Overview

- **Last lecture:**
 - Two simple techniques for proving satisfiability and validity in propositional logic: truth tables and semantic argument
 - Neither very useful for practical automated reasoning

- **Today:**
 - An algorithm called DPLL for determining satisfiability
 - Many SAT solvers used today based on DPLL
 - However, requires converting formulas to a representation called normal forms

- **The plan:** First talk about normal forms, then discuss DPLL

Normal Forms

- A normal form of a formula F is another formula F' such that F is equivalent to F', but F' obeys certain syntactic restrictions.

- There are three kinds of normal forms that are interesting in propositional logic:
 - Negation Normal Form (NNF)
 - Disjunctive Normal Form (DNF)
 - Conjunctive Normal Form (CNF)

Negation Normal Form (NNF)

Negation Normal Form requires two syntactic restrictions:

- The only logical connectives are \neg, \land, \lor (i.e., no \rightarrow, \leftrightarrow)
- Negations appear only in literals

 - i.e., negations not allowed inside \land, \lor, or any other \neg
 - i.e., negations can only appear in front of variables

- Is formula $p \lor (\neg q \land (r \lor s))$ in NNF? Yes!
- What about $p \lor (\neg q \land (\neg r \land s))$? No!
- What about $p \lor (\neg q \land (\neg r \lor s))$? No!

Conversion to NNF I

- To make sure the only logical connectives are \neg, \land, \lor, need to eliminate \rightarrow and \leftrightarrow
- How do we express $F_1 \rightarrow F_2$ using \lor, \land, \neg?

 $F_1 \rightarrow F_2 \iff \neg F_1 \lor F_2$

- How do we express $F_1 \leftrightarrow F_2$ using only \neg, \land, \lor?

 $F_1 \leftrightarrow F_2 \iff (\neg F_1 \lor F_2) \land (\neg F_2 \lor F_1)$

Conversion to NNF II

- Also need to ensure negations appear only in literals: push negations in
- Use DeMorgan’s laws to distribute \neg over \land and \lor:

 $\neg (F_1 \land F_2) \iff \neg F_1 \lor \neg F_2$

 $\neg (F_1 \lor F_2) \iff \neg F_1 \land \neg F_2$

- We also disallow double negations:

 $\neg \neg F \iff F$
Disjunctive Normal Form (DNF)

- A formula in disjunctive normal form is a disjunction of conjunctions of literals.
 \[\bigvee_{i,j} \ell_{ij} \]
 for literals \(\ell_{ij} \)

- i.e., \(\lor \) can never appear inside \(\land \) or \(\neg \)
- Called disjunctive normal form because disjuncts are at the outer level
- Each inner conjunction is called a clause
- **Question:** If a formula is in DNF, is it also in NNF?

Conversion to DNF

- To convert formula to DNF, first convert it to NNF.
- Then, distribute \(\land \) over \(\lor \):
 \[
 (F_1 \lor F_2) \land F_3 \iff (F_1 \land F_3) \lor (F_2 \land F_3)
 \]
 \[
 F_1 \land (F_2 \lor F_3) \iff (F_1 \land F_2) \lor (F_1 \land F_3)
 \]

Example

Convert \(F : (q_1 \lor \neg\neg q_2) \land (\neg r_1 \rightarrow r_2) \) into DNF

\[
F_1 : (q_1 \lor \neg\neg q_2) \land (\neg\neg r_1 \lor r_2) \text{ remove } \rightarrow
\]

\[
F_2 : (q_1 \lor q_2) \land (r_1 \lor r_2) \text{ in NNF}
\]

\[
F_3 : (q_1 \land (r_1 \lor r_2)) \lor (q_2 \land (r_1 \lor r_2)) \text{ dist}
\]

\[
F_4 : (q_1 \land r_1) \lor (q_1 \land r_2) \lor (q_2 \land r_1) \lor (q_2 \land r_2)
\]

\(F_4 \) equivalent to \(F \) and is in DNF

NNF Example

Convert \(F : \neg(p \rightarrow (p \land q)) \) to NNF

\[
F_1 : \neg(p \lor (p \land q))
\]

\[
F_2 : \neg p \land \neg (p \land q)
\]

\[
F_3 : \neg p \land (\neg p \lor \neg q)
\]

\[
F_4 : p \land (\neg p \lor \neg q)
\]

\(F_4 \) is equivalent to \(F \) and is in NNF

DNF and Satisfiability

- **Claim:** If formula is in DNF, trivial to determine satisfiability. How?
 - Since disjunction of clauses, formula is satisfied if any clause is satisfied.
 - If there is any clause that neither contains \(\perp \) nor a literal and is and its negation, then the formula is satisfiable.
- **Idea:** To determine satisfiability, convert formula to DNF and just do a syntactic check.

