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a proof of unsatisfiability for the intersection of the defining constraints and use this
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We show experimentally that our technique significantly outperforms the top four com-
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linear inequalities over integers.
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1 Introduction

A quantifier-free system of linear inequalities over integers is defined by Ax ≤ b where

A is an m × n matrix with only integer entries, and b is a vector in Zn. This system

has a solution if and only if there exists a vector x∗ ∈ Zn that satisfies Ax∗ ≤ b.

Determining the satisfiability of such a system of inequalities is a recurring theme

in program analysis and verification. For example, array dependence analysis, buffer

overrun analysis, and integer overflow checking all rely on solving linear inequalities over

integers [1,2]. Similarly, linear integer inequalities arise in RTL datapath and symbolic

timing verification [3,4]. For this reason, many modern SMT solvers incorporate a

dedicated linear arithmetic module for solving this important subclass of constraints

[5–9].

While practical algorithms, such as Simplex, exist for solving linear inequalities over

the reals [10], solving linear inequalities over integers is known to be an NP-complete

problem, and existing algorithms do not scale well in practice. There are three main ap-

proaches for solving linear inequalities over integers. One approach first solves the LP-

relaxation of the problem to obtain a rational solution and adds additional constraints

until either an integer solution is found or the LP-relaxation becomes infeasible. The

second approach is based on the Omega Test, an extension of the Fourier-Motzkin vari-

able elimination for integers [2]. Yet a third class of algorithms utilize finite-automata

theory [24,11].

The algorithm presented in this paper falls into the first class of techniques de-

scribed above. Existing algorithms in this class include branch-and-bound, Gomory’s

cutting planes method, or a combination of both, known as branch-and-cut [12]. Branch-

and-bound searches for an integer solution by solving the two subproblems Ax ≤
b ∪ {xi ≤ bfic} and Ax ≤ b ∪ {xi ≥ dfie} when the LP-relaxation yields a solution

with fractional component fi. The original problem has a solution if at least one of

the subproblems has an integer solution. Even though upper and lower bounds can be

computed for each variable to guarantee termination, this technique is often intractably

slow on its own. Gomory’s cutting planes method computes valid inequalities that ex-

clude the current fractional solution without excluding feasible integer points from the

solution space. Unfortunately, this technique has also proven to be impractical on its

own and is often only used in conjunction with branch-and-bound [13].

All of these techniques suffer from a common weakness: While they exclude the

current fractional assignment from the solution space, they make no systematic effort

to exclude the cause of this fractional assignment. In particular, if the solution of the

LP-relaxation lies at the intersection of n planes defined by the initial set of inequalities,

and k ≤ n of these planes have an intersection that contains no integer points, then

it is desirable to exclude at least this entire n − k dimensional subspace. The key

insight underlying our approach is to systematically discover and exclude exactly this

n− k dimensional subspace rather than individual points that lie on this space. To be

concrete, consider the following system with no integer solutions:

−3x+ 3y + z ≤ −1

3x− 3y + z ≤ 2

z = 0

(1)



3

1

1

0
x

y

3x
-3
y=
23x
-3
y=
1

1

1

0
x

y

3x
-3
y=
23x
-3
y=
1

x-
y≤
0

x-
y≥
1

1

1

0
x

y

3x
-3
y=
2

3x
-3
y=
1x≤0 x≥1

y≥1

y≤0

Fig. 1: (a) The projection of Equation 1 onto the xy plane. (b) The green lines indicate

the closest lines parallel to the proof of unsatisfiability; the red point marks the solution

of the LP-relaxation. (c) Branch-and-bound first adds the planes x = 0 and x = 1,

then the planes y = 0 and y = 1, and continues to add planes parallel to the coordinate

axes.

