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What is Boolean Satisfiability?

• Fundamental problem in Computer Science

• The first problem to be proven NP-Complete

• Has a wide range of applications

• Formula:

• ϕ = (¬x2 ∨ ¬x1) ∧ (x2 ∨ ¬x3) ∧ (x1) ∧ (x3)

• Boolean Satisfiability (SAT):

• Is there an assignment of true or false values to variables such

that ϕ evaluates to true?



Software Package Upgradeability Problem



Software Package Upgradeability Problem

Package Dependencies Conflicts

p1 {p2 ∨ p3} {p4}
p2 {p3} {}
p3 {p2} {p4}
p4 {p2 ∧ p3} {}

• Set of packages we want to install: {p1, p2, p3, p4}
• Each package pi has a set of dependencies:

• Packages that must be installed for pi to be installed

• Each package pi has a set of conflicts:

• Packages that cannot be installed for pi to be installed



NP Completeness

• Giving up?

• The problem is NP-hard, so let’s develop heuristics or

approximation algorithms.

• No! Current tools can find solutions for very large problems!



Software Package Upgradeability Problem as SAT

Package Dependencies Conflicts

p1 {p2 ∨ p3} {p4}
p2 {p3} {}
p3 {p2} {p4}
p4 {p2 ∧ p3} {}

How can we encode this problem to Boolean Satisfiability?



Software Package Upgradeability Problem as SAT

Formula ϕ:

Dependencies ¬p1 ∨ p2 ∨ p3 ¬p2 ∨ p3 ¬p3 ∨ p2

Conflicts ¬p4 ∨ p2 ¬p4 ∨ p3 ¬p1 ∨ ¬p4 ¬p3 ∨ ¬p4

Packages p1 p2 p3 p4

• Formula is unsatisfiable

• We cannot install all packages

• How many packages can we install?



What is Maximum Satisfiability?

• Maximum Satisfiability (MaxSAT):

• Clauses in the formula are either soft or hard

• Hard clauses: must be satisfied

(e.g. conflicts, dependencies)

• Soft clauses: desirable to be satisfied

(e.g. package installation)

• Goal: Maximize number of satisfied soft clauses



How to encode Software Package Upgradeability?

Software Package Upgradeability problem as MaxSAT:

• What are the hard constraints?

• (Hint) Dependencies, conflicts or installation packages?

• What are the soft constraints?

• (Hint) Dependencies, conflicts or installation packages?



How to encode Software Package Upgradeability?

Software Package Upgradeability problem as MaxSAT:

• What are the hard constraints?

• Dependencies and conflicts

• What are the soft constraints?

• Installation of packages



Software Package Upgradeability Problem as MaxSAT

MaxSAT Formula:

ϕh (Hard): ¬p1 ∨ p2 ∨ p3 ¬p2 ∨ p3 ¬p3 ∨ p2

¬p4 ∨ p2 ¬p4 ∨ p3 ¬p1 ∨ ¬p4 ¬p3 ∨ ¬p4

ϕs (Soft): p1 p2 p3 p4

• Dependencies and conflicts are encoded as hard clauses

• Installation of packages are encoded as soft clauses

• Optimal solution (3 out 4 packages are installed)



What is MaxSAT Complexity?

• Deciding whether k clauses can be satisfied: NP-Complete

• Input: A CNF formula ϕ, a positive integer k

• Question: Is there an assignment that satisfies at least k

clauses in ϕ?

• MaxSAT is FPNP-Complete

• The class of binary relations f (x , y) where given x we can

compute y in polynomial time with access to an NP oracle

• A SAT solver acts as the NP oracle most often in practice

• MaxSAT is hard to approximate (APX-Complete)

• APX: class of NP optimization problems that:

• admit a constant-factor approximation algorithm, but

• have no poly-time approximation scheme (unless NP=P)



Why is MaxSAT Important?

• Many real-world applications can be encoded to MaxSAT:

• Software package upgradeability

• Error localization in C code

• Haplotyping with pedigrees

• . . .

• MaxSAT algorithms are very effective for solving real-word

problems



The MaxSAT (r)evolution – Partial MaxSAT
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• Best solver can solve 3× more benchmarks than in 2008!

• Better than tools like CPLEX (IBM) and Z3 (Microsoft)!



The MaxSAT (r)evolution – Partial Weighted MaxSAT
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• Best solver can solve 2.5× more benchmarks than in 2008!

• Better than tools like CPLEX (IBM) and Z3 (Microsoft)!