DNF and Blow-up in formula size

- This idea is completely impractical. Why?
 - Consider formula: \((F_1 \lor F_2) \land (F_3 \lor F_4) \)
 - In DNF:
 \[
 (F_1 \land F_3) \lor (F_1 \land F_4) \lor (F_2 \land F_3) \lor (F_2 \land F_4)
 \]
 - Every time we distribute, formula size doubles!
- **Moral:** DNF conversion causes exponential blow-up in size!
- Checking satisfiability by converting to DNF is almost as bad as truth tables!
Conjunctive Normal Form (CNF)

- A formula in **conjunctive normal form** is a conjunction of disjunction of literals.

 \[\bigwedge_{i} \bigvee_{j} \ell_{i,j} \]

 for literals \(\ell_{i,j} \)

- i.e., \(\wedge \) not allowed inside \(\vee \). \(\neg \).

- Called conjunctive normal form because conjuncts are at the outer level

- Each inner disjunction is called a **clause**

- Is formula in CNF also in NNF?

Conversion to CNF

- To convert formula to CNF, first convert it to NNF.

- Then, distribute \(\vee \) over \(\wedge \):

 \[
 (F_1 \wedge F_2) \vee F_3 \iff (F_1 \vee F_3) \wedge (F_2 \vee F_3) \\
 F_1 \vee (F_2 \wedge F_3) \iff (F_1 \vee F_2) \wedge (F_1 \vee F_3)
 \]

CNF Conversion Example

Convert F : \((p \leftrightarrow (q \rightarrow r)) \) into CNF

\[
\begin{align*}
F_1 & : (p \rightarrow (q \rightarrow r)) \land ((q \rightarrow r) \rightarrow p) & \text{remove } \leftrightarrow \\
F_2 & : (\neg p \lor (q \rightarrow r)) \land (\neg(q \rightarrow r) \lor p) & \text{remove } \rightarrow \\
F_3 & : (\neg p \lor \neg q \lor r) \land (\neg(q \lor r \lor p) & \text{De Morgan} \\
F_4 & : (\neg p \lor \neg q \lor \neg r) \land (q \lor p \land (\neg \lor p) & \text{Distribute } \lor \text{over } \land
\end{align*}
\]

\(F_5 \) is equivalent to \(F \) and is in CNF

DNF vs. CNF

- **Fact**: Unlike DNF, it is not trivial to determine satisfiability of formula in CNF.

- **News**: But almost all SAT solvers first convert formula to CNF before solving!

Why CNF?

- **Interesting Question**: If it is just as expensive to convert formula to CNF as to DNF, why do solvers convert to CNF although it is much easier to determine satisfiability in DNF?

- **Two reasons**:
 1. Possible to convert to **equisatisfiable** (not equivalent) CNF formula with only linear increase in size!
 2. CNF makes it possible to perform interesting deductions (resolution)

Equisatisfiability

- Two formulas \(F \) and \(F' \) are **equisatisfiable** iff:

 \[
 \text{\(F \) is satisfiable if and only if \(F' \) is satisfiable}
 \]

- If two formulas are equisatisfiable, are they equivalent? **No!**

- **Example**: Any satisfiable formula (e.g., \(p \)) is equisat as \(\top \)

- But clearly, \(p \) is not equivalent to \(\top \)! Why?

- Equisatisfiability is a much weaker notion than equivalence.

- But useful if all we want to do is determine satisfiability.
The Plan

- To determine satisfiability of F, convert formula to equisatisfiable formula F' in CNF.
- Use an algorithm (DPLL) to decide satisfiability of F'.
- Since F' is equisatisfiable to F, F is satisfiable if and only if algorithm decides F' is satisfiable.
- Big question: How do we convert formula to equisatisfiable formula without causing exponential blow-up in size?