The projection of this system onto the xy plane is shown in Figure 1a. Suppose the

LP-relaxation of the problem yields the fractional assignment (x, y, z) = ( 13 , 0, 0). The

planes

z = 0

−3x+ 3y + z = −1
(2)

are the defining constraints of this vertex because the point ( 13 , 0, 0) lies at the inter-

section I of these planes. Since I contains no integer points, we would like to exclude

exactly I from the solution space. Our technique discovers such intersections with no

integer points by computing proofs of unsatisfiability for the defining constraints. A

proof of unsatisfiability is a single equality that (i) has no integer solutions and (ii) is

implied by the defining constraints. In our example, a proof of unsatisfiability for I is

−3x + 3y + 3z = −1 since it has no integer solutions and is implied by Equation 2.

Such proofs can be obtained from the Hermite normal form of the matrix representing

the defining constraints.

Once we discover a proof of unsatisfiability, our algorithm proceeds as a semantic

generalization of branch-and-bound. In particular, instead of branching on a fractional

component of the solution, our technique branches around the proof of unsatisfiability,

if one exists. In our example, once we discover the equation −3x+ 3y + 3z = −1 as a

proof of unsatisfiability, we construct two new subproblems:

−3x+ 3y + z ≤ −1

3x− 3y + z ≤ 2

z = 0

−x+ y + z ≤ −1

−3x+ 3y + z ≤ −1

3x− 3y + z ≤ 2

z = 0

−x+ y + z ≥ 0

where −x + y + z = −1 and −x + y + z = 0 are the closest planes parallel to and on

either side of −3x+ 3y + 3z = −1 containing integer points. As Figure 1b illustrates,

neither of these systems have a real-valued solution, and we immediately determine the

initial system to be unsatisfiable. In contrast, as shown Figure 1c, branch-and-bound

only adds planes parallel to the coordinate axes, repeatedly yielding points that lie on

either 3x − 3y = 1 or 3x − 3y = 2, neither of which contains integer points. On the

other hand, Gomory’s cutting planes technique first derives the valid inequality y ≥ 1
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before eventually adding a cut that makes the LP-relaxation infeasible. Unfortunately,

this technique becomes much less effective in identifying the cause of unsatisfiability

in higher-dimensions.

In this paper, we make the following key contributions:

– We propose a novel, sound, and complete algorithm for solving linear inequalities

over integers that systematically excludes subspaces of the feasible region containing

no integer points.

– We argue that by focusing on the defining constraints of a vertex, we can quickly

home in on the right “cuts” derived from proofs of unsatisfiability of the defining

constraints.

– We present a semantic generalization of the branch-and-bound algorithm that uti-

lizes the proofs of unsatisfiability of the defining constraints.

– We show experimentally that the proposed technique significantly outperforms ex-

isting state-of-the art solvers, usually by orders of magnitude. Specifically, we com-

pare Mistral, an implementation of our algorithm, with the top four competitors

(by score) in the QF-LIA category of SMT-COMP ’08 for solving conjunctions of

linear inequalities over integers.

– Our algorithm is easy to implement and does not require extensive tuning to make

it perform well in practice. We believe it can be profitably incorporated into existing

SMT solvers that reason about linear arithmetic over integers.

2 Technical Background

2.1 Polyhedra, Faces, and Facets

In this section, we review a few standard definitions from polyhedral theory. The in-

terested reader can refer to [13] for an in-depth discussion.

Definition 1 (Convex Polyhedron) The set of (real-valued) solutions satisfying

Ax ≤ b describes a convex polyhedron P . The dimension dim(P ) of P is one less than

the maximal number of affinely independent points in P .

Definition 2 (Valid Inequality) An inequality πx ≤ π0 defined by some row vector

π and a constant π0 is a valid inequality for a polyhedron P if it is satisfied by all

points in P .

Definition 3 (Faces and Facets) F is a face of polyhedron P if F = {x ∈ P : πx =

π0} for some valid inequality πx ≤ π0. A facet is a face of dimension dim(P )− 1.

In Figure 2, polyhedron P has dimension 2 because there exist exactly 3 affinely inde-

pendent points in P . The equation ax+by ≤ c is a valid inequality since all points in P

satisfy this inequality. The point F is a face with dimension 0 since it is the intersection

of P with the valid inequality represented by the dashed line. The line segment G is a

facet of P since it is a face of dimension 1.

2.2 Linear Diophantine Equations

Definition 4 (Linear Diophantine Equation) A linear equation of the form
∑

aixi =

c is diophantine if all coefficients ai are integers and c is an integer.
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Fig. 2: A convex polyhedron of dimension 2

We state the following well-known result [13]:

Lemma 1 A linear diophantine equation
∑

aixi = c has a solution if and only if c is

an integral multiple of the greatest common divisor gcd(a1, . . . , an).

Example 1 The equation 3x + 6y = 1 has no integer solutions since 1 is not evenly

divisible by 3 = gcd(3, 6). However, 3x+ 6y = 9 has integer solutions.

Corollary 1 Let E be a plane defined by
∑

aixi = c with no integer solutions and let

g = gcd(a1, . . . , an). Then, the two closest planes parallel to and on either side of E

containing integer points are bEc and dEe, given by
∑ ai

g xi = bc/gc and
∑ ai

g xi =

dc/ge respectively.

This corollary follows immediately from Lemma 1 and implies that there are no integer

points between E and bEc as well as between E and dEe.

2.3 Proofs of Unsatisfiability and the Hermite Normal Form

Given a systemAx = b of linear diophantine equations, we can determine in polynomial

time whether this system has any integer solutions using the Hermite normal form of

A. 1 Below we briefly review key properties of the Hermite normal form; the interested

reader is referred to [13] for a more in-depth discussion.

Definition 5 (Hermite Normal Form) An m ×m integer matrix H is said to be

in Hermite normal form (HNF) if (i) H is lower triangular, (ii) hii > 0 for 0 ≤ i < m,

and (iii) hij ≤ 0 and |hij | < hii for i > j.2

Definition 6 (Unimodular Matrix) An n×n matrix U is unimodular if it has only

integer entries and |det(U)| is 1.

We review the following well-known lemmas:

Lemma 2 For any m×n matrix A with rank(A) = m, there exists an n×n unimodular

matrix U such that

AU =
[
H | 0

]
and the matrix H is the unique Hermite normal form of A.

1 While it is possible to determine the satisfiability of a system of linear diophantine equali-
ties in polynomial time, determining the satisfiability of a system of linear integer inequalities
is NP-complete.

2 There is no agreement in the literature on the exact definition of the Hermite Normal
Form. The one given here follows the definition in [13].
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While we do not describe the algorithm for computing the Hermite normal form of

A, we remark that there exists an efficient polynomial time for computing the Hermite

normal form of any matrix A (see [17]). Finally, we also recall the following two well-

known results [13]:

Lemma 3 If H is the Hermite normal form of A, then H−1A contains only integer

entries.

Lemma 4 (Proof of Unsatisfiability) The system Ax = b has an integer solution

if and only if H−1b ∈ Zm. If Ax = b has no integer solutions, there exists a row

vector ri of the matrix H−1A such that the corresponding entry ni
di

of H−1b is not an

integer. We call the linear diophantine equation dirix = ni with no integer solutions a

proof of unsatisfiability of Ax = b.

If the equation dirix = ni is a proof of unsatisfiability of Ax = b, then it is implied

by the original system and does not have integer solutions.

Example 2 Consider the defining constraints from the example in Section 1:

z = 0

−3x+ 3y + z = −1

Here, we have:

A =

[
0 0 1

−3 3 1

]
b =

[
0

−1

]
H =

[
1 0

−2 3

]
H−1A =

[
0 0 1

−1 1 1

]
H−1b =

[
0

− 1
3

]
This system does not have an integer solution because H−1b contains a fractional

component, and the equation −3x+ 3y+ 3z = −1 is a proof of unsatisfiability for this

system.

3 The Cuts-from-Proofs Algorithm

In this section, we present our algorithm for determining the satisfiability of the system

Ax ≤ b over integers. In the presentation of the algorithm, we assume that there is

a procedure lp solve that determines the satisfiability of Ax ≤ b over the reals, and

if satisfiable returns a vertex v at an extreme point of the polyhedron induced by

Ax ≤ b. This assumption is fulfilled by standard exterior-point algorithms for linear

programming, such as Simplex [10].

