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Problem Set 4

1. For each pair of expressions below, state whether they are unifiable, and if so, give a most general
unifier.

(a) p(a, f(y), y) and p(a, x, f(x))

(b) p(f(x, a), f(f(b, a))) and p(z, f(z))

(c) p(f(x, y), f(y, z)) and p(z, f(w, f(y, w)))

2. Convert the following sentence to clausal form:

∃x.∀y.∃z.∀w.((p(x, y) ∧ ¬q(z, w)) → ∃x.r(x,w))

3. Give an example of a sentence in first-order logic where the resulting formula after applying skolem-
ization is not equivalent to the original formula. Show the formula in Skolem normal form and explain
why it is not equivalent to the original formula.

4. Give a resolution refutation of the set of clauses shown below. For each new derived clause, clearly
label the pair of clauses from which it was derived and indicate most general unifiers.

C1 : {¬p(x1, x2), q(x1, x2, f(x1, x2))}
C2 : {¬r(x3, x4), q(a, x3, x4)}
C3 : {r(x5, x6),¬q(a, x5, x6)}
C4 : {p(x7, g(x7)), q(x7, g(x7), x8)}
C5 : {¬r(x9, x10),¬q(x9, x11, x12)}

5. Consider the following formula:

∀x.(course(x) ∧ easy(x)) → (∃y.student(y) ∧ happy(y)) (1)
∧ ∀x.∀y.(course(x) ∧ hasF inal(x) ∧ student(y) → ¬happy(y)) (2)
∧ ¬(∀x.(course(x) ∧ hasF inal(x) → ¬easy(x))) (3)

(a) For each line marked (1), (2), (3) above, explain the meaning of the corresponding formula in
English.

(b) Prove the unsatisfiability of this formula by giving a resolution refutation.

1


