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Abstract. Modern operating systems allow user-space applications to
submit code for kernel execution through the use of in-kernel domain spe-
cific languages (DSLs). Applications use these DSLs to customize system
policies and add new functionality. For performance, the kernel executes
them via just-in-time (JIT) compilation. The correctness of these JITs
is crucial for the security of the kernel: bugs in in-kernel JITs have led
to numerous critical issues and patches.

This paper presents JITSYNTH, the first tool for synthesizing verified JITs
for in-kernel DSLs. JITSYNTH takes as input interpreters for the source
DSL and the target instruction set architecture. Given these interpreters,
and a mapping from source to target states, JITSYNTH synthesizes a ver-
ified JIT compiler from the source to the target. Our key idea is to
formulate this synthesis problem as one of synthesizing a per-instruction
compiler for abstract register machines. Our core technical contribution
is a new compiler metasketch that enables JITSYNTH to efficiently ex-
plore the resulting synthesis search space. To evaluate JITSYNTH, we use
it to synthesize a JIT from eBPF to RISC-V and compare to a recently
developed Linux JIT. The synthesized JIT avoids all known bugs in the
Linux JIT, with an average slowdown of 1.82x in the performance of
the generated code. We also use JITSYNTH to synthesize JITs for two
additional source-target pairs. The results show that JITSYNTH offers a
promising new way to develop verified JITs for in-kernel DSLs.
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1 Introduction

Modern operating systems (OSes) can be customized with user-specified pro-
grams that implement functionality like system call whitelisting, performance
profiling, and power management [8[9I21]. For portability and safety, these pro-
grams are written in restricted domain-specific languages (DSLs), and the kernel
executes them via interpretation and, for better performance, just-in-time (JIT)
compilation. The correctness of in-kernel interpreters and JITs is crucial for the
reliability and security of the kernel, and bugs in their implementations have led
to numerous critical issues and patches [12J27]. More broadly, embedded DSLs
are also used to customize—and compromise [BII5]—other low-level software,



such as font rendering and anti-virus engines [5]. Providing formal guarantees of
correctness for in-kernel DSLs is thus a pressing practical and research problem
with applications to a wide range of systems software.

Prior work has tackled this problem through interactive theorem proving. For
example, the Jitk framework [37] uses the Coq interactive theorem prover [35] to
implement and verify the correctness of a JIT compiler for the classic Berkeley
Packet Filter (BPF) language [21] in the Linux kernel. But such an approach
presents two key challenges. First, Jitk imposes a significant burden on DSL
developers, requiring them to implement both the interpreter and the JIT com-
piler in Coq, and then manually prove the correctness of the JIT compiler with
respect to the interpreter. Second, the resulting JIT implementation is extracted
from Coq into OCaml and cannot be run in the kernel; rather, it must be run
in user space, sacrificing performance and enlarging the trusted computing base
(TCB) by relying on the OCaml runtime as part of the TCB.

This paper addresses these challenges with JITSYNTH, the first tool for syn-
thesizing verified JIT compilers for in-kernel DSLs. JITSYNTH takes as input
interpreters for the source DSL and the target instruction set architecture (ISA),
and it synthesizes a JIT compiler that is guaranteed to transform each source
program into a semantically equivalent target program. Using JITSYNTH, DSL
developers write no proofs or compilers. Instead, they write the semantics of
the source and target languages in the form of interpreters and a mapping from
source to target states, which JITSYNTH trusts to be correct. The synthesized
JIT compiler is implemented in C; thus, it can run directly in the kernel.

At first glance, synthesizing a JIT compiler seems intractable. Even the sim-
plest compiler contains thousands of instructions, whereas existing synthesis
techniques scale to tens of instructions. To tackle this problem in our setting, we
observe that in-kernel DSLs are similar to ISAs: both take the form of bytecode
instructions for an abstract register machine, a simple virtual machine with a pro-
gram counter, a few registers, and limited memory store [37]. We also observe
that in practice, the target machine has at least as many resources (registers and
memory) as the source machine; and that JIT compilers for such abstract register
machines perform register allocation statically at compile time. Our main insight
is that we can exploit these properties to make synthesis tractable through de-
composition and prioritization, while preserving soundness and completeness.

JITSYNTH works by decomposing the JIT synthesis problem into the problem
of synthesizing individual mini compilers for every instruction in the source lan-
guage. Each mini compiler is synthesized by generating a compiler metasketch [4],
a set of ordered sketches that collectively represent all instruction sequences in
the target ISA. These sketches are then solved by an off-the-shelf synthesis tool
based on reduction to SMT [36]. The synthesis tool ensures that the target in-
struction sequence is semantically equivalent to the source instruction, according
to the input interpreters. The order in which the sketches are explored is key
to making this search practical, and JITSYNTH contributes two techniques for
biasing the search towards tightly constrained, and therefore tractable, sketches
that are likely to contain a correct program.



First, we observe that source instructions can often be implemented with
target instructions that access the same parts of the state (e.g., only registers).
Based on this observation, we develop read-write sketches, which restrict the
synthesis search space to a subset of the target instructions, based on a sound and
precise summary of their semantics. Second, we observe that hand-written JITs
rely on pseudoinstructions to generate common target sequences, such as loading
immediate (constant) values into registers. We use this observation to develop
pre-load sketches, which employ synthesized pseudoinstructions to eliminate the
need to repeatedly search for common target instruction subsequences.

We have implemented JITSYNTH in Rosette [36] and used it to synthesize JIT
compilers for three widely used in-kernel DSLs. As our main case study, we used
JITSYNTH to synthesize a RISC-V [29] compiler for extended BPF (eBPF) [9],
an extension of classic BPF [2I], used by the Linux kernel. Concurrently with
our work, Linux developers manually built a JIT compiler for the same source
and target pair, and a team of researchers found nine correctness bugs in that
compiler shortly after its release [25]. In contrast, our JIT compiler is verified
by construction; it supports 87 out of 102 eBPF instructions and passes all the
Linux kernel tests within this subset, including the regression tests for these
nine bugs. Our synthesized compiler generates code that is 5.24x faster than
interpreted code and 1.82x times slower than the code generated by the Linux
JIT. We also used JITSYNTH to synthesize a JIT from libseccomp [7], a policy
language for system call whitelisting, to eBPF, and a JIT from classic BPF to
eBPF. The synthesized JITs avoid previously found bugs in the existing gen-
erators for these source target pairs, while incurring, on average, a 2.28-2.61x
slowdown in the performance of the generated code.

To summarize, this paper makes the following contributions:

1. JITSYNTH, the first tool for synthesizing verified JIT compilers for in-kernel
DSLs, given the semantics of the source and target languages as interpreters.