Definition 7 (Defining Constraint) An inequality πx ≤ π0 is a defining constraint

of vertex v of the polyhedron induced by Ax ≤ b if v satisfies the equality πv = π0
where π is a row of A and π0 is the corresponding entry in b.

With slight abuse of terminology, we call πx = π0 a defining constraint whenever

πx ≤ π0 is a defining constraint.
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3.1 Algorithm

Let A be the initial m×n matrix and let amax be the entry with the maximum absolute

value in A. Then, choose any α such that α ≥ n · |amax|.

1. Invoke lp solve. If the result is unsatisfiable, return unsatisfiable. Otherwise, if

vertex v returned by lp solve is integral, return v.

2. Identify the defining constraints A′x′ ≤ b′ of v.

3. Determine if the system A′x′ = b′ has any integer solutions, and, if not, obtain a

proof of unsatisfiability as described in Section 2.3. 3

4. There are two cases:

Case 1: (Conventional branch-and-bound) If a proof of unsatisfiability does

not exist (i.e., A′x′ = b′ has integer solutions) or if the proof of unsatisfiability

contains a coefficient greater than α · gcd(a1, . . . , an), pick a fractional component

fi of v and solve the two subproblems:

Ax ≤ b

vi ≤ bfic
Ax ≤ b

−vi ≤ −dfie

Case 2: (Branch around proof of unsatisfiability) Otherwise, consider the

proof of unsatisfiability Σaixi = c of A′x′ = b′ and let g be gcd(a1, . . . , an). The

system Ax ≤ b has a solution if either of the two subproblems has a solution:[
A

a1
g . . . an

g

]
x ≤

[
b

b cg c

] [
A

−a1
g . . .− an

g

]
x ≤

[
b

−d cg e

]

3.2 Discussion of the Algorithm

In the above algorithm, if lp solve yields a fractional assignment, then either

(i) the intersection of the defining constraints does not have an integer solution or

(ii) the defining constraints do have an integer solution but lp solve did not pick an

integer assignment

In the latter case (i.e., (ii)), we simply perform conventional branch-and-bound

around any fractional component of the assignment to find an integer point on this

intersection. Observe that while the current intersection A′x′ = b′ is guaranteed to

contain an integer point, this integer point may or may not lie inside the polyhedron

defined by Ax ≤ b. Thus, the existence of an integer solution to the system A′x′ = b′

in case (1) of the algorithm does not guarantee the existence of an integer solution to

the original system Ax ≤ b.

On the other hand (i.e., (i)), if the defining constraints do not admit an integer

solution, the algorithm obtains a proof of unsatisfiability with maximum coefficient less

than α, if one exists, and constructs two subproblems that exclude this intersection

without missing any integer points in the solution space. The constant α ensures that

case 2 in step 4 of the algorithm is invoked a finite number of times and guarantees

3 Recall that Lemma 2 defines the Hermite normal form of an m × n matrix A′ when A′

has full rank. If A′ does not have full rank, observe that we can still compute a proof of
unsatisfiability of A′x′ = b′ by dropping redundant rows of the system.
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that there is a minimum bound on the volume excluded from the polyhedron at each

step of the algorithm. (See Section 3.3 for the relevance of α for termination.)

Branching around the two planes in case 2 of the algorithm guarantees that the

intersection A′x′ = b′ of the defining constraints is no longer in the polyhedra defined

by the two new subproblems. However, there may still exist a strict subset of these

defining constraints (i.e., a higher-dimensional subspace) whose intersection contains

no integer points but is not excluded from the solution space of the new subproblems.

The following example illustrates such a situation.

Example 3 Consider the defining constraints x+y ≤ 1 and 2x−2y ≤ 1. Using Hermite

normal forms to compute a proof of unsatisfiability for the system

x+ y = 1

2x− 2y = 1

yields 4x = 3. While 4x = 3 is a proof of unsatisfiability for the intersection of x+y = 1

and 2x− 2y = 1, the strict subset 2x− 2y = 1 has a proof of unsatisfiability on its own

(namely itself), and it is not implied by 4x = 3.