Outline

• MaxSAT Algorithms:

• Upper bound search on the number of unsatisfied soft clauses

• Lower bound search on the number of unsatisfied soft clauses

• Partitioning in MaxSAT:

• Use the structure of the problem to guide the search

• Using MaxSAT solvers



SAT Solvers

Formula SAT Solver

Satisfying

assignment

Unsatisfiable

subformula

SAT

UNSAT



Satisfying assignment

Formula:

x1 x2 ∨ ¬x1 ¬x3 ∨ x1 ¬x3 ∨ ¬x1 x2 ∨ ¬x3

x1 x2 ∨ ¬x1 ¬x3 ∨ x1 ¬x3 ∨ ¬x1 x2 ∨ ¬x3

• Satisfying assignment:

• Assignment to the variables that evaluates the formula to true

• µ = {x1 = 1, x2 = 1, x3 = 0}



Unsatisfiable subformula

Formula:

x1 x3 x2 ∨ ¬x1 ¬x3 ∨ x1 ¬x2 ∨ ¬x1 x2 ∨ ¬x3

x1 x3 x2 ∨ ¬x1 ¬x3 ∨ x1 ¬x2 ∨ ¬x1 x2 ∨ ¬x3

• Formula is unsatisfiable

• Unsatisfiable subformula (core):

• ϕ′ ⊆ ϕ, such that ϕ′ is unsatisfiable



MaxSAT Algorithms

• MaxSAT algorithms build on SAT solver technology

• MaxSAT algorithms use constraints not defined in causal
form:

• AtMost1 constraints,
∑n

j=1
xj ≤ 1

• General cardinality constraints,
∑n

j=1
xj ≤ k

• Pseudo-Boolean constraints,
∑n

j=1
ajxj ≤ k

• Efficient encodings to CNF



CNF Encodings

Sequential counters (Sinz [CP’05])

• AtMost1 constraints:

• Clauses/Variables: O(n)

• General cardinality constraints:

• Clauses/Variables: O(n k)

Sequential weighted counters (Hölldobler et al. [KI’12])

• Pseudo-Boolean constraints:

• Clauses/Variables: O(n k)



Upper Bound Search for MaxSAT
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Can we unsatisfy less than 2 soft clauses? No!

Partial MaxSAT Formula:

ϕh: ¬x2 ∨ ¬x1 x2 ∨ ¬x3

ϕs : x1 x3 x2 ∨ ¬x1 ¬x3 ∨ x1

µ = 2 VR = {r1, r2, r3, r4}

• Optimal solution: given by the last model and corresponds
to unsatisfying 2 soft clauses:

• ν = {x1 = 1, x2 = 0, x3 = 0}



MaxSAT algorithms

• We have just seen a search on the upper bound

• What other kind of search can we do to find an optimal

solution?

• What if we start searching from the lower bound?



Lower Bound Search for MaxSAT
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Can we satisfy all soft clauses but 2? Yes!

Partial MaxSAT Formula:

ϕh : ¬x2 ∨ ¬x1 x2 ∨ ¬x3 CNF(
∑

ri∈VR
ri ≤ 2)

ϕs : x1 ∨ r1 x3 ∨ r2 x2 ∨ ¬x1 ∨ r3 ¬x3 ∨ x1 ∨ r4

• Formula is satisfiable:

• µ = {x1 = 1, x2 = 0, x3 = 0, r1 = 0, r2 = 1, r3 = 1, r4 = 0}

• Optimal solution unsatisfies 2 soft clauses



Unsatisfiability-based Algorithms

• What are the problems of this algorithm?

(Hint) Number of relaxation variables? Size of the cardinality

constraint? Other?

• We relax all soft clauses!

• The cardinality constraint contain as many literals as we have

soft clauses!

• Can we do better?



Unsatisfiability-based Algorithms [MSU3: Marques-Silva&Planes’07]

Partial MaxSAT Formula:

ϕh : ¬x2 ∨ ¬x1 x2 ∨ ¬x3 CNF(r1 + r2 + r3 + r4 ≤ 2)

ϕs : x1 ∨ r1 x3 ∨ r2 x2 ∨ ¬x1 ∨ r3 ¬x3 ∨ x1 ∨ r4

• Formula is satisfiable:

• µ = {x1 = 1, x2 = 0, x3 = 0, r1 = 0, r2 = 1, r3 = 1, r4 = 0}

• Optimal solution unsatisfies 2 soft clauses



Unsatisfiability-based Algorithms

• What are the problems of this algorithm?

(Hint) Number of relaxation variables? Size of the cardinality

constraint? Other?

• We must translate cardinality constraints into CNF!

• If the number of literals is large than we may generate a very

large formula!

• Can we do better?



