ϕs : x1 x3 x2 ∨ ¬x1 ¬x3 ∨ x1

µ = 2 VR = {r1, r2, r3, r4}

• Optimal solution: given by the last model and corresponds
to unsatisfying 2 soft clauses:

• ν = {x1 = 1, x2 = 0, x3 = 0}

MaxSAT algorithms

• We have just seen a search on the upper bound

• What other kind of search can we do to find an optimal

solution?

• What if we start searching from the lower bound?

Lower Bound Search for MaxSAT

ϕ

Can we satisfy all

soft clauses?

SAT Solver

Satisfying

assignment

Unsatisfiable

subformula
Refinement

Optimal

Solution

SAT

UNSAT

ϕ

Can we satisfy all

soft clauses?

SAT Solver

Satisfying

assignment

Unsatisfiable

subformula
Refinement

Optimal

Solution

SAT

UNSAT

ϕ ϕ′

ϕ′

Can we satisfy all

soft clauses but 1?

SAT Solver

Satisfying

assignment

Unsatisfiable

subformula
Refinement

Optimal

Solution

SAT

UNSAT

ϕ′

Can we satisfy all

soft clauses but 1?

SAT Solver

Satisfying

assignment

Unsatisfiable

subformula
Refinement

Optimal

Solution

SAT

UNSAT

ϕ′ ϕ′′

ϕ′′

Can we satisfy all

soft clauses but 2?

SAT Solver

Satisfying

assignment

Unsatisfiable

subformula
Refinement

Optimal

Solution

SAT

UNSAT

ϕ′′

Can we satisfy all

soft clauses but 2?

SAT Solver

Satisfying

assignment

Unsatisfiable

subformula
Refinement

Optimal

Solution

SAT

UNSAT

Can we satisfy all soft clauses but 2? Yes!

Partial MaxSAT Formula:

ϕh : ¬x2 ∨ ¬x1 x2 ∨ ¬x3 CNF(
∑

ri∈VR
ri ≤ 2)

ϕs : x1 ∨ r1 x3 ∨ r2 x2 ∨ ¬x1 ∨ r3 ¬x3 ∨ x1 ∨ r4

• Formula is satisfiable:

• µ = {x1 = 1, x2 = 0, x3 = 0, r1 = 0, r2 = 1, r3 = 1, r4 = 0}

• Optimal solution unsatisfies 2 soft clauses

Unsatisfiability-based Algorithms

• What are the problems of this algorithm?

(Hint) Number of relaxation variables? Size of the cardinality

constraint? Other?

• We relax all soft clauses!

• The cardinality constraint contain as many literals as we have

soft clauses!

• Can we do better?

Unsatisfiability-based Algorithms [MSU3: Marques-Silva&Planes’07]

Partial MaxSAT Formula:

ϕh : ¬x2 ∨ ¬x1 x2 ∨ ¬x3 CNF(r1 + r2 + r3 + r4 ≤ 2)

ϕs : x1 ∨ r1 x3 ∨ r2 x2 ∨ ¬x1 ∨ r3 ¬x3 ∨ x1 ∨ r4

• Formula is satisfiable:

• µ = {x1 = 1, x2 = 0, x3 = 0, r1 = 0, r2 = 1, r3 = 1, r4 = 0}

• Optimal solution unsatisfies 2 soft clauses

Unsatisfiability-based Algorithms

• What are the problems of this algorithm?

(Hint) Number of relaxation variables? Size of the cardinality

constraint? Other?

• We must translate cardinality constraints into CNF!

• If the number of literals is large than we may generate a very

large formula!

• Can we do better?

Unsatisfiability-based Algorithms [Fu&Malik SAT 2006]

Partial MaxSAT Formula:

ϕh: ¬x2 ∨ ¬x1 x2 ∨ ¬x3

ϕs : x1 x3 x2 ∨ ¬x1 ¬x3 ∨ x1

• Formula is satisfiable

• An optimal solution would be:

• ν = {x1 = 1, x2 = 0, x3 = 0}

• This assignment unsatisfies 2 soft clauses

Challenges for Unsatisfiability-based MaxSAT Algorithms

• Unsatisfiable cores found by the SAT solver are not minimal

ϕ

ϕc ϕm

Formula ϕ

Unsatisfiable core ϕc

Minimal core ϕm

• Minimizing unsatisfiable cores is computationally hard

Partitioning in MaxSAT

• Partitioning in MaxSAT:

• Partition the soft clauses into disjoint sets

• Iteratively increase the size of the MaxSAT formula

ϕ

ϕ3ϕ2ϕ1 . . . ϕn

• Advantages:

• Easier formulas for the SAT solver

• Smaller unsatisfiable cores at each iteration

Framework for Partitioning-based MaxSAT Algorithms

ϕϕ1ϕ′1ϕ′1 ∪ ϕ2ϕ′′1 ∪ ϕ′2ϕ′′1 ∪ ϕ′2 ∪ ϕ3ϕ′′′1 ∪ ϕ′′2 ∪ ϕ′3ϕ2

ϕ1

ϕ3

SAT Solver

Satisfying

assignment

Unsatisfiable

subformula
Refinement

Partitions?

Optimal

Solution

Optimal

Solution

Optimal

Solution

Optimal

Solution

Solution may

not be optimal!

SATSAT

UNSATUNSAT

ϕ1 ϕ′1ϕ′1 ∪ ϕ2 ϕ′′1 ∪ ϕ′2ϕ′′
1 ∪ ϕ′

2 ∪ ϕ3 ϕ′′′
1 ∪ ϕ′′

2 ∪ ϕ′
3

NoNo

YesYes

How to Partition Soft Clauses?