As this example illustrates, the proof of unsatisfiability of a set of constraints does

not necessarily imply the proof of unsatisfiability of any subset of these constraints.

At first glance, this seems problematic because if the intersection of any subset of

the defining constraints contains no integer solutions, we would prefer excluding this

larger subspace represented by the smaller set of constraints. Fortunately, as stated by

Lemma 7, the algorithm will discover and exclude this higher-dimensional intersection

in a finite number of steps. We first prove the following helper lemmas:

Lemma 5 Let C =

[
A

B

]
be an m×n matrix composed of A and B, and let HNF(C) =[

HA 0

X Y

]
. Then, HNF(A) = HA.

Proof Our proof uses the HNF construction outlined in [13]. Let i be a row that the

algorithm is currently working on and let i′ be another row such that i′ < i. Then, by

construction, any entry ci′j where j > i′ is 0. Since any column operation performed

while processing row i adds a multiple of column k ≥ i to another column, entry ci′k
must be 0. Thus, any column operation is idempotent on row i′.

Using blockwise inversion to invert HNF(C), it can be easily shown that:

HNF(C)−1 =

[
H−1A 0

−Y −1XH−1A Y −1

]
Thus, it is easy to see that HNF(C)−1C = HNF(C)−1b′ implies HNF(A)−1A =

HNF(A)−1b if b′ is obtained by adding entries to the bottom of b. This is the case

because both HNF(C)−1 and HNF(A)−1 are lower triangular matrices. Intuitively, this

result states that if Ax = b has a proof of unsatisfiability, we cannot “lose” this proof

by adding extra rows at the bottom of A.
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Example 4 Consider the constraints from Example 2. Suppose we add the additional

constraint x = 1 at the bottom of matrix A. Then, we obtain:

A =

 0 0 1

−3 3 1

1 0 0

 b =

 0

−1

1

 H =

 1 0 0

−2 3 0

0 0 1

 H−1A =

 0 0 1

−1 1 1

1 0 0

 H−1b =

 0

− 1
3

1


Clearly, −3x + 3y + 3z = −1 is still obtained as a proof of unsatisfiability from the

second row of H−1A = H−1b.

Lemma 6 Consider any proof of unsatisfiability Σaixi = c of any subset of the initial

system Ax ≤ b. Then, ∀i.|ai| ≤ α · gcd(a1, . . . , an).

Proof The coefficients ai are obtained from the matrix H−1A′ where A′ is a ma-

trix whose rows are a subset of those of A. Recall from basic linear algebra H−1 =
1

det(H)
adj(H) where adj(H) is the classical adjoint of H. Let the notation ||A|| denote

maxij |aij |. It is shown in [14] that:

||adj(H)|| ≤ det(H)

for any matrix H in Hermite normal form. Hence any coefficient c in H−1 satisfies

|c| ≤ 1, and the entries in H−1A′ are therefore bound by α = n·|amax|. Since the proof

of unsatisfiability is some row of H−1A′ multiplied by some di > 1, di ≤ gcd(a1, . . . , an)

as di is a divisor of each ai. Thus, any coefficient in the proof of unsatisfiability is bound

by α · gcd(a1, . . . , an).

Using the above lemmas, we can now show the following result:

Lemma 7 Let F be a k-dimensional face without integer points of the initial polyhe-

dron P with dim(P ) = d. Suppose lp solve repeatedly returns vertices that lie on this

face. The algorithm will exclude F from P in a finite number of steps.

Proof Every time lp solve yields a vertex that lies on F , the algorithm excludes from

the search space the intersection of the current defining constraints; thus, the next time

lp solve yields a vertex, one of these constraints will no longer be defining. At some

point, when lp solve returns a vertex on F , its defining constraints will be exactly

the d− k of the original constraints defining F , along with new constraints that were

added to the bottom of the matrix. By Lemma 5, the additional constraints preserve

the proof of unsatisfiability of the original d− k constraints. Furthermore, by Lemma

6, this proof of unsatisfiability will have coefficients with absolute value of at most

α · gcd(a1, . . . , an). Thus, the algorithm will obtain a proof of unsatisfiability for F and

exclude all of F from the solution space.

