

Characteristic Polynomial

- Cook-book recipe for solving linear homogenous recurrence relations with constant coefficients
- Definition: The characteristic equation of a recurrence relation of the form $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots c_{k} a_{n-k}$ is

$$
r^{k}=c_{1} r^{k-1}+c_{2} r^{k-2}+\ldots+c_{k}
$$

- i.e., Replace a_{n-i} with $r^{n-i-(n-k)}$

Characteristic Roots

- The characteristic roots of a linear homogeneous recurrence relation are the roots of its characteristic equation.
- What are the characteristic roots of the following recurrence relations?
- $a_{n}=2 a_{n-1}+3 a_{n-2}$
- $f_{n}=f_{n-1}+f_{n-2}$
Instructor: sal Dilif. \quad CS311H: Discrete Mathematics Recurence Reations $9 / 24$

Example

Find a closed form solution for the recurrence $a_{n}=a_{n-1}+2 a_{n-2}$ with initial conditions $a_{0}=2$ and $a_{1}=7$

- Characteristic equation:
- Characteristic roots:
- Coefficients:
- Closed-form solution:

Characteristic Equation Examples

- What are the characteristic equations for the following recurrence relations?
- $f_{n}=f_{n-1}+f_{n-2}$
- $a_{n}=2 a_{n-1}$
- $a_{n}=2 a_{n-1}+5 a_{n-3}$

Theorem I for Solving Linear Homogenous Recurrence Relations

Let $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}$ be a recurrence relation with k distinct characteristic roots r_{1}, \ldots, r_{k}.

- Then the closed form solution for a_{n} is of the form:

$$
\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}+\ldots+\alpha_{k} r_{k}^{n}
$$

- Furthermore, given k initial conditions, the constants $\alpha_{1}, \ldots, \alpha_{k}$ are uniquely determined
- Note: Won't do the proof because requires a good amount of linear algebra

CS311H: Discrete Mathematics Recurrence Realitions

Generalized Theorem

- So far, we assume all characteristic roots are distinct - what happens if this is not the case?
- Theorem: Let $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}$ be a recurrence relation with t distinct characteristic roots r_{1}, \ldots, r_{k} with multiplicities m_{1}, \ldots, m_{k}. Then solutions are of the form:

$$
a_{n}=\sum_{i=0}^{t}\left(\alpha_{i, 0}+\alpha_{i, 1} \cdot n+\ldots+\alpha_{i, m_{i-1}} \cdot n^{m_{i}-1}\right) r_{i}^{n}
$$

An Example

- Find closed form of recurrence $a_{n}=3 a_{n-1}-3 a_{n-2}+a_{n-3}$ with initial conditions $a_{0}=1, a_{1}=3, a_{2}=7$
- Characteristic equation:
- Characteristic roots:
- Solution form:
- Coefficients:

Solving Linear Non-Homogeneous Recurrence Relations

- How do we solve linear, but non-homogeneous recurrence relations, such as $a_{n}=2 a_{n-1}+1$?
- A linear non-homogeneous recurrence relation with constant coefficients is of the form:

$$
a_{n}=c_{1} a_{n-1}+a_{2} a_{n-2}+\ldots+c_{k} a_{n-k}+F(n)
$$

- The recurrence obtained by dropping $F(n)$ is called the associated homogeneous recurrence relation

Theorem about Linear Non-homogeneous Recurrences

Suppose $a_{n}=c_{1} a_{n-1}+\ldots+c_{k} a_{n-k}+F(n)$ has particular solution a_{n}^{p}, and a_{n}^{h} is solution for associated homogeneous recurrence. Then every solution is of the form $a_{n}^{p}+a_{n}^{h}$.