Unsatisfiability-based Algorithms [Fu&Malik SAT 2006]

Partial MaxSAT Formula:

ϕh: ¬x2 ∨ ¬x1 x2 ∨ ¬x3

ϕs : x1 x3 x2 ∨ ¬x1 ¬x3 ∨ x1

• Formula is satisfiable

• An optimal solution would be:

• ν = {x1 = 1, x2 = 0, x3 = 0}

• This assignment unsatisfies 2 soft clauses



Challenges for Unsatisfiability-based MaxSAT Algorithms

• Unsatisfiable cores found by the SAT solver are not minimal

ϕ

ϕc ϕm

Formula ϕ

Unsatisfiable core ϕc

Minimal core ϕm

• Minimizing unsatisfiable cores is computationally hard



Partitioning in MaxSAT

• Partitioning in MaxSAT:

• Partition the soft clauses into disjoint sets

• Iteratively increase the size of the MaxSAT formula

ϕ

ϕ3ϕ2ϕ1 . . . ϕn

• Advantages:

• Easier formulas for the SAT solver

• Smaller unsatisfiable cores at each iteration



Framework for Partitioning-based MaxSAT Algorithms
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How to Partition Soft Clauses?

• Graph representation of the MaxSAT formula:

• Vertices: Variables

• Edges: Between variables that appear in the same clause



Graph representations for MaxSAT

• There are many ways to represent MaxSAT as a graph:

• Clause-Variable Incidence Graph (CVIG) [Martins et al. SAT 2013]

• Variable Incidence Graph (VIG) [Martins et al. SAT 2013]

• Hypergraph [Martins et al. SAT 2013]

• Resolution Graph [Neves et al. SAT 2015]

• . . .



MaxSAT Formulas as Resolution-based Graphs

• MaxSAT solvers rely on the identification of unsatisfiable

cores

• How can we capture sets of clauses that are closely related
and are likely to result in unsatisfiable cores?

• Represent MaxSAT formulas as resolution graphs!

• Resolution graphs are based on the resolution rule

• Example of the resolution rule:

(x1 ∨ x2) (¬x2 ∨ x3)

(x1 ∨ x3)



MaxSAT Formulas as Resolution-based Graphs

• Vertices: Represent each clause in the graph

• Edges: There is an edge between two vertices if you can apply

the resolution rule between the corresponding clauses

Hard clauses:

c1 = x1 ∨ x2

c2 = ¬x2 ∨ x3

c3 = ¬x1 ∨ ¬x3

Soft clauses:

c4 = ¬x1

c5 = ¬x3

c4 c1 c3

c5 c2



Impact of Partitioning in the MaxSAT Solving

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 200  400  600  800  1000  1200

CP
U 

Ti
m

e 
(in

 s
ec

on
ds

)

Number of problems solved

OPEN-WBO’14
OPEN-WBO’15

• The techniques in Open-WBO have been adopted by other

state-of-the-art MaxSAT solvers, e.g. MSCG, WPM



Want to try MaxSAT solving?

• Java:

• SAT4J

• http://www.sat4j.org/

• C++:

• Open-WBO

• Winner of multiples tracks in the MaxSAT Competition 2014,

2015 and 2016!

• http://sat.inesc-id.pt/open-wbo/

• Annual competition:

• http://www.maxsat.udl.cat/

• Modify a solver today and enter this year competition!



Standard Solver Input Format: DIMACS WCNF

• Variables indexed from 1 to n

• Negation: -

• -3 stands for ¬x3

• 0: special end-of-line character

• One special header “p”-line:
p wcnf #vars #clauses top

• #vars: number of variables

• #clauses: number of clauses

• top: “weight” of hard clauses

• Clauses represented as lists of integers

• Weight is the first number

• (¬x3 ∨ x1 ∨ ¬x45), weight 2:

2 -3 1 -45 0

• Clause is hard if weight is equal to top



Standard Solver Input Format: DIMACS WCNF

Example: pointer analysis domain (pa-2.wcnf):

p wcnf 17997976 23364255 9223372036854775807

142 -11393180 12091478 0

200 -12496389 -1068725 13170751 0

209 -8854604 -8854942 -8854943 -8253894 9864153 0

174 -9406753 -8105076 11844088 0

200 -10403325 -8104972 12524177 0

142 -11987544 12096893 0

37 -10981341 -10980973 10838652 0

209 -9578314 -9579250 -9579251 -8254733 9578317 0

209 -8868994 -8870298 -8870299 -8254157 8868997 0

209 -9387012 -9387508 -9387509 -8253943 9387015 0

174 -9834074 -8106628 12074710 0

200 -10726788 -8105074 12909526 0

...

9223372036854775807 -13181184 0

9223372036854775807 -13181215 0

... truncated 763 MB



Push-Button Solver Technology

Example: $ open-wbo pa-2.wcnf

c Open-WBO: a Modular MaxSAT Solver

c Version: MaxSAT Evaluation 2016

c Authors: Ruben Martins, Vasco Manquinho, Ines Lynce

c Contributors: Miguel Neves, Saurabh Joshi, Mikolas Janota

...

c Problem Type: Weighted

c Number of variables: 17,997,976

c Number of hard clauses: 8,237,870

c Number of soft clauses: 15,126,385

c Parse time: 5.60 s

...

o 4699

o 4609

o 143

s OPTIMUM FOUND

c Total time: 361.26 s v 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15...

...17997976
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