2. A novel formulation of the JIT synthesis problem as one of synthesizing a
per-instruction compiler for abstract register machines.

3. A novel compiler metasketch that enables JITSYNTH to solve the JIT syn-
thesis problem with an off-the-shelf synthesis engine.

4. An evaluation of JITSYNTH’s effectiveness, showing that it can synthesize
verified JIT compilers for three widely used in-kernel DSLs.

The rest of this paper is organized as follows. illustrates JITSYNTH
on a small example. formalizes the JIT synthesis problem for in-kernel
DSLs. presents the JITSYNTH algorithm for generating and solving
compiler metasketches. provides implementation details. eval-
uates JITSYNTH. [Section 1 discusses related work. concludes.

2 Overview

This section provides an overview of JITSYNTH by illustrating how it synthesizes
a toy JIT compiler (Figure 1J). The source language of the JIT is a tiny subset



instruction description semantics

eBPF (subset):
addi32 dst,imm32 32-bit add (high 32 bits cleared)  R[dst] + 0°? @ (extract(31,0, R[dst]) + imm32)

RISC-V (subset):

lui rd, imm20 load upper immediate R[rd] + sext64(imm20 @ 0'?)

addiw rd,rs, imml12 32-bit register-immediate add R[rd] « sext64(extract(31, 0, R[rs]) + sext32(imm12))
add rd, rs1,rs2 register-register add R[rd] < R[rs1] + R[rs2]

slli rd,rs,imm6  register-immediate left shift R[rd] < rs << (0°® @ imm6)

srli rd,rs,imm6  register-immediate logical right shift R[rd] « rs >> (0°® @ imm6)

1b rd, rs,imml12 load byte from memory R[rd] < sext64(M [R[rs] + sext64(imm12)])

sb rs1,rs2,imml2 store byte to memory M[R[rs1] + sext64(imm12)] < extract(7,0, R[rs2])

Fig. 1. Subsets of eBPF and RISC-V used as source and target languages, respectively,
in our running example: R[r] denotes the value of register r; M[a] denotes the value at
memory address a; @ denotes concatenation of bitvectors; superscripts (e.g., 032) denote
repetition of bits; sext32(z) and sext64(z) sign-extend z to 32 and 64 bits, respectively;
and extract(s, j, ) produces a subrange of bits of = from index i down to j.

of eBPF [9] consisting of one instruction, and the target language is a subset of
64-bit RISC-V [29] consisting of seven instructions. Despite the simplicity of our
languages, the Linux kernel JIT used to produce incorrect code for this eBPF in-
struction [24]; such miscompilation bugs not only lead to correctness issues, but
also enable adversaries to compromise the OS kernel by crafting malicious eBPF
programs [37]. This section shows how JITSYNTH can be used to synthesize a JIT
that is verified with respect to the semantics of the source and target languages.

In-kernel languages. JITSYNTH expects the source and target languages to be
a set of instructions for manipulating the state of an abstract register machine
(Section 3). This state consists of a program counter (pc), a finite sequence
of general-purpose registers (reg), and a finite sequence of memory locations
(mem), all of which store bitvectors (i.e., finite precision integers). The length of
these bitvectors is defined by the language; for example, both eBPF and RISC-V
store 64-bit values in their registers. An instruction consists of an opcode and
a finite set of fields, which are bitvectors representing either register identifiers
or immediate (constant) values. For instance, the addi32 instruction in eBPF
has two fields: dst is a 4-bit value representing the index of the output register,
and imm32 is a 32-bit immediate. (eBPF instructions may have two additional
fields src and off , which are not shown here as they are not used by addi32.)
An abstract register machine for a language gives meaning to its instructions:
the machine consumes an instruction and a state, and produces a state that is
the result of executing that instruction. shows a high-level description
of the abstract register machines for our languages.

JITSYNTH interface. To synthesize a compiler from one language to another,
JITSYNTH takes as input their syntax, semantics, and a mapping from source to
target states. All three inputs are given as a program in a solver-aided host lan-
guage [36]. JITSYNTH uses Rosette as its host, but the host can be any language
with a symbolic evaluation engine that can reduce the semantics of host programs



to SMT constraints (e.g., [34]). shows the interpreters for the source
and target languages (i.e., emulators for their abstract register machines), as

well as the state-mapping functions regST, pcST, and memST that JITSYNTH
uses to determine whether a source state og is equivalent to a target state
or. In particular, JITSYNTH deems these states equivalent, denoted by og =
or, whenever reg(or)[regST(r)] = reg(os)[r], pc(or) = pcST(pc(os)), and
mem(or)[memST(a)] = mem(og)la] for all registers r and memory addresses a.

Abstract register machine state.
Input 1/3: toy eBPF.

(struct state (regs mem pc) #:transparent)

i
;
(struct ebpf-insn (opcode dst src off imm)) ; - eBPF instruction format;
(define (ebpf-interpret insn st) ;  — eBPF interpreter for addi32.
(define-match (ebpf-insn op dst _ _ imm) insn) ;
(case op ; Note: addi32 does not use the src
[ (addi32) ; and off fields.
(state

(reg-set st dst (concat (bv 0 32) (bvadd (extract 31 0 (reg-ref st dst)) imm)))
(state-mem st)
(bvadd (state-pc st) (bv 1 64)))1))
(struct rv-insn (opcode rd rsl rs2 imm)) ; 1 format;
(define (rv-interpret insn st) ;
(define-match (rv-insn op rd rsl rs2 imm) insn)
(case op
[(lui)
(state
(reg-set st rd (sext64 (concat imm (bv 0 12))))
(state-mem st)
(bvadd (state-pc st) (bv 4 64)))] ...))

Input 3/3: state mapping functions.
— Register mappin

- eBPF r0 —> vV x15,
- Memory mapping the identity.

(define (regST r)

(cond [(equal? r (bv 0 4)) (bv 15 5)] ...))
(define (memST a) a)
(define (pcST pc) (bvshl pc (bv 2 64)))

Fig. 2. Snippets of inputs to JITSYNTH: the interpreters for the source (eBPF) and
and target (RISC-V) languages and state-mapping functions.

Decomposition into per-instruction compilers. Given these inputs, JITSYNTH
generates a per-instruction compiler from the source to the target language. To
ensure that the resulting compiler is correct , and that one will be
found if it exists , JITSYNTH puts two restrictions on its inputs.
First, the inputs must be self-finitizing [36], meaning that both the interpreters
and the mapping functions must have a finite symbolic execution tree when
applied to symbolic inputs. Second, the target machine must have at least as
many registers and memory locations as the source machine; these storage cells
must be as wide as those of the source machine; and the state-mapping functions
(pcST, regST, and memST) must be injective. Our toy inputs satisfy these
restrictions, as do the real in-kernel languages evaluated in

Synthesis workflow. JITSYNTH generates a per-instruction compiler for a given
source and target pair in two stages. The first stage uses an optimized compiler
metasketch to synthesize a mini compiler from every instruction in the source
language to a sequence of instructions in the target language . The



second stage then simply stitches these mini compilers into a full C compiler us-
ing a trusted outer loop and a switch statement. The first stage is a core technical
contribution of this paper, and we illustrate it next on our toy example.