Bitstring Example

- Recurrence relations useful for solving counting problems how many bitstrings of length n without two consecutive 0's?
- Let a_{n} denote the number of bitstrings that do not contain two consecutive 0 's.
- Write a recurrence relation for a_{n} :
- Initial conditions:
- Question: Find closed form solution for a_{n}
- Characteristic roots:

Instructor: IIII Dilig. CS311H: Discrete Mathematics Recurrence Reations

Particular Solution

- A particular solution for a recurrence relation is one that satisfies the recurrence but not necessarily the initial conditions
- Example: Consider the recurrence $a_{n}=a_{n-1}+1$ with initial condition $a_{0}=5$
- A particular solution for this recurrence is $a_{n}=n$, but it does not satisfy the initial condition

Why is this theorem useful?

- If we can find a particular solution, then we can also mechanically find a solution that satisfies initial conditions.
- Example: Solve the recurrence relation $a_{n}=3 a_{n-1}+2 n$ with initial condition $a_{1}=3$
- A particular solution: $-n-\frac{3}{2}$ (Why?)
- Solutions for homogeneous recurrence:
- Solutions for recurrence:
- Solve for α :

How do we find a particular solution?
Theorem: Consider $a_{n}=c_{1} a_{n-1}+\ldots+c_{k} a_{n-k}+F(n)$ where:

$$
F(n)=\left(b_{t} n^{t}+b_{t-1} n^{t-1}+\ldots+b_{1} n+b_{0}\right) s^{n}
$$

- Case 1: If s is not a root of the associated characteristic equation, then there exists a particular solution of the form:

$$
\left(p_{t} n^{t}+p_{t-1} n^{t-1}+\ldots+p_{1} n+p_{0}\right) s^{n}
$$

- Case 2: If s is a root with multiplicity m of the characteristic equation, then there exists a solution of the form:

$$
n^{m}\left(p_{t} n^{t}+p_{t-1} n^{t-1}+\ldots+p_{1} n+p_{0}\right) s^{n}
$$

Instuctor: |ss| Dilifg

CS311H: Discrete Mathematics Recurrence Reations

Example II

- Find a particular solution for $a_{n}=6 a_{n-1}-9 a_{n-2}+2^{n}$
- Characteristic root:
- Particular solution of the form:
- Find p_{0} such that $p_{0} \cdot 2^{n}=6\left(p_{0} \cdot 2^{n-1}\right)-9\left(p_{0} \cdot 2^{n-2}\right)+2^{n}$
- Solve for p_{0} :
- Particular solution:

A Recursive Solution

- Solve recursively $-T_{n}$ is number of steps to move n disks
- Base case: $n=1$, move disk from first peg to second: $T_{1}=1$
- Induction: Suppose we can move $n-1$ disks in T_{n-1} steps; how many steps does it take to move T_{n} disks?
- Idea: First move the topmost $n-1$ disks to peg 3; can be done in T_{n-1} steps
- Now, move bottom-most disk to peg 2 - takes just 1 step
- Finally, recursively move $n-1$ disks in peg 3 to peg 2 - can be done in T_{n-1} steps

Example I

- Consider again the recurrence $a_{n}=3 a_{n-1}+2 n$
- Here, $s=1$ and characteristic root is 3
- Hence, there exists a particular solution of the form $p_{1} n+p_{0}$
- Now, solve for p_{0}, p_{1} :

$$
p_{1} n+p_{0}=3\left(p_{1}(n-1)+p_{0}\right)+2 n
$$

- Rearrange: $2 n\left(p_{1}+1\right)+\left(2 p_{0}-3 p_{1}\right)=0$
- A solution $p_{1}=-1, p_{0}=-\frac{3}{2}$
- A particular solution: $-n-\frac{3}{2}$

Instructor: Isl| Dillig. CS311H: Discrete Mathematics Recurrence Reations

Towers of Hanoi

- Given 3 pegs where first peg contains n disks
- Goal: Move all the disks to a different peg (e.g., second one)
- Rule 1: Larger disks cannot rest on top of smaller disks
- Rule 2: Can only move the top-most disk at a time
- Question: How many steps does it take to move all n disks?

CS311H: Discrete Mathematics Recurrence Reations

Towers of Hanoi, cont.

- Recurrence relation:
- Initial condition:
- Now find closed form for T_{n}
-What is a particular solution?
- Solution for homogeneous recurrence:
- Solve for α :
- Solution for recurrence:

