Axioms of T_A

To define “intended semantics of array read and write”, we need to provide axioms of T_A.

Axioms of T_A include reflexivity, symmetry, and transitivity.

In addition, they include axioms unique to arrays:

1. $\forall a, i, j. \ i = j \rightarrow a[i] = a[j]$ (array congruence)
2. $\forall a, v, i, j. \ i = j \rightarrow a(i \triangledown v)[j] = v$ (read-over-write 1)
3. $\forall a, v, i, j. \ i \neq j \rightarrow a(i \triangledown v)[j] = a[j]$ (read-over-write 2)

Example

Is the following T_A formula valid?

$F : a[i] = e \rightarrow (\forall j. \ a(i \triangledown e)[j] = a[j])$

Yes! For any $j \neq i$, $a(i \triangledown e)[j] = a[j]$ according to read-over-write 2 axiom. For any $j = i$, old value of j was already e, so its value didn’t change.

Let’s prove its validity using the semantic argument method.

Assume there exists a model M and variable assignment σ that does not satisfy F and derive contradiction.
Combination of Theories

- So far, we only talked about individual first-order theories.
- Examples: T_w, T_{PA}, T_Z, T_A, ...
- But in many applications, we need combined reasoning about several of these theories
- Example: The formula $f(x) + 3 = y$ isn’t a well-formed formula in any individual theory, but belongs to combined theory $T_Z \cup T_w$

Decision Procedures for Combined Theories

- Given two theories T_1 and T_2 that have the $=$ predicate, we define a combined theory $T_1 \cup T_2$
- Signature of $T_1 \cup T_2$: $\Sigma_1 \cup \Sigma_2$
- Axioms of $T_1 \cup T_2$: $A_1 \cup A_2$
- Is this a well-formed $T_w \cup T_Z$ formula? Yes
 \[
 1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)
 \]
- Is this formula satisfiable according to axioms $A_Z \cup A_w$? No

Decidability Results for T_A

- The full theory of arrays if not decidable.
- The quantifier-free fragment of T_A is decidable.
- Unfortunately, the quantifier-free fragment not sufficiently expressive in many contexts
- Thus, people have studied other richer fragments that are still decidable.
- Example: array property fragment (disallows nested arrays, restrictions on where quantified variables can occur)

Combined Theories

- Given two theories T_1 and T_2 that have the $=$ predicate, we define a combined theory $T_1 \cup T_2$
- Signature of $T_1 \cup T_2$: $\Sigma_1 \cup \Sigma_2$
- Axioms of $T_1 \cup T_2$: $A_1 \cup A_2$
- Is this a well-formed $T_w \cup T_Z$ formula? Yes
 \[
 1 \leq x \land x \leq 2 \land f(x) \neq f(1) \land f(x) \neq f(2)
 \]
- Is this formula satisfiable according to axioms $A_Z \cup A_w$? No

Road Map

- Talk about decision procedures for widely-used first order-theories: equality, LRA, Presburger arithmetic
- Initially, we’ll only focus on decision procedures for formulas without disjunctions
- Ok because we can always convert to DNF to deal with disjunctions – just not very efficient!
- Later in the course, we’ll see about how to handle disjunctions much more efficiently
- Rest of today’s lecture: Decision procedure for qff theory of equality
Review

- **Previous lecture:** talked about signature and axioms of $T_=$
 \[\Sigma___ : \{=, a, b, c, ..., f, g, h, ..., p, q, r, ... \} \]

- **Axioms:**
 1. $\forall x, x = x$ (reflexivity)
 2. $\forall x, y, x = y \rightarrow y = x$ (symmetry)
 3. $\forall x, y, z, x = y \land y = z \rightarrow x = z$ (transitivity)
 4. $\forall x_1, ..., x_n, y_1, ..., y_n, \land _ = = = y_i = y_i$ \[f(x_1, ..., x_n) = f(y_1, ..., y_n) \] (congruence)
 5. for each positive integer n and n-ary predicate p,
 $\forall x_1, ..., x_n, y_1, ..., y_n, \land _ = = = y_i = y_i$ \[(p(x_1, ..., x_n) \leftrightarrow p(y_1, ..., y_n)) \] (equivalence)

Overview

- **Today:** look at decision procedures for deciding satisfiability in the quantifier-free fragment of $T_=$

 - However, our decision procedure has two “restrictions”:
 - formulas consist of conjunctions of literals
 - we’ll allow functions, but no predicates

 - However, these “restrictions” are not real restrictions
 - For formulas with disjunctions, can convert to DNF and check each clause separately (will consider efficient methods later)

 - Furthermore, any formula containing predicates can be converted to equisatisfiable formula containing only functions!

Eliminating Predicates

- Simple transformation yields equisatisfiable formula with only functions
- **The trick:** For each relation constant p:
 1. introduce a fresh function constant f_p
 2. rewrite $p(x_1, ..., x_n)$ as $f_p(x_1, ..., x_n) = t$
 where t is a fresh object constant
- **Example:** How do we transform $x = y \rightarrow (p(x) \leftrightarrow p(y))$ to equisatisfiable formula? $x = y \rightarrow (f_p(x) = t \leftrightarrow f_p(y) = t)$

Examples

- Let’s consider some examples
 - Is the formula $x = y \land f(x) \neq f(y)$ sat, unsat, valid? **unsat**
 - What about $x \neq y \land f(x) = f(y)$? **sat**
 - What about $x = g(y, z) \rightarrow f(x) = f(g(y, z))$? **valid**
 - What about $f(a) = a \land f(f(a)) \neq a$? **unsat**

Example, cont.

- What about $f(f(f(a))) = a \land f(f(f(f(f(a)))))) = a \land f(a) \neq a$? **unsat**
- **Reasoning:** Substitute a for $f(f(f(a)))$ in second equality, this yields: $f(f(a)) = a$
- Since $f(f(a)) = a$, by congruence $f(f(f(a))) = f(a)$
- By first equality, we have $f(a) = a \Rightarrow$ contradiction!
Equivalence Relations

- Decision procedure for theory of equality known as congruence closure algorithm
- But need to understand what congruence closure is first ⇒ new terminology and concepts
- A binary relation \(R \) over a set \(S \) is an equivalence relation if
 1. reflexive: \(\forall s \in S.\ sRs \)
 2. symmetric: \(\forall s_1, s_2 \in S.\ s_1Rs_2 \iff s_2Rs_1 \)
 3. transitive: \(\forall s_1, s_2, s_3 \in S.\ s_1Rs_2 \land s_2Rs_3 \implies s_1Rs_3 \).

Equivalence Closure

- The equivalence closure \(RE \) of a binary relation \(R \) over \(S \) is the equivalence relation such that:
 1. \(R \) refines \(RE \), i.e., \(R \prec RE \);
 2. for all other equivalence relations \(R' \) s.t. \(R \prec R' \), either \(R' = RE \) or \(R' \prec RE \).
- Thus, \(RE \) is the smallest equivalence relation that includes \(R \).

Equivalence and Congruence Relations

- Equality predicate \(= \) is equivalence relation over real numbers
- The relation “has same birthday as” is an equivalence relation over set of people
- The relation \(\equiv \) is equivalence relation over \(\mathbb{Z} \)
- A relation \(R \) is congruence relation over set \(S \) if it is an equivalence relation and for every \(n \)-ary function \(f \):
 \[
 \forall \bar{s}, \bar{t}. \bigwedge_{i=1}^{n} s_iRt_i \implies f(\bar{s}) \approx f(\bar{t}).
 \]

Equivalence and Congruence Classes

- For a given equivalence relation over \(S \), every member of \(S \) belongs to an equivalence class
- The equivalence class of \(s \in S \) under \(R \) is the set:
 \[
 [s]_R \overset{\text{def}}{=} \{s' \in S : sRs'\}.
 \]
- If \(R \) is a congruence relation, then this set is called congruence class
- Example: What is the equivalence class of 1 under \(\equiv \)? odd numbers
- What is the equivalence class of 6 under \(\equiv \)? multiples of 3