Metasketches. To understand how JITSYNTH works, consider the basic problem
of determining if every addi32 instruction can be emulated by a sequence of
k instructions in toy RISC-V. In particular, we are interested in finding a pro-
gram Cl4qi3, in our host language (which JITSYNTH translates to C) that takes
as input a source instruction s = addi32 dst,imm32 and outputs a semanti-
cally equivalent RISC-V program t = [tq,...,tx]. That is, for all dst, imm32,
and for all equivalent states og 2 o7, we have run(s,og,ebpf-interpret) =
run(t,or, rv-interpret), where run(e,o, f) executes the instruction inter-
preter f on the sequence of instructions e, starting from the state o .

‘We can solve this problem by asking the host synthesizer to search for C,q4132
in a space of candidate mini compilers of length k. We describe this space with
a syntactic template, or a sketch, as shown below:

(define (compile-addi32 s) ;
(define dst (ebpf-insn-dst s)) ;
(define imm (ebpf-insn-imm s)) ;
(list (??insn dst imm) ...)) ;

(define (??insn . sf) ; Takes as input source instruction
(define rd (??reg sf)) S them to construct target field
(define rsl (??reg sf)) imm field holes a

(define rs2 (??reg sf)

(

??reg
express

expres

=

choosex Returns an press that
(rv-insn lui rd rsl rs2 (??imm 20 sf)) ; lui, addiw
e ; ..., and
(rv-insn sb rd rsl rs2 (??imm 12 sf)))) ; sb instructions.

Here, (??insn dst imm) stands for a missing expression—a hole—that
the synthesizer needs to fill with an instruction from the toy RISC-V language.
To fill an instruction hole, the synthesizer must find an expression that com-
putes the value of the target instruction’s fields. JITSYNTH limits this expres-
sion language to bitvector expressions (of any depth) over the fields of the source
instruction and arbitrary bitvector constants.

Given this sketch, and our correctness specification for C,4q:32, the synthe-
sizer will search the space defined by the sketch for a program that satisfies the
specification. Below is an example of the resulting toy compiler from eBPF to
RISC-V, synthesized and translated to C by JITSYNTH (without the outer loop):

void compile (struct bpf_insn xinsn, struct rv_insn xtgt_prog) {
switch (insn->op) {
case BPF_ADDI32:

tgt_prog[0] = /% lui x6, extract (19, 0, (imm + 0x800) >> 12) «/

rv_lui (6, extract (19, 0, (insn->imm + 0x800) >> 12));
tgt_prog[l] = /% addiw x6, x6, extract(ll, 0, imm) =/

rv_addiw (6, 6, extract(ll, 0, insn->imm));
tgt_prog[2] = /+ add rd, rd, x6 */

rv_add (regmap (insn->dst), regmap (insn->dst), 6);
tgt_prog[3] = /% slli rd, rd, 32 %/

rv_slli(regmap (insn->dst), regmap (insn->dst), 32);
tgt_progl4] = /% srli rd, rd, 32 %/

rv_srli(regmap (insn->dst), regmap (insn->dst), 32);
break;

}
}

Once we know how to synthesize a compiler of length k, we can easily ex-
tend this solution into a naive method for synthesizing a compiler of any length.



We simply enumerate sketches of increasing lengths, £k = 1,2,3,..., invoke the
synthesizer on each generated sketch, and stop as soon as a solution is found (if
ever). The resulting ordered set of sketches forms a metasketch [4]—i.e., a search
space and a strategy for exploring it—that contains all candidate mini compilers
(in a subset of the host language) from the source to the target language. This
naive metasketch can be used to find a mini compiler for our toy example in 493
minutes. However, it fails to scale to real in-kernel DSLs (Section €], motivating
the need for JITSYNTH’s optimized compiler metasketches.

Compiler metasketches. JITSYNTH optimizes the naive metasketch by extending
it with two kinds of more tightly constrained sketches, which are explored first.
A constrained sketch of size k usually contains a correct solution of a given size
if one exists, but if not, JITSYNTH will eventually explore the naive sketch of
the same length, to maintain completeness. We give the intuition behind the two
optimizations here, and present them in detail in

First, we observe that practical source and target languages include similar
kinds of instructions. For example, both eBPF and RISC-V include instructions
for adding immediate values to registers. This similarity often makes it possi-
ble to emulate a source instruction with a sequence of target instructions that
access the same part of the state (the program counter, registers, or memory)
as the source instruction. For example, addi32 reads and writes only registers,
not memory, and it can be emulated with RISC-V instructions that also access
only registers. To exploit this observation, we introduce read-write sets, which
summarize, soundly and precisely, how an instruction accesses state. JITSYNTH
uses these sets to define read-write sketches for a given source instruction, in-
cluding only target instructions that access the state in the same way as the
source instruction. For instance, a read-write sketch for addi32 excludes both
1b and sb instructions because they read and write memory as well as registers.

Second, we observe that hand-written JITs use pseudoinstructions to sim-
plify their implementation of mini compilers. These are simply subroutines or
macros for generating target sequences that implement common functionality.
For example, the Linux JIT from eBPF to RISC-V includes a pseudoinstruction
for loading 32-bit immediates into registers. JITSYNTH mimics the way hand-
written JITs use pseudoinstructions with the help of pre-load sketches. These
sketches first use a synthesized pseudoinstruction to create a sequence of con-
crete target instructions that load source immediates into scratch registers; then,
they include a compute sequence comprised of read-write instruction holes. Ap-
plying these optimizations to our toy example, JITSYNTH finds a mini compiler
for addi32 in 5 seconds—a roughly 6000x speedup over the naive metasketch.

3 Problem Statement

This section formalizes the compiler synthesis problem for in-kernel DSLs. We
focus on JIT compilers, which, for our purposes, means one-pass compilers [g].
To start, we define abstract register machines as a way to specify the syntax



and semantics of in-kernel languages. Next, we formulate our compiler synthe-
sis problem as one of synthesizing a set of sound mini compilers from a single
source instruction to a sequence of target instructions. Finally, we show that
these mini compilers compose into a sound JIT compiler, which translates every
source program into a semantically equivalent target program.

Abstract register machines. An abstract register machine (ARM) provides a
simple interface for specifying the syntax and semantics of an in-kernel language.
The syntax is given as a set of abstract instructions, and the semantics is given
as a transition function over instructions and machine states.

