Problem Set 6

1. (20 points) Our goal in this problem is to prove the correctness of the Hoare triple $\{n > 0\}$ S $\{y = n \times n\}$ where S is the following program:

```
y := 0; i:=0;
while(i<n) {
   t := 2i+1;
   y := y+t;
   i := i+1;
}
```

- (a) (4 points) State an inductive loop invariant I that is sufficient to prove the correctness of the above Hoare triple.
- (b) (7 points) Compute the weakest precondition of I (from part (a)) with respect to the loop body B.
- (c) (9 points) Show all VCs that are generated for proving the Hoare triple $\{n > 0\}$ S $\{y = n \times n\}$ using invariant I from part (a).
- 2. (15 points) Consider the following proposed proof rule to be added to Hoare logic:

$$\frac{\vdash \{P\}S\{Q\}}{\vdash \{P \land R\} \ S \ \{Q \land R\}}$$

where R represents any formula.

- (a) (3 points) Prove that this rule is unsound.
- (b) (4 points) Under what restrictions on S would the above rule be sound?
- (c) (8 points) Prove that your modified rule from part (b) is now sound.

Note: You must explicitly state any assumptions you make about S.

3. (10 points) Consider a (side-effect-free) function F with arguments x1, ... xn and suppose that F has precondition P and post-condition Q (over variable ret). Now, consider the following call-site of F:

```
x := F(e1, ..., en);
```

Is it sound to model this callsite with the following code snippet?

```
assert(P[e1/x1, ... en/xn]);
assume(Q[x/ret, e1/x1, ... en/xn]);
```

If so, argue why this is correct; otherwise, give a counterexample to illustrate why this is unsound.

4. (25 points) In this question, we will explore the interval abstract domain in a bit more detail.

- (a) (5 points) Recall that an abstract transformer for a statement yields the new abstract values for program variables given their old abstract value. What are the abstract transformers for the statements $assume(x \le c)$ and assume(x > c) assuming that x's initial abstract value is [l, u] and c is an integer constant?
- (b) (5 points) Consider the following program:

```
0:
1:
       x = 1;
2:
3:
       while(x<1000) {
4:
5:
       x := x+1;
6:
7:
       if(x>99) break;
8:
9:
10:
     assert(x == 100);
Suppose that we model the statement if(c) S1 else S2 as:
if(*) { assume(c); S1; } else { assume(!c); S2; }
```

and similarly for while statements. Show the control flow graph for the above program under this assumption.

- (c) (5 points) What are the abstract values for x at program locations labeled (4) and (10) after 3 iterations of fixed point computation using the interval abstract domain?
- (d) (5 points) What are the abstract values for x at program locations labeled (4) and (10) after applying widening to the result from part (c)? Can the assertion at line (10) be proven?
- (e) (5 points) What are the abstract values for x at program locations labeled (4) and (10) after applying narrowing to the result from part (d)? Can the assertion at line (10) be proven now?