Relation Refinements

- A binary relation \(R_1 \) is a refinement of another binary relation \(R_2 \), written \(R_1 \prec R_2 \), if
 \[
 \forall s_1, s_2 \in S.\ s_1R_1s_2 \implies s_1R_2s_2.
 \]
- Example 1: Consider set \(S = \{a, b\} \) and relations \(R_1 = \{(a, a), (b, b)\} \) and \(R_2 = \{(a, b), (b, b)\} \)
 - Do either of these hold? \(R_1 \prec R_2 \lor R_2 \prec R_1 \) \(\iff \) \(R_1 \prec R_2 \)
- Example 2: Consider set \(\mathbb{Z} \) and the relations:
 \(R_1 : \{xR_1y : x \mod 2 = y \mod 2\} \)
 \(R_2 : \{xR_2y : x \mod 4 = y \mod 4\} \)
 - What is the refinement relationship between \(R_1 \) and \(R_2 \)? \(R_2 \prec R_1 \)

Equivalence Closure Example

- Consider set \(S = \{a, b, c, d\} \) and binary relation \(R : \{(a, b), (b, c), (d, d)\} \)
 - Is \(R \) an equivalence relation? \(\neg \)
- We want to compute the equivalence closure \(RE \), i.e., smallest equivalence relation including \(R \)
 - Thus, \(RE \) needs to include all tuples in \(R \) and must obey reflexivity, symmetry, and transitivity.
Equivalence Closure Example, cont

- $R = \{(a, b), (b, c), (d, d)\}$

- Since R^E must include R, which elements are in R^E?
 $\langle a, b \rangle, \langle b, c \rangle, \langle d, d \rangle$

- Since R^E equivalence relation, it must obey reflexivity. What other elements in R^E due to reflexivity? $\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle$

- What elements in R^E due to symmetry? $\langle b, a \rangle, \langle c, b \rangle$

- What elements in R^E due to transitivity? $\langle a, c \rangle, \langle c, a \rangle$

- What is R^E?
 $R^E = \{(a, b), (b, c), (d, d), (a, b), (b, c), (d, d), (b, a), (c, b), (c, a), (c, a)\}$

Congruence Closure

- Given a set S and binary relation R, we also define congruence closure of R

- Congruence closure is similar to equivalence closure, but it is the smallest congruence relation that covers R

- Formally, the congruence closure R^C of a binary relation R over S is the congruence relation such that:
 1. R refines R^C, i.e. $R \triangleleft R^C$;
 2. for all other congruence relations R' s.t. $R \triangleleft R'$, either $R' = R^C$ or $R^C \triangleleft R'$

Satisfiability using Congruence Relations

- We can now define satisfiability of a Σ_m formula in terms of congruence closure over subterm set

- Consider Σ_m formula F:
 $F : s_1 = t_1 \land \ldots s_m = t_m \land s_{m+1} \neq t_{m+1} \land \ldots s_n \neq t_n$

- Theorem: F is satisfiable iff there exists a congruence relation \sim over the subterm set S_F of F such that:
 1. For each i in $[1, m]$, $s_i \sim t_i$
 2. For each i in $[m+1, n]$, $s_i \neq t_i$

Congruence Closure Algorithm

- The decision procedure for T_e computes congruence closure of equality over the subterm set of formula

- Subterm set S_F of F is the set of all subterms of F

- Example: Consider formula $F : f(a, b) = a \land f(f(a, b), b) \neq a$

- What is S_F? $\{a, b, f(a, b), f(f(a, b), b)\}$

Equivalence Closure Example, cont

- $R = \{(a, b), (b, c), (d, d)\}$

- $R_E = \{(a, b), (b, c), (d, d), (a, b), (b, c), (d, d), (b, a), (c, b), (c, a), (c, a)\}$

- Consider relation
 $R' = R_E \cup \{(c, d), (d, c), (d, d), (d, a), (a, d)\}$

- R' is also an equivalence relation and covers R

- Is R' also an equivalence closure of R? No!