An abstract instruction defines the name (op) and type signa-
ture (F) of an operation in the underlying language. For example, the abstract
instruction (addi32,r — Reg,imm32 — BV (32)) specifies the name and signa-
ture of the addi32 operation from the eBPF language (Figure 1f). Each abstract
instruction represents the (finite) set of all concrete instructions that instantiate
the abstract instruction’s parameters with values of the right type. For example,
addi320,5 is a concrete instantiation of the abstract instruction for addi32. In
the rest of this paper, we will write “instruction” to mean a concrete instruction.

Definition 1 (Abstract and Concrete Instructions). An abstract instruc-
tion ¢ is a pair (op, F) where op is an opcode and F is a mapping from fields to
their types. Field types include Reg, denoting register names, and BV (k), de-
noting k-bit bitvector values. The abstract instruction ¢ represents all concrete
instructions p = (op, F') with the opcode op that bind each field f € dom(F)
to a value F(f) of type F(f). We write P(1) to denote the set of all concrete
instructions for v, and we extend this notation to sets of abstract instructions in
the usual way, i.e., P(Z) =,z P(t) for the set T.

Instructions operate on machine states (Definition 2)), and their semantics
are given by the machine’s transition function (Definition 3)). A machine state
consists of a program counter, a map from register names to register values, and
a map from memory addresses to memory values. Each state component is either
a bitvector or a map over bitvectors, making the set of all states of an ARM
finite. The transition function of an ARM defines an interpreter for the ARM’s
language by specifying how to compute the output state for a given instruction
and input state. We can apply this interpreter, together with the ARM’s fuel
function, to define an execution of the machine on a program and an initial state.
The fuel function takes as input a sequence of instructions and returns a natural
number that bounds the number of steps (i.e., state transitions) the machine can
make to execute the given sequence. The inclusion of fuel models the requirement
of in-kernel languages for all program executions to terminate [37]. It also enables
us to use symbolic execution to soundly reduce the semantics of these languages
to SMT constraints, in order to formulate the synthesis queries in

Definition 2 (State). A state o is a tuple (pc, reg, mem) where pc is a value,
reg is a function from register names to values, and mem is a function from
memory addresses to values. Register names, memory addresses, and all values



are finite-precision integers, or bitvectors. We write |o| to denote the size of
the state 0. The size |o| is defined to be the tuple (r,m, kpc, kreg, kmem), where
r is the number of registers in o, m is the number of memory addresses, and
kpe, Kreg, and kmem are the width of the bitvector values stored in the pc, reg,
and mem, respectively. Two states have the same size if |o;| = |o;|; one state is
smaller than another, |o;| < |o;|, if each element of |o;| is less than or equal to
the corresponding element of |o;|.

Definition 3 (Abstract Register Machines and Executions). An abstract
register machine A is a tuple (Z,X,T,P) where I is a set of abstract instruc-
tions, X is a set of states of the same size, T : P(Z) — X — X is a transition
function from instructions and states to states, and @ : List(P(Z)) — N is a
fuel function from sequences of instructions to natural numbers. Given a state
oo € X and a sequence of instructions p drawn from P(Z), we define the execu-
tion of A on p and og to be the result of applying T to p at most ¢(p) times.
That is, A(p,oq) = run(p, oo, T,P(p)), where

run(p, 0. T, k) = {a, if =0 or pe(0) ¢ [0,Ip))
run(p, T (plpc(o)],0), T,k — 1), otherwise.

Synthesizing JIT compilers for ARMs. Given a source and target ARM, our

goal is to synthesize a one-pass JIT compiler that translates source programs

to semantically equivalent target programs. To make synthesis tractable, we fix

the structure of the JIT to consist of an outer loop and a switch statement

that dispatches compilation tasks to a set of mini compilers (Definition 4]). Our
synthesis problem is therefore to find a sound mini compiler for each abstract

instruction in the source machine (Definition 5)).

Definition 4 (Mini Compiler). Let As = (Zg, X5, Ts, Ps) and Ar = (Zr, Xr,
Tr,Pr) be two abstract register machines, = an equivalence relation on their
states X and Xy, and C : P(1) — List(P(Zr)) a function for some . € Tg. We
say that C is a sound mini compiler for ¢ with respect to = iff

Vos € Xg, op € X¥p, pe P(1). og =2 op = As(p,05) = Ar(C(p),or)

Definition 5 (Mini Compiler Synthesis). Given two abstract register ma-
chines As = (Zs, Xs,Ts,Ps) and Ap = (Zp, X, Tr, Pr), as well as an equiv-

alence relation = on their states, the mini compiler synthesis problem is to
generate a sound mini compiler C, for each v € Tg with respect to =.

The general version of our synthesis problem, defined above, uses an arbitrary
equivalence relation 2 between the states of the source and target machines to
determine if a source and target program are semantically equivalent. JITSYNTH
can, in principle, solve this problem with the naive metasketch described in
In practice, however, the naive metasketch scales poorly, even on small
languages such as toy eBPF and RISC-V. So, in this paper, we focus on source



and target ARMs that satisfy an additional assumption on their state equiva-
lence relation: it can be expressed in terms of injective mappings from source to
target states (Definition 6f). This restriction enables JITSYNTH to employ opti-

mizations (such as pre-load sketches described in|Section 4.4) that are crucial to
scaling synthesis to real in-kernel languages.

Definition 6 (Injective State Equivalence Relation). Let Ag and Ar be
abstract register machines with states YXs and Xp such that |og| < |op| for
all og € Yg and op € Xp. Let M be a state mapping (Mpe, Myeg, Mimem)
from Ys and X, where M. multiplies the program counter of the states in
Ys by a constant factor, M., is an injective map from register names in Xg
to those in X, and Mem 15 an injective map from memory addresses in Xg
to those in Xp. We say that two states og € Xg and o € X are equivalent
according to M, written og = or, iff Mpe(pc(os)) = pe(or), reg(os)r] =
reg(o7)[Myeg(1)] for all register names r € dom(reg(cs)), and mem(og)lal =
mem(or)[Mumem (a)] for all memory addresses a € dom(mem(og)). The binary
relation = is called an injective state equivalence relation on Ag and Ar.

Soundness of JIT compilers for ARMs. Finally, we note that a JIT compiler
composed from the synthesized mini compilers correctly translates every source
program to an equivalent target program. We formulate and prove this theorem
using the Lean theorem prover [22].