Tseitin’s Transformation

Tseitin’s transformation converts formula F to equisatisfiable formula F' in CNF with only a linear increase in size.

Tseitin’s Transformation I

- Step 1: Introduce a new variable p_G for every subformula G of F (unless G is already an atom).
- For instance, if $F = G_1 \land G_2$, introduce two variables p_{G_1} and p_{G_2} representing G_1 and G_2 respectively.
- p_{G_1} is said to be representative of G_1 and p_{G_2} is representative of G_2.

Tseitin’s Transformation II

- Step 2: Consider each subformula $G : G_1 \circ G_2$ (\circ arbitrary boolean connective).
- Stipulate representative of G is equivalent to representative of $G_1 \circ G_2$:
 \[p_G \leftrightarrow p_{G_1} \circ p_{G_2}. \]
- Step 3: Convert $p_G \leftrightarrow p_{G_1} \circ p_{G_2}$ to equivalent CNF (by converting to NNF and distributing \lor's over \land's).
- Observe: Since $p_G \leftrightarrow p_{G_1} \circ p_{G_2}$ contains at most three propositional variables and exactly two connectives, size of this formula in CNF is bound by a constant.

Tseitin’s Transformation and Size

- Using this transformation, we converted F to an equisatisfiable CNF formula F'.
- What about the size of F'?
 \[|S_F| \text{ is bound by the number of connectives in } F. \]
- Each formula $CNF(p_g \leftrightarrow p_{g_1} \circ p_{g_2})$ has constant size.
- Thus, transformation causes only linear increase in formula size.
- More precisely, the size of resulting formula is bound by $30n + 2$ where n is size of original formula.
Tseitin’s Transformation Example

Convert \(F : (p \lor q) \rightarrow (p \land \neg r) \) to equisatisfiable CNF formula.

1. For each subformula, introduce new variables: \(p_1 \) for \(F \), \(p_2 \) for \(p \lor q \), \(p_3 \) for \(p \land \neg r \), and \(p_4 \) for \(\neg r \).

2. Stipulate equivalences and convert them to CNF:
 \[p_1 \iff (\neg p_1 \lor \neg p_2 \lor p_3) \land (p_2 \lor p_1) \land (\neg p_1 \lor p_3) \]
 \[p_2 \iff (\neg p_2 \lor q) \land (\neg p \lor p_2) \land (\neg q \lor p_2) \]
 \[p_3 \iff (\neg p_3 \lor p) \land (\neg p_4 \lor p_4) \land (\neg p \lor \neg p_4 \lor p_3) \]
 \[p_4 \iff (\neg p_4 \lor \neg r) \land (p_4 \lor r) \]

3. The formula
 \[p_1 \land F_1 \land F_2 \land F_3 \land F_4 \]
 is equisatisfiable to \(F \) and is in CNF.

DPLL: Historical Perspective

- 1962: the original algorithm known as DP (Davis-Putnam) => “simple” procedure for automated theorem proving
 - Davis and Putnam hired two programmers, George Logemann and David Loveland, to implement their ideas on the IBM 704.
 - Not all of their ideas worked out as planned => refined algorithm to what is known today as DPLL

DPLL insight

- There are two distinct ways to approach the boolean satisfiability problem:
 - Search
 - Find satisfying assignment in by searching through all possible assignments => most basic incarnation: truth table!
 - Deduction
 - Deduce new facts from set of known facts => application of proof rules, semantic argument method
 - DPLL combines search and deduction in a very effective way!