Congruence Closure Algorithm: Basic Idea

Congruence closure algorithm decide satisfiability of

$F : s_1 = t_1 \land \ldots s_m = t_m \land s_{m+1} \neq t_{m+1} \land \ldots s_n \neq t_n$

1. Construct the congruence closure \sim of
 $$\{s_1 = t_1, \ldots, s_m = t_m\}$$
 over the subterm set S_F.
2. If $s_i \sim t_i$ for any i in $[m+1, n]$, F is unsatisfiable
3. Otherwise, F is satisfiable
Example

- Consider the formula $F : f(a, b) = a \land f(f(a, b), b) \neq a$
- We’ll represent \sim as a set of congruence classes, i.e., if t_1 and t_2 are in the same set, this means $t_1 \sim t_2$, otherwise $t_1 \not\sim t_2$
- First, construct subterm set S_F and place each subterm in a separate set:
 \[
 \{\{a\}, \{b\}, \{f(a, b)\}, \{f(f(a, b), b)\}\}
 \]
- Because of equality $f(a, b) = a$, merge congruence classes of $f(a, b)$ and a:
 \[
 \{\{a, f(a, b)\}, \{b\}, \{f(f(a, b), b)\}\}
 \]

Example, cont

- Formula $F : f(a, b) = a \land f(f(a, b), b) \neq a$
- Current congruence classes:
 \[
 \{\{a, f(a, b)\}, \{b\}, \{f(f(a, b), b)\}\}
 \]
- Is F satisfiable? No
- Since a and $f(f(a, b), b)$ are in same congruence class, we have $a \sim f(f(a, b), b)$
- This contradicts $f(f(a, b), b) \neq a$!

Another Example

- Formula $F : f^3(a) = a \land f^5(a) = a \land f(a) \neq a$
- Current congruence classes:
 \[
 \{\{a, f^3(a)\}, \{f(a)\}, \{f^2(a)\}, \{f^4(a)\}, \{f^5(a)\}\}
 \]
- From $a = f^3(a)$, what can we infer using function congruence? $f(a) = f^4(a)$ and $f^2(a) = f^5(a)$
- Resulting congruence classes:
 \[
 \{\{a, f^3(a)\}, \{f(a), f^4(a)\}, \{f^2(a), f^5(a)\}\}
 \]
Another Example, cont

- Formula $F : f^3(a) = a \land f^3(a) = a \land f(a) \neq a$
- Current congruence classes:
 $\{(a, f(a), f^2(a), f^3(a), f^4(a), f^5(a))\}$
- Is the formula satisfiable? No
- Since $f(a)$ and a are in the same congruence class, this contradicts $f(a) \neq a$

One More Example

- Consider formula $F : f(x) = f(y) \land x \neq y$
- What is the subterm set? $\{x, y, f(x), f(y)\}$
- Each subterm starts in its own congruence class:
 $\{(x, y, f(x), f(y))\}$
- Process equality $f(x) = f(y) \Rightarrow \{(x, y, f(x), f(y))\}$
- What new equalities can we infer from congruence? None!
- Is the formula satisfiable? Yes

How to Compute Congruence Closure

- So far, we described how to decide satisfiability using congruence closure
- But we haven’t discussed an algorithm for efficiently computing congruence closure
- Next: Efficient algorithm for computing congruence closure

Representing Subterms

- To compute congruence closure efficiently, we’ll represent the subterm set of the formula as a DAG
- Each node corresponds to a subterm and has unique id
- Edges point from function symbol to arguments
- Question: What subterm does node labeled 1 represent? $f(f(a, b), b)$

Representative of Congruence Class

- To compute congruence closure, we need to merge congruence classes
- To do this efficiently, each congruence class has a representative: When merging two classes, only need to update the representative
 - Thus, for a given subterm, we need to be able to find the representative of its class
 - Each subterm contains a pointer that eventually leads to the representative of its congruence class
 - In this example, $a, f(a, b), f(f(a, b), b)$ are in the same congruence class; a is the representative

Parents of a Subterm

- In addition to efficiently finding representative, also need to efficiently find parents of terms
- Why? Because if $x_1 = y_1, \ldots, x_k = y_k$, function congruence implies $f(x) = f(y)$
- Thus, when each x_i, y_i pair is in the same congruence class, need to merge congruence classes of their parents $f(x)$ and $f(y)$
- Thus, keep pointer from representative of congruence class to parents of all subterms in the congruence class
Summary of Data Structure
- Represent subterms as a DAG
- Each node in the DAG corresponds to a subterm
- Each node stores its unique id, name of function or variable, and list of argument subterms
- Each node n has a `find` pointer field that leads to its representative
- The `find` field of a representative points to itself
- Each representative stores the set of `parents` for all subterms in that class
- If a term is not a representative, then its `parents` field is empty