Theorem 1 (Soundness of JIT compilers). Let As = (Zs, Xg,Ts, Ps) and

Ar = (Zr, Xr, Tr,Pr) be abstract register machines, = an injective state
equivalence relation on their states such that M,.(pc(os)) = Npepc(os), and
{C1,...,Cz4} a solution to the mini compiler synthesis problem for As, Ar,

and =pq where Vs € P(1). |Ci(s)] = Npe. Let C : P(Zg) — List(P(Ir)) be a
function that maps concrete instructions s € P(1) to the compiler output C,(s)
foriv € Ig. If s = s1,...,5, 18 a sequence of concrete instructions drawn from
Zs, and t = C(s1) - ... C(sp) where - stands for sequence concatenation, then
Vog € Xg,00 € Xp. 05 Zp 07 = Ag(s,05) Zp Ar(t,or).

4 Solving the Mini Compiler Synthesis Problem

This section presents our approach to solving the mini compiler synthesis prob-
lem defined in We employ syntax-guided synthesis [34] to search for
an implementation of a mini compiler in a space of candidate programs. Our
core contribution is an effective way to structure this space using a compiler
metasketch. This section presents our algorithm for generating compiler metas-
ketches, describes its key subroutines and optimizations, and shows how to solve
the resulting sketches with an off-the-shelf synthesis engine.

4.1 Generating Compiler Metasketches

JITSYNTH synthesizes mini compilers by generating and solving metasketches [4].
A metasketch describes a space of candidate programs using an ordered set of
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syntactic templates or sketches [34]. These sketches take the form of programs
with missing expressions or holes, where each hole describes a finite set of can-
didate completions. JITSYNTH sketches are expressed in a host language H that
serves both as the implementation language for mini compilers and the specifica-
tion language for ARMs. JITSYNTH expects the host to provide a synthesizer for
completing sketches and a symbolic evaluator for reducing ARM semantics to
SMT constraints. JITSYNTH uses these tools to generate optimized metasketches
for mini compilers, which we call compiler metasketches.

shows our algorithm for generating compiler metasketches. The
algorithm, CMS, takes as input an abstract source instruction ¢ for a source
machine Ag, a target machine Ar, and a state mapping M from Ag to Ar.
Given these inputs, it lazily enumerates an infinite set of compiler sketches that
collectively represent the space of all straight-line bitvector programs from P(¢)
to List(P(Zr)). In particular, each compiler sketch consists of k target instruc-
tion holes, constructed from field holes that denote bitvector expressions (over
the fields of ¢) of depth d or less. For each length k and depth d, the CMS loop
generates three kinds of compiler sketches: the pre-load, the read-write, and the
naive sketch. The naive sketch is the most general, consisting of all
candidate mini compilers of length & and depth d. But it also scales poorly, so
CMS first yields the pre-load and read-write (Section 4.3)) sketches.
As we will see later, these sketches describe a subset of the programs in the naive
sketch, and they are designed to prioritize exploring small parts of the search
space that are likely to contain a correct mini compiler for ¢, if one exists.

1: function CMS(:, As, Ar, M) b€ Zs, As = (Zs,...)
2 for n € Z* do > Lazily enumerates all compiler sketches
3 for k€ [1,n],d=n—k do > of length k£ and depth d,
4: yield PLD(k,d, ¢, As, Ar, M) > yielding the pre-load sketch first,
5: yield RW(k,d, ¢, As, Ar, M) > read-write sketch next, and
6 yield Nawve(k,d,t, As, Ar, M) > the most general sketch last.

Fig. 3. Compiler metasketch for the abstract source instruction ¢, source machine Ag,
target machine Ar, and state mapping M from Ags to Ar.

4.2 Generating Naive Sketches

The most general sketch we consider, NAIVE(k,d, ¢, Ag, Ar, M), is shown in
This sketch consists of k instruction holes that can be filled with any
instruction from Zr. An instruction hole chooses between expressions of the form
(opp, H), where opr is a target opcode, and H specifies the field holes for that
opcode. Each field hole is a bitvector expression (of depth d) over the fields of
the input source instruction and arbitrary bitvector constants. This lets target
instructions use the immediates and registers (modulo M) of the source instruc-
tion, as well as arbitrary constant values and register names. Letting field holes

11



include constant register names allows the synthesized mini compilers to use
target registers unmapped by M as temporary, or scratch, storage. In essence,
the naive sketch describes all straight-line compiler programs that can make free
use of standard C arithmetic and bitwise operators, as well as scratch registers.

The space of such programs is intractably large, however, even for small in-
puts. For instance, it includes at least 23%° programs of length k = 5 and depth
d < 3 for the toy example from [Section 2] JITSYNTH therefore employs two effec-
tive heuristics to direct the exploration of this space toward the most promising
candidates first, as defined by the read-write and pre-load sketches.

1: function NAIvE(k,d, ¢, As, Ar, M) >t €Zs, As = (Zs,...)
2: (op, F) <, (I7,...) + Ar > Source instruction, target instructions.
3: p  Freshld() > Identifier for the compiler’s input.
4: body + || > The body of the compiler is a sequence
5: for 0<i< kdo > of k target instruction holes.
6: I+ {} > The set I of choices for a target instruction hole
7: for (opy, Fr) € Ir do > includes all instructions from Zr.
8: E < {Ezpr(p.f, M) | f € dom(F)} > Any source field can appear in
9: H + {f > Field(Fr(f),d,E)| f € dom(Fr)} > a target field hole, and
10: I+ IU{Ezpr((opy,H), M)} > any constant register or value.
11: body + body - [Choose(I)] > Append a hole over I to the body.
12: return Ezpr((Ap € P(¢). body), M) > A mini compiler sketch for .

Fig. 4. Naive sketch of length k and maximum depth d for ¢, As, Ar, and M. Here,
Ezpr creates an expression in the host language, using M to map from source to target
register names and memory addresses; Choose(E) is a hole that chooses an expression
from the set E; and Field(7,d, E) is a hole for a bitvector expression of type 7 and
maximum depth d, constructed from arbitrary bitvector constants and expressions F.

4.3 Generating Read-Write Sketches

The read-write sketch, RW(k, d, ¢, As, Ar, M), is based on the observation that
many practical source and target languages provide similar functionality, so a
source instruction ¢ can often be emulated with target instructions that access
the same parts of the state as ¢. For example, the addi 32 instruction from eBPF
reads and writes only registers (not, e.g., memory), and it can be emulated with
RISC-V instructions that also touch only registers . Moreover, note
that the semantics of addi32 ignores the values of its src and off fields, and
that the target RISC-V instructions do the same. Based on these observations,
our optimized sketch for addi32 would therefore consists of instruction holes
that allow only register-register instructions, with field holes that exclude src
and off . We first formalize this intuition with the notion of read and write sets,
and then describe how JITSYNTH applies such sets to create RW sketches.
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Read and write sets. Read and write sets provide a compact way to summarize
the semantics of an abstract instruction ¢. This summary consists of a set of
state labels, where a state label is one of Lyeg, Lmem, and L,. (Definition 7).
Each label in a summary set represents a state component (registers, memory,
or the program counter) that a concrete instance of + may read or write during
some execution. We compute three such sets of labels for every ¢: the read set
Read (1), the write set Write(t), and the write set Write(s, f) for each field f of
t. [Figure 5| shows these sets for the toy eBPF and RISC-V instructions.