As Lemma 7 elucidates, the Cuts-from-Proofs algorithm discovers any relevant

face without integer points on a demand-driven basis without explicitly considering

all possible subsets of the initial set of inequalities. This allows the algorithm to add

exactly the relevant cuts while staying computationally tractable in practice.
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3.3 Soundness and Completeness

It is easy to see that the algorithm given above is correct because it never excludes

integer points in the solution space. For arguing termination, we can assume, as stan-

dard, that the polyhedron P is finite; if it is not, one can compute maximum and

minimum bounds on each variable without affecting the satisfiability of the original

problem (see, for example [12,13]). The key observation is that the volume we cut off

the polyhedron cannot become infinitesimally small over time as we add more cuts. To

see this, observe that there is a finite set of normal vectors N for the planes added by

the Cuts-from-Proofs algorithm. Clearly, this holds for planes added by case 1 of step

4 since all such planes are parallel to one of the coordinate planes. This fact also holds

for planes added in case 2 of step 4 since the coefficients of the normal vectors must

be less than or equal to α. Since the set N of normal vectors is finite, the algorithm

will either terminate or, at some point, it will have to add planes parallel to already

existing ones. The following lemma states that these parallel planes are at least some

minimal distance ε apart:

Lemma 8 (Progress) Let E be a plane added by the Cuts-from-Proofs algorithm and

let E′ be another plane parallel to E, also added by the algorithm. Then, E and E′ are

at least some minimum distance ε > 0 apart.

Proof Let E be defined by n · x = c1 and E′ be defined by n · x = c2. Since c1 and c2
are integers and c1 6= c2, E and E′ are a minimum d = 1/

√
n21 + . . .+ n2k apart. Since

there are a finite number of non-parallel planes added by the algorithm, choose ε to be

the minimum such d.

Let n ∈ N be any normal vector along which the algorithm must eventually cut.

Because P is finite, there is a finite distance δ we can move along n through P . Since

the distance we move along n is at least ε, the algorithm can cut perpendicular to n

at most δ/ε times. Hence, the algorithm must terminate.

4 Implementation

In Section 4.1, we first discuss improvements over the basic algorithm presented in

Section 3; then, in Section 4.2, we discuss the details of our implementation.

4.1 Improvements and Empirical Observations

An improvement over the basic algorithm described in Section 3 can be achieved by

selectively choosing the proofs of unsatisfiability that the algorithm branches on. In

particular, recall from Lemma 7 that if lp solve repeatedly returns vertices on the

same face with no integer points, the algorithm will also repeatedly obtain the same

proof of unsatisfiability. Thus, in practice, it is beneficial to delay branching on a proof

until the same proof is obtained at least twice. This can be achieved by using case

1 in step 4 of the algorithm instead of case 2 each time a new proof is discovered.

Since few of these proofs appear repeatedly, this easy modification often allows the

algorithm to exclude only the highest-dimensional intersection with no integer points
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without having to branch around additional intermediate proofs. In our experience,

this optimization can improve running time up to a factor of 3 on some examples.

An important empirical observation about the algorithm is that the overwhelming

majority (> 99%) of the proofs of unsatisfiability do not result in true branching. In

practice, one of the planes parallel to the proof of unsatisfiability often turns out to

be a valid inequality, while the other parallel plane lies outside the feasible region,

making its LP-relaxation immediately unsatisfiable. Thus, in practice, the algorithm

only branches around fractional components of an assignment.

4.2 Implementation Details

Our implementation of the Cuts-from-Proofs algorithm is written in C++ and con-

sists of approximately 5000 lines of code, including modules to perform various matrix

operations as well as support for infinite precision arithmetic. The Cuts-from-Proofs

algorithm is a key component of the Mistral constraint solver, which implements the

decision procedure for the combined theory of integer linear arithmetic and uninter-

preted functions. Mistral is used in the Compass program analysis system (under de-

velopment) to solve large real-world constraints that arise from modeling contents of

unbounded data structures, such as arrays and linked lists.