Finding Representative of Congruence Class
- Given a term t, we need to find representative for that term
- If t’s `find` field points to itself, then t is the representative of its congruence class
- Otherwise, we follow the chain of `find` references until we find a node t’ that points to itself
- In this case, t’ is t’s representative

Merging Congruence Classes
- Using this data structure, how do we merge congruence classes of two terms t₁ and t₂?
- First find representatives of t₁ and t₂ as described earlier
- Want to make `Rep(t₂)` new representative for merged class
- Thus, change `find` field of `Rep(t₁)` to point to `Rep(t₂)`
- Update parents: add parent terms stored in `Rep(t₁)` to those of `Rep(t₂)`, and remove parents stored in `Rep(t₁)`

Process Equalities
- How do we process an equality t₁ = t₂?
- Need to merge equivalence classes of t₁ and t₂
- Might potentially also need to merge t₁ and t₂’s parents due to function congruence
- Given parent p₁ of t₁ and p₂ of t₂, when do we merge p₁ and p₂’s congruence classes?
- If they have the same function name and all of their arguments are congruent (i.e., have same representative)

Processing Equalities, cont
To process equality t₁ = t₂:
1. Find representatives of t₁ and t₂
2. Merge equivalence classes
3. Retrieve the set of parents P₁, P₂ stored in `Rep(t₁)`, `Rep(t₂)`
4. For each (p₁, p₂) ∈ P₁ × P₂, if p₁ and p₂ are congruent, process equality p₁ = p₂

Observe: Processing one equality creates new equalities, which in turn might generate other new equalities!

Full Algorithm for Deciding Satisfiability
Algorithm to decide satisfiability of Tᵣ formula

\[F : s₁ = t₁ ∧ ... sₘ = tₘ ∧ sₘ₊₁ ≠ tₘ₊₁ ∧ ... sₙ ≠ tₙ \]

1. Compute subterms and construct initial DAG (each node's representative is itself)
2. For each i ∈ [1, m], process equality sᵢ = tᵢ as described
3. For each i ∈ [m + 1, n], check if `Rep(sᵢ) = Rep(tᵢ)`
4. If there exists some i ∈ [m + 1, n] for which `Rep(sᵢ) = Rep(tᵢ)`, return UNSAT
5. If for all i, `Rep(sᵢ) ≠ Rep(tᵢ)`, return SAT
Example

- Consider formula $F : f(a, b) = a \land f(f(a, b), b) \neq a$
- Subterms: $a, b, f(a, b), f(f(a, b), b)$
 - Construct initial DAG
 - Process equality $f(a, b) = a$
 - Are parents $f(a, b)$ and $f(f(a, b), b)$ congruent? Yes
 - Yes, so process equality $f(a, b) = f(f(a, b), b)$
 - Formula unsatisfiable because $f(f(a, b), b)$ and a have same representative!

Example II

- Consider formula: $F : f^3(a) = a \land f^5(a) = a \land f(a) \neq a$
 - Initial DAG:
 - Process equality $f^3(a) = a$:
 - Are parents congruent? Yes
 - Process equality $f^5(a) = f(a)$

Example II, cont

- After merging classes:
 - Are $f^4(a)$’s and $f(a)$’s parents congruent? Yes
 - Process equality $f^4(a) = f^2(a)$

Example II, cont

- Formula: $F : f^3(a) = a \land f^5(a) = a \land f(a) \neq a$
 - Process equality $f^3(a) = a$:
 - Now, parents $f^3(a)$ and $f(a)$ congruent; process equality $f^3(a) = f(a)$

Summary

- Congruence closure algorithm is used for determining satisfiability of T_m formulas (without disjunction)
 - Our algorithm for computing congruence closures is called Union-Find, also used in other applications
 - Deciding conjunctive T_m formulas is inexpensive: our algorithm is $O(e^2)$, but can be solved in
 - To decide satisfiability of formulas containing disjunctions, can either convert to DNF or use DPLL(T) (more on this later)
 - Next lecture: Decision procedure for linear arithmetic over reals (Simplex algorithm)