L Read(t) Write(v) Write(e, field)

addi32 {Lreg} {Lregt tmm: {Lreg}; off: 0; sre: O; dst: {Lyeg}
lui {Lreg} {Lreg} 7d: {Lreg}; tmm20: {Lyeg}
sb {Lreg} {Lmem} 781: {Lmem}; 782: {Lmem}; tmm12: {Lmem}

Fig. 5. Read and write sets for the addi32, lui, and sb instructions from [Figure 1}

The read set Read(t) specifies which components of the input state may
affect the execution of ¢ . For example, if Read(:) includes Ly.g,
then some concrete instance of ¢ produces different output states when executed
on two input states that differ only in register values. The write set Write(r)
specifies which components of the output state may be affected by executing
L . In particular, if Write(:) includes Lye; (Or Lyem ), then exe-
cuting some concrete instance of ¢ on an input state produces an output state
with different register (or memory) values. The inclusion of L, is based on a
separate condition, designed to distinguish jump instructions from fall-through
instructions. Both kinds of instructions change the program counter, but fall-
through instructions always change it in the same way. So, L,. € Write(¢) if two
instances of ¢ can write different values to the program counter. Finally, the field
write set, Write(e, f), specifies the parts of the output state are affected by the
value of the field f; L, € Write(t, f) means that two instances of ¢ that differ
only in f can produce different outputs when applied to the same input state.

JITSYNTH computes all read and write sets from their definitions, by using
the host symbolic evaluator to reduce the reasoning about instruction semantics
to SMT queries. This reduction is possible because we assume that all ARM
interpreters are self-finitizing, as discussed in

Definition 7 (State Labels). A state label is an identifier L, where n is a
state component, i.e., n € {reg, mem,pc}t. We write N for the set of all state
components, and L for the set of all state labels. We also use state labels to
access the corresponding state components: L, (c) =n(o) for alln € N.

Definition 8 (Read Set). Let v € Z be an abstract instruction in (Z,X,T,P).
The read set of v, Read(r), is the set of all state labels L, € L such that Ip €
P(1). 3Ly, € Write(r). 3oa,00 € X.(Ln(0a) # Lu(os) A (Npen fny Lm(0a) =
Lin(00)) A Lu(T (p,0a)) # Luw(T (P, 0b))-
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Definition 9 (Write Set). Let ¢ € T be an abstract instruction in (Z,X, T, D).
The write set of ¢, Write(t), includes the state label L, € {Lyeg, Lyem} iff
dp € P(). 3o € X.L,(0) # Lo(T (p,0)), and it includes the state label L, iff
Ipa,pp € P(1). 30 € X Lppe(T (Pa,0)) # Lpe(T (pp,0)).-

Definition 10 (Field Write Set). Let f be a field of an abstract instruc-
tion v = (op, F) in (Z,X,T,P). The write set of v and f, Write(s, f), in-
cludes the state label L, € L iff Ipa,pp € P().30 € X. (pa-f # po-f) A
(Agedom(@nif} Pa-9 = Pb-9) A Ln(T(pa,0)) # Lu(T (py,0)), where p.f denotes
F(f) for p=(op, F).

Using read and write sets. Given the read and write sets for a source instruction
¢ and target instructions Zp, JITSYNTH generates the RW sketch of length k&
and depth d by modifying the NAIVE algorithm as follows. First, it
restricts each target instruction hole (line [7]) to choose an instruction tp € Zp
with the same read and write sets as ¢, i.e., Read(t) = Read(vr) and Write(t) =
Write(ur). Second, it restricts the target field holes (line [9) to use the source
fields with the matching field write set, i.e., the hole for a target field fr uses
the source field f when Write(cr, fi) = Write(t, f). For example, given the sets
from the RW instruction holes for addi32 exclude sb but include
lui, and the field holes for 1ui use only the dst and imm source fields. More
generally, the RW sketch for addi32 consists of register-register instructions
over dst and imm, as intended. This sketch includes 22°° programs of length
k =5 and depth d < 3, resulting in a 20 fold reduction in the size of the search
space compared to the NAIVE sketch of the same length and depth.

4.4 Generating Pre-Load Sketches

The pre-load sketch, PLD(k,d, ¢, As, Ar, M), is based on the observation that
hand-written JITs use macros or subroutines to generate frequently used target
instruction sequences. For example, compiling a source instruction with immedi-
ate fields often involves loading the immediates into scratch registers, and hand-
written JITs include a subroutine that generates the target instructions for per-
forming these loads. The pre-load sketch shown in mimics this structure.

In particular, PLD generates a sequence of m concrete instructions that
load the (used) immediate fields of ¢, followed by a sequence of k — m instruc-
tion holes. The instruction holes can refer to both the source registers (if any)
and the scratch registers (via the arbitrary bitvector constants included in the
Field holes). The function Load(Ezpr(p.f), Ar, M) returns a sequence of target
instructions that load the immediate p.f into an unused scratch register. This
function itself is synthesized by JITSYNTH using a variant of the RW sketch.

As an example, the pre-load sketch for addi32 consists of two Load instruc-
tions (1ui and addiw in the generated C code) and k — 2 instruction holes. The
holes choose among register-register instructions in toy RISC-V, and they can
refer to the dst register of addi32, as well as any scratch register. The resulting
sketch includes 2'%° programs of length k = 5 and depth d < 3, providing a 29°
fold reduction in the size of the search space compared to the RW sketch.
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1: function PLD(k,d,t, As, Ar, M) >v€Zs, As = (Zs,...)
2: (op, F) <, (Ir,...) + Ar > Source instruction, target instructions.
3 p  Freshld() > Identifier for the compiler’s input source instruction.
4: body « [| > The body of the compiler is a sequence with 2 parts:
5: mmm < {f | F(f) = BV (k) and Write(, f) # 0} > (1) Load each relevant
6: for f € imm do > source immediate into a free scratch register
7 body < body - Load(Expr(p.f), Ar, M) > using the load pseudoinstruction.
8: m < |body| > Let m be the length of the load sequence.
9: if m > k or m =0 then return 1. > Return the empty sketch if m & (0..k).
10: for m <i<kdo © (2) Create k —m target instruction holes, where the set
11: I+ {} > I of choices for a target instruction hole includes
12: for vr € Zr,vr = (opp, Fr) do > all instructions from Zp that read-write
13: rwy < Read(ur) X Write(ur) > the same state as ¢ or just registers.
14: if rwr = Read(t) x Write(t) or Twp C {Lpeg} X {Lreg} then
15: regs <— {f | F(f) = Reg and Write(, f) # 0} > Any relevant
16: E « {Ezpr(p.f, M) | f € regs} > source register can appear in
17: H + {fw— Field(Fr(f),d,E)| f € dom(Fr)} > a target field hole,
18: I <+ TU{Expr((opp,H), M)} > and any constant register or value.
19: body < body - [Choose(I)] > Append a hole over I to the body.
20: return Ezpr((Ap € P(4) . body), M) > A mini compiler sketch for .

