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While visualizations play a crucial role in gaining insights from data, generating useful visualizations from a
complex dataset is far from an easy task. In particular, besides understanding the functionality provided by
existing visualization libraries, generating the desired visualization also requires reshaping and aggregating the
underlying data as well as composing different visual elements to achieve the intended visual narrative. This
paper aims to simplify visualization tasks by automatically synthesizing the required program from simple
visual sketches provided by the user. Specifically, given an input data set and a visual sketch that demonstrates
how to visualize a very small subset of this data, our technique automatically generates a program that can be
used to visualize the entire data set.

From a program synthesis perspective, automating visualization tasks poses several challenges that are not
addressed by prior techniques. First, because many visualization tasks require data wrangling in addition to
generating plots from a given table, we need to decompose the end-to-end synthesis task into two separate
sub-problems. Second, because the intermediate specification that results from the decomposition is necessarily
imprecise, this makes the data wrangling task particularly challenging in our context. In this paper, we address
these problems by developing a new compositional visualization-by-example technique that (a) decomposes
the end-to-end task into two different synthesis problems over different DSLs and (b) leverages bi-directional
program analysis to deal with the complexity that arises from having an imprecise intermediate specification.

We have implemented our visualization-by-example approach in a tool called Viser and evaluate it on
83 visualization tasks collected from on-line forums and tutorials. Viser can solve 84% of these benchmarks
within a 600 second time limit, and, for those tasks that can be solved, the desired visualization is among the
top-5 generated by Viser in 70% of the cases.
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1 INTRODUCTION
Visualizations play an important role in today’s data-centric world for discovering, validating,
and communicating insights from data. Due to the prevalence of non-trivial visualization tasks
across different application domains, recent years have seen a growing number of libraries that
aim to facilitate complex visualization tasks. For instance, there are at least a dozen different
visualization libraries for Python and R, and more than ten different visualization libraries for
JavaScript have emerged in the past year alone [Andre 2019]. In addition, there has also been a

Authors’ addresses: Chenglong Wang, University of Washington, USA, clwang@cs.washington.edu; Yu