Our Simplex implementation, used as the lp solve procedure in the Cuts-from-

Proofs algorithm, uses Bland’s rule for pivot selection [12]. Mistral utilizes a custom-

built infinite precision arithmetic library based on the GNU MP Bignum Library

(GMP) [15]. Our library performs computation natively on 64-bit values until an over-

flow is detected, and then switches to GNU bignums. If no overflow is detected, our

implementation results in less than 25% slow down over native word-level arithmetic.

We also found the selective use of hand-coded SIMD instructions to improve perfor-

mance of Simplex by approximately a factor of 2.

Our implementation for Hermite normal form conversion is based on the algorithm

given in [16]. This algorithm uses the modulo reduction technique of [17] to control

the number of required bits in any intermediate computation. In practice, the Hermite

normal form conversion takes less than 5% of the overall running time and is not a

bottleneck.

The implementation of the core Cuts-from-Proofs algorithm takes only about 250

lines of C++ code and does not require any features beyond what is discussed in

this paper. In our implementation, α was chosen to be 10n · |amax|, and we have not

observed the coefficients in the computed proofs of unsatisfiability to exceed this limit.

In practice, the coefficients stay reasonably small.

5 Experimental Results

To evaluate the effectiveness of the Cuts-from-Proofs algorithm, we compared Mis-

tral with the four leading competitors (by score) in the QF-LIA category of SMT-

COMP ’08, namely Yices 1.0.16, Z3.2, MathSAT 4.2, and CVC3 1.5 obtained from

[18]. We did not compare Mistral against (mixed) integer linear programming tools

specialized for optimization problems. Existing tools such as GLPK [19], lp-solve [20],

and CPLEX [21] all use floating point numbers instead of infinite precision arith-

metic and yield unsound results for determining satisfiability even on small systems
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Fig. 3: Experimental Results (fixed coefficient)

due to rounding errors. Furthermore, we did not use the QF-LIA benchmarks from

SMT-COMP because they contain arbitrary boolean combinations of linear integer

inequalities and equalities, making them unsuitable for comparing different algorithms

to solve integer linear programs. The full set of test inputs and running times for each

tool is available from http://www.stanford.edu/~isil/benchmarks.tar.gz. All ex-

periments were performed on an 8 core 2.66 GHz Xeon workstation with 24 GB of

memory. (All the tools, including Mistral, are single-threaded applications.) Each tool

was given a maximum running time of 1200 seconds as well as 4 GB of memory. Any

run exceeding the time or memory limit was aborted and marked as failure. If a run

was aborted, its running time was assumed to be 1200 seconds for computing average

running times.

In the experiments, presented in Figure 3, we randomly generated more than 500

systems of linear inequalities, containing between 10 and 45 variables and between

15 and 50 inequalities per system with a fixed maximum coefficient size of 5. Figure

3a plots the number of variables against the average running time over all sizes of

constraints, ranging from 15 to 50. As is evident from this figure, the Cuts-from-Proofs

algorithm results in a dramatic improvement over all existing tools. For instance, for
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Fig. 4: Experimental Results (fixed dimensions)

25 variables, Yices, Mistral’s closest competitor, takes on average 347 seconds while

Mistral takes only 3.45 seconds. This trend is even more pronounced in Figure 3b, which

plots number of variables against the percentage of successful runs. For example, for

35 variables, Yices has a success rate of 36% while Mistral successfully completes 100%

of its runs, taking an average of only 28.11 seconds.

Figures 3c and 3d plot the number of inequalities per system against average run-

ning time on a logarithmic scale for 20 and 25 variables, respectively. We chose not to

present detailed breakouts for larger numbers of variables since such systems trigger

time-out rates over 50% for all tools other than Mistral. These graphs demonstrate that

the Cuts-from-Proofs algorithm reliably performs significantly, and usually at least an

order of magnitude, better than any of the other tools, regardless of the number of

inequalities per system.