Fig. 6. Pre-load sketch of length & and maximum depth d for ¢, As, Ar, and M.
The Load(E, A7, M) function returns a sequence of target instructions that load the
immediate value described by the expression F into an unused scratch register; see

for descriptions of other helper functions.

4.5 Solving Compiler Metasketches

JITSYNTH solves the metasketch CMS(s, Ag, A1, M) by applying the host syn-
thesizer to each of the generated sketches in turn until a mini compiler is found.
If no mini compiler exists in the search space, this synthesis process runs forever.
To check if a sketch S contains a mini compiler, JITSYNTH would ideally ask the
host synthesizer to solve the following query, derived from Definitions

IC € 8. Vog € Xg, or € X, p € P(1).0s 2pm o7 = As(p,0s) Zam Ar(C(p),or)

But recall that the state equivalence check =, involves universally quantified
formulas over memory addresses and register names. In principle, these inner-
most quantifiers are not problematic because they range over finite domains
(bitvectors) so the formula remains decidable. In practice, however, they lead to
intractable SMT queries. We therefore solve a stronger soundness query
that pulls these quantifiers out to obtain the standard 3V formula with
a quantifier-free body. The resulting formula can be solved with CEGIS [34],
without requiring the underlying SMT solver to reason about quantifiers.

Definition 11 (Strongly Sound Mini Compiler). Let Ag = (Zs, Xs, Ts, Ps)
and Ar = (Zr, X1, Tr,Pr) be two abstract register machines, =y an injec-
tive state equivalence relation on their states Xg and Xr, and C : P(1) —
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List(P(Zr)) a function for some v € Ig. We say that C is a strongly sound
mini compiler for taq with respect to = iff

VYog € Xg, or € X, p € P(1), a € dom(mem(og)), r € dom(reg(cs)).
0s EpMar 07 = As(p,05) Emar Ar(C(p),01)

where =g 4, stands for the =, formula with a and v as free variables.

The JITSYNTH synthesis procedure is sound and complete with respect to this
stronger query (Theorem 2)). The proof follows from the soundness and complete-
ness of the host synthesizer, and the construction of the compiler metasketch.
We discharge this proof using Lean theorem prover [22].

Theorem 2 (Strong soundness and completeness of JITSYNTH). Let C =
CMS(¢, As, Ar, M) be the compiler metasketch for the abstract instruction ¢,
machines As and Ar, and the state mapping M. If JITSYNTH terminates and
returns a program C when applied to C, then C is a strongly sound mini compiler
for v and Ar (soundness). If there is a strongly sound mini compiler in the most
general search space {NAIVE(k,d,t, Ag, Ar, M) | k,d € N}, then JITSYNTH will
terminate on C and produce a program (completeness).

5 Implementation

We implemented JITSYNTH as described in using Rosette [36] as our
host language. Since the search spaces for different compiler lengths are dis-
joint, the JITSYNTH implementation searches these spaces in parallel [4]. We use
@(p) = length(p) as the fuel function for all languages studied in this paper.
This provides sufficient fuel for evaluating programs in these languages that are
accepted by the OS kernel. For example, the Linux kernel requires eBPF pro-
grams to be loop-free, and it enforces this restriction with a conservative static
check; programs that fail the check are not passed to the JIT [10].

6 Evaluation

This section evaluates JITSYNTH by answering the following research questions:

RQ1: Can JITSYNTH synthesize correct and performant compilers for real-world
source and target languages?
RQ2: How effective are the sketch optimizations described in

6.1 Synthesizing compilers for real-world source-target pairs

To demonstrate the effectiveness of JITSYNTH, we applied JITSYNTH to synthe-
size compilers for three different source-target pairs: eBPF to 64-bit RISC-V,
classic BPF to eBPF, and libseccomp to eBPF. This subsection describes our
results for each of the synthesized compilers.
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Fig. 7. Execution time of eBPF benchmarks on the HiFive Unleashed RISC-V de-
velopment board, using the existing Linux eBPF to RISC-V compiler, the JITSYNTH
compiler, and the Linux eBPF interpreter. Measured in processor cycles.

eBPF to RISC-V. As a case study, we applied JITSYNTH to synthesize a com-
piler from eBPF to 64-bit RISC-V. It supports 87 of the 102 eBPF instruction
opcodes; unsupported eBPF instructions include function calls, endianness op-
erations, and atomic instructions. To validate that the synthesized compiler is
correct, we ran the existing eBPF test cases from the Linux kernel; our compiler
passes all test cases it supports. In addition, our compiler avoids bugs previously
found in the existing Linux eBPF-to-RISC-V compiler in Linux [24]. To evalu-
ate performance, we compared against the existing Linux compiler. We used the
same set of benchmarks used by Jitk [37], which includes system call filters from
widely used applications. Because these benchmarks were originally for classic
BPF, we first compile them to eBPF using the existing Linux classic-BPF-to-
eBPF compiler as a preprocessing step. To run the benchmarks, we execute the
generated code on the HiFive Unleashed RISC-V development board [32], mea-
suring the number of cycles. As input to the filter, we use a system call number
that is allowed by the filter to represent the common case execution.

shows the results of the performance evaluation. eBPF programs
compiled by JITSYNTH JIT compilers show an average slowdown of 1.82x com-
pared to programs compiled by the existing Linux compiler. This overhead re-
sults from additional complexity in the compiled eBPF jump instructions. Linux
compilers avoid this complexity by leveraging bounds on the size of eBPF jump
offsets. JITSYNTH-compiled programs get an average speedup of 5.24x com-
pared to interpreting the eBPF programs. This evidence shows that JITSYNTH
can synthesize a compiler that outperforms the current Linux eBPF interpreter,
and nears the performance of the Linux compiler, while avoiding bugs.

Classic BPF to eBPF. Classic BPF is the original, simpler version of BPF used
for packet filtering which was later extended to eBPF in Linux. Since many ap-
plications still use classic BPF, Linux must first compile classic BPF to eBPF as
an intermediary step before compiling to machine instructions. As a second case
study, we used JITSYNTH to synthesize a compiler from classic BPF to eBPF.
Our synthesized compiler supports all classic BPF opcodes. To evaluate perfor-
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Fig. 8. Performance of code generated by JITSYNTH compilers compared to existing
compilers for the classic BPF to eBPF benchmarks (left) and the libseccomp to eBPF
benchmarks (right). Measured in number of instructions executed.

mance, we compare against the existing Linux classic-BPF-to-eBPF compiler.
Similar to the RISC-V benchmarks, we run each eBPF program with input that
is allowed by the filter. Because eBPF does not run directly on hardware, we
measure the number of instructions executed instead of processor cycles.

shows the performance results. Classic BPF programs generated by
JITSYNTH compilers execute an average of 2.28 x more instructions than those
compiled by Linux.

libseccomp to eBPF. libseccomp is a library used to simplify construction of
BPF system call filters. The existing libseccomp implementation compiles to
classic BPF; we instead choose to compile to eBPF because classic BPF has
only two registers, which does not satisfy the assumptions of JITSYNTH. Since
libseccomp is a library and does not have distinct instructions, libseccomp itself
does not meet the definition of an abstract register machine; we instead introduce
an intermediate libseccomp language which does satisfy this definition. Our full
libseccomp to eBPF compiler is composed of both a trusted program to translate
from libseccomp to our intermediate language and a synthesized compiler from
our intermediate language to eBPF.

To evaluate performance, we select a set of benchmark filters from real-world
applications that use libseccomp, and measure the number of eBPF instructions
executed for an input the filter allows. Because no existing compiler exists from
libseccomp to eBPF directly, we compare against the composition of the existing
libseccomp-to-classic-BPF and classic-BPF-to-eBPF compilers.

shows the performance results. libseccomp programs generated by
JITSYNTH execute 2.61 x more instructions on average compared to the existing
libseccomp-to-eBPF compiler stack. However, the synthesized compiler avoids
bugs previously found in the libseccomp-to-classic-BPF compiler [13].

6.2 Effectiveness of sketch optimizations

In order to evaluate the effectiveness of the search optimizations described in
| we measured the time JITSYNTH takes to synthesize each of the three
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Compiler ‘NAIVE sketch| RW sketch|PLD sketch

eBPF to RISC-V X X 44.4h
classic BPF to eBPF X X 1.2h
libseccomp to eBPF 4.0h 43.5m 7.1m

Fig. 9. Synthesis time for each source-target pair, broken down by set of optimizations
used in the sketch. An X indicates that synthesis either timed out or ran out of memory.

compilers with different optimizations enabled. Specifically, we run JITSYNTH in
three different configurations: (1) using NAIVE sketches, (2) using RW sketches,
and (3) using PLD sketches. For each configuration, we ran JITSYNTH with
a timeout of 48 hours (or until out of memory). [Figure 9| shows the time to
synthesize each compiler under each configuration. Note that these figures do
not include time spent computing read and write sets, which takes less than 11
minutes for all cases. Our results were collected using an 8-core AMD Ryzen
7 1700 CPU with 16 GB memory, running Racket v7.4 and the Boolector [20]
solver v3.0.1-pre.

When synthesizing the eBPF-to-RISC-V compiler, JITSYNTH runs out of
memory with NAIVE sketches, reaches the timeout with RW sketches, and com-
pletes synthesis with PLLD sketches. For the classic-BPF-to-eBPF compiler, JiT-
SYNTH times out with both NAIVE sketches and RW sketches. JITSYNTH only
finishes synthesis with PLD sketches. For the libseccomp-to-eBPF compiler, all
configurations finish, but JITSYNTH finishes synthesis about 34x times faster
with PLD sketches than with NAIVE sketches. These results demonstrate that
the techniques JITSYNTH uses are essential to the scalability of JIT synthesis.

7 Related Work

JIT compilers for in-kernel languages. JIT compilers have been widely used
to improve the extensibility and performance of systems software, such as OS
kernels [5I8/9123]. One notable system is Jitk [37]. It builds on the CompCert
compiler [I7] to compile classic BPF programs to machine instructions. Both
Jitk and CompCert are formally verified for correctness using the Coq interac-
tive theorem prover. Jitk is further extended to support eBPF [33]. Like Jitk,
JITSYNTH provides formal correctness guarantees of JIT compilers. Unlike Jitk,
JITSYNTH does not require developers to write either the implementation or
proof of a JIT compiler. Instead, it takes as input interpreters of both source
and target languages and state-mapping functions, using automated verification
and synthesis to produce a JIT compiler.

An in-kernel extension system such as eBPF also contains a verifier, which
checks for safety and termination of input programs [I0J37]. JITSYNTH assumes a
well-formed input program that passes the verifier and focuses on the correctness
of JIT compilation.
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Synthesis-aided compilers. There is a rich literature that explores generating
and synthesizing peephole optimizers and superoptimizers based on a given
ISA or language specification [IGTTT420030J31]. Bansal and Aiken described a
PowerPC-to0-x86 binary translator using peephole superoptimization [2]. Chloro-
phyll [28] applied synthesis to a number of compilation tasks for the GreenAr-
rays GA144 architecture, including code partitioning, layout, and generation.
JITSYNTH bears the similarity of translation between a source-target pair of
languages and shares the challenge of scaling up synthesis. Unlike existing work,
JITSYNTH synthesizes a compiler written in a host language, and uses compiler
metasketches for efficient synthesis.

Compiler testing. Compilers are complex pieces of software and are known
to be difficult to get right [I9]. Recent advances in compiler testing, such as
Csmith [38] and EMI [39], have found hundreds of bugs in GCC and LLVM
compilers. Alive [I6J18] and Serval [25] use automated verification techniques to
uncover bugs in the LLVM’s peephole optimizer and the Linux kernel’s eBPF
JIT compilers, respectively. JITSYNTH complements these tools by providing a
correctness-by-construction approach for writing JIT compilers.

8 Conclusion

This paper presents a new technique for synthesizing JIT compilers for in-kernel
DSLs. The technique creates per-instruction compilers, or compilers that inde-
pendently translate single source instructions to sequences of target instructions.
In order to synthesize each per-instruction compiler, we frame the problem as
search using compiler metasketches, which are optimized using both read and
write set information as well as pre-synthesized load operations. We implement
these techniques in JITSYNTH and evaluate JITSYNTH over three source and
target pairs from the Linux kernel. Our evaluation shows that (1) JITSYNTH
can synthesize correct and performant compilers for real in-kernel languages,
and (2) the optimizations discussed in this paper make the synthesis of these
compilers tractable to JITSYNTH. As future in-kernel DSLs are created, J1T-
SYNTH can reduce both the programming and proof burden on developers writ-
ing compilers for those DSLs. The JITSYNTH source code is publicly available
at https://github.com/uw—unsat/jitsynth.
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