• Graph representation of the MaxSAT formula:

• Vertices: Variables

• Edges: Between variables that appear in the same clause

Graph representations for MaxSAT

• There are many ways to represent MaxSAT as a graph:

• Clause-Variable Incidence Graph (CVIG) [Martins et al. SAT 2013]

• Variable Incidence Graph (VIG) [Martins et al. SAT 2013]

• Hypergraph [Martins et al. SAT 2013]

• Resolution Graph [Neves et al. SAT 2015]

• . . .

MaxSAT Formulas as Resolution-based Graphs

• MaxSAT solvers rely on the identification of unsatisfiable

cores

• How can we capture sets of clauses that are closely related
and are likely to result in unsatisfiable cores?

• Represent MaxSAT formulas as resolution graphs!

• Resolution graphs are based on the resolution rule

• Example of the resolution rule:

(x1 ∨ x2) (¬x2 ∨ x3)

(x1 ∨ x3)

MaxSAT Formulas as Resolution-based Graphs

• Vertices: Represent each clause in the graph

• Edges: There is an edge between two vertices if you can apply

the resolution rule between the corresponding clauses

Hard clauses:

c1 = x1 ∨ x2

c2 = ¬x2 ∨ x3

c3 = ¬x1 ∨ ¬x3

Soft clauses:

c4 = ¬x1

c5 = ¬x3

c4 c1 c3

c5 c2

Impact of Partitioning in the MaxSAT Solving

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 200 400 600 800 1000 1200

CP
U

Ti
m

e
(in

 s
ec

on
ds

)

Number of problems solved

OPEN-WBO’14
OPEN-WBO’15

• The techniques in Open-WBO have been adopted by other

state-of-the-art MaxSAT solvers, e.g. MSCG, WPM

Want to try MaxSAT solving?

• Java:

• SAT4J

• http://www.sat4j.org/

• C++:

• Open-WBO

• Winner of multiples tracks in the MaxSAT Competition 2014,

2015 and 2016!

• http://sat.inesc-id.pt/open-wbo/

• Annual competition:

• http://www.maxsat.udl.cat/

• Modify a solver today and enter this year competition!

Standard Solver Input Format: DIMACS WCNF

• Variables indexed from 1 to n

• Negation: -

• -3 stands for ¬x3

• 0: special end-of-line character

• One special header “p”-line:
p wcnf #vars #clauses top

• #vars: number of variables

• #clauses: number of clauses

• top: “weight” of hard clauses

• Clauses represented as lists of integers

• Weight is the first number

• (¬x3 ∨ x1 ∨ ¬x45), weight 2:

2 -3 1 -45 0

• Clause is hard if weight is equal to top

Standard Solver Input Format: DIMACS WCNF

Example: pointer analysis domain (pa-2.wcnf):

p wcnf 17997976 23364255 9223372036854775807

142 -11393180 12091478 0

200 -12496389 -1068725 13170751 0

209 -8854604 -8854942 -8854943 -8253894 9864153 0

174 -9406753 -8105076 11844088 0

200 -10403325 -8104972 12524177 0

142 -11987544 12096893 0

37 -10981341 -10980973 10838652 0

209 -9578314 -9579250 -9579251 -8254733 9578317 0

209 -8868994 -8870298 -8870299 -8254157 8868997 0

209 -9387012 -9387508 -9387509 -8253943 9387015 0

174 -9834074 -8106628 12074710 0

200 -10726788 -8105074 12909526 0

...

9223372036854775807 -13181184 0

9223372036854775807 -13181215 0

... truncated 763 MB

Push-Button Solver Technology

Example: $ open-wbo pa-2.wcnf

c Open-WBO: a Modular MaxSAT Solver

c Version: MaxSAT Evaluation 2016

c Authors: Ruben Martins, Vasco Manquinho, Ines Lynce

c Contributors: Miguel Neves, Saurabh Joshi, Mikolas Janota

...

c Problem Type: Weighted

c Number of variables: 17,997,976

c Number of hard clauses: 8,237,870

c Number of soft clauses: 15,126,385

c Parse time: 5.60 s

...

o 4699

o 4609

o 143

s OPTIMUM FOUND

c Total time: 361.26 s v 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15...

...17997976

References

Cardinality and Pseudo-Boolean Encodings:

C. Sinz. Towards an Optimal CNF Encoding of Boolean Cardinality Con-

straints. CP 2005: 827-831

N. Manthey, T. Philipp, P. Steinke. A More Compact Translation of Pseudo-

Boolean Constraints into CNF Such That Generalized Arc Consistency Is

Maintained. KI 2014: 123-134

T. Philipp, P. Steinke. PBLib - A Library for Encoding Pseudo-Boolean Con-

straints into CNF. SAT 2015: 9-16 http://tools.computational-logic.

org/content/pblib.php

Community Structure:

C. Ansótegui, J. Giráldez-Cru, Jordi Levy. The Community Structure of SAT

Formulas. SAT 2012: 410-423

Web pages of interest:

MaxSAT Evaluation: http://www.maxsat.udl.cat/

Open-WBO: http://sat.inesc-id.pt/open-wbo/

SAT4J: http://www.sat4j.org/

SATGraf: https://bitbucket.org/znewsham/satgraf

http://tools.computational-logic.org/content/pblib.php
http://tools.computational-logic.org/content/pblib.php
http://www.maxsat.udl.cat/
http://sat.inesc-id.pt/open-wbo/
http://www.sat4j.org/
https://bitbucket.org/znewsham/satgraf