To evaluate the sensitivity of different algorithms to maximum coefficient size, we

also compared the running time of different tools for coefficients ranging from 10 to 100

for systems with 10 variables and 20 inequalities. As shown in Figure 4, Mistral is less

sensitive to coefficient size than the other tools. For example, for maximum coefficient

50, Mistral’s closest competitor, MathSAT, takes an average of 482 seconds with a

success rate of 60% while Mistral takes an average of 1.6 seconds with a 100% success

rate.

Among the tools we compared, Yices and Z3 use a Simplex-based branch-and-cut

approach, while CVC3 implements the Omega test. MathSAT mainly uses a Simplex-

based algorithm augmented with the Omega test as a fallback mechanism. In our

experience, one of the main differences between Simplex-based and Omega test based

algorithms is that the former run out of time, while the latter run out of memory. On

average, Simplex-based tools seem to perform better than tools using the Omega test.

We believe these experimental results demonstrate that the Cuts-from-Proofs al-

gorithm outperforms leading implementations of existing techniques by orders of mag-

nitude and significantly increases the size and complexity of integer linear programs

that can be solved. Furthermore, our algorithm is easy to implement and does not re-

quire extensive tuning to make it perform well. We believe that the Cuts-from-Proofs
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algorithm can be profitably incorporated into existing SMT solvers that integrate the

theory of linear integer arithmetic.

6 Related Work

As discussed in Section 1, there are three major approaches for solving linear inequal-

ities over integers. LP-based approaches include branch-and-bound, Gomory’s cutting

planes method, and various combinations of the two [13,12]. The cutting planes method

derives valid inequalities from the final Simplex tableau. More abstractly, a Gomory

cut can be viewed as the proof of unsatisfiability of a single inequality obtained from

a linear combination of the original set of inequalities. This is in contrast with our

Cuts-from-Proofs algorithm which obtains a proof from the set of defining constraints,

rather than from a single inequality in the final Simplex tableau. Unfortunately, the

number of cuts added by Gomory’s cutting planes technique is usually very large, and

few of these cuts ultimately prove helpful in obtaining an integer solution [12]. Branch-

and-cut techniques that combine branch-and-bound and variations on cutting planes

techniques have proven more successful and are used by many state-of-the-art SMT

solvers [5,6,8]. However, the algorithm proposed in this paper significantly outperforms

leading implementations of the branch-and-cut technique.

Another technique for solving linear integer inequalities is the Omega test, an

extension of the Fourier-Motzkin variable elimination for integers [2]. A drawback of

this approach is that it can consume gigabytes of memory even on moderately sized

inputs, causing it to perform worse in practice than Simplex-based techniques.

A third approach for solving linear arithmetic over integers is based on finite au-

tomata theory [11]. Unfortunately, while complete, automata-based approaches per-

form significantly worse than all of the aforementioned techniques. The authors are

not aware of any tools based on this approach that are currently under active develop-

ment.

Another proposal [22] for solving linear arithmetic over integers is to translate

the formula into an equisatisfiable boolean formula, whose satisfiability can then be

checked using a standard boolean SAT solver. This technique is mainly targeted for

special classes of ILP problems that arise frequently in verification where most of

the constraints are difference constraints and each of the remaining non-difference

constraints contains few variables.

Hermite normal forms are a well-studied topic in number theory, and efficient

polynomial-time algorithms exist for computing Hermite normal forms [16,14]. Their

application to solving systems of linear diophantine equations is discussed, for exam-

ple, in [13,12]. Jain et al. study the application of Hermite normal forms to computing

interpolants of systems of linear diophantine equalities and disequalities [23]. We adopt

the term “proof of unsatisfiability” from the literature on Craig interpolation [26,27].

Conclusion

We have presented a novel, sound, and complete algorithm called Cuts-from-Proofs

for solving linear inequalities over integers and demonstrated experimentally that this

algorithm significantly outperforms leading implementations of existing approaches.
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