Propositional Resolution

- Consider two clauses in CNF:
 \[C_1 : \ (l_1 \lor \ldots \lor l_k) \quad C_2 : \ (l'_1 \lor \ldots \lor \neg p \lor l'_2) \]
 - From these, we can deduce a new clause \(C_3 \), called resolvent:
 \[C_3 : \ (l_1 \lor \ldots \lor l_k \lor l'_2 \lor \ldots \lor l'_2) \]
 - Correctness:
 - Suppose \(p \) is assigned \(\top \): Since \(C_2 \) must be satisfied and since \(\neg p \) is \(\bot \), \((l'_1 \lor \ldots \lor l'_2) \) must be true.
 - Suppose \(p \) is assigned \(\bot \): Since \(C_1 \) must be satisfied and since \(p \) is \(\bot \), \((l_1 \lor \ldots \lor l_k) \) must be true.
 - Thus, \(C_3 \) must be true.
Unit Resolution

- DPLL uses a restricted form of resolution, known as unit resolution.
- Unit resolution is propositional resolution, but one of the clauses must be a unit clause (i.e., contains only one literal)
 - $C_1: p \quad C_2: (l_1 \lor \cdots \lor \neg p \lor \cdots \lor l_n)$
 - Resolvent: $(l_1 \lor \cdots \lor l_n)$
- Performing unit resolution on C_1 and C_2 is same as replacing p with true in the original clauses.
- In DPLL, all possible applications of unit resolution called Boolean Constraint Propagation (BCP).

Basic DPLL

```c
bool DPLL(φ)
{
1. φ' = BCP(φ)
2. if(φ' = ⊤) then return SAT;
3. else if(φ' = ⊥) then return UNSAT;
4. p ... derive ⊥ due to unit resolution

DPLL with Pure Literal Propagation

```c
bool DPLL(φ)
{
1. φ' = BCP(φ)
2. φ'' = PLP(φ')
3. if(φ'' = ⊤) then return SAT;
4. else if(φ'' = ⊥) then return UNSAT;
5. p = choose_var(φ'');
6. if(DPLL(φ'[p \mapsto ⊥])) then return SAT;
7. else return (DPLL(φ'[p \mapsto ⊥]));

Boostrap Constraint Propagation (BCP) Example

- Apply BCP to CNF formula:

 $$(p) \land (\neg p \lor q) \land (r \lor \neg q \lor s)$$

- Resolvent of first and second clause: q

- New formula: $q \land (r \lor \neg q \lor s)$

- Apply unit resolution again: $(r \lor s)$

- No more unit resolution possible, so this is the result of BCP.

An Optimization: Pure Literal Propagation

- If variable p occurs only positively in the formula (i.e., no $\neg p$), p can be set to \top
- Similarly, if p occurs only negatively (i.e., only appears as $\neg p$), p can be set to \bot
- This is known as Pure Literal Propagation (PLP).

Example

$F : (\neg p \lor q \lor r) \land (\neg q \lor r) \land (\neg q \lor \neg r) \land (p \lor \neg q \lor \neg r)$

- No BCP possible because no unit clause
- No PLP possible because there are no pure literals
- Choose variable q to branch on:

 $$F[q \mapsto ⊤] : (r) \land (\neg r) \land (p \lor \neg r)$$

- Unit resolution using (r) and $(\neg r)$ deduces $\bot \Rightarrow$ backtrack
Example Cont.

\[F : (\neg p \lor q \lor r) \land (\neg q \lor r) \land (\neg q \lor \neg r) \land (p \lor \neg q \lor \neg r) \]

- Now, try \(q = \bot \)
 \[F[q \mapsto \bot] : (\neg p \lor r) \]
- By PLP, set \(p \) to \(\bot \) and \(r \) to \(\top \)
- \(F[q \mapsto \bot, p \mapsto \bot, r \mapsto \top] : \top \)
- Thus, \(F \) is satisfiable and the assignment
 \([q \mapsto \bot, p \mapsto \bot, r \mapsto \top] \) is a model (i.e., a satisfying interpretation) of \(F \).

Summary

- Normals forms: NNF, DNF, CNF (will come up again)
- For every formula, there exists an equivalent formula in normal form
- But equivalence-preserving transformation to DNF and CNF causes exponential blowup
- However, Tseitin’s transformation gives an equisatisfiable formula in CNF with only linear increase in size
- Almost all SAT solvers work on CNF formulas to perform BCP
- DPLL basis of most state-of-the-art SAT solvers

Next Lecture

- Substantial improvements over basic DPLL used by modern SAT solvers: non-chronological backtracking and learning
- Implementation tricks used to perform BCP very efficiently
- Useful heuristics for choosing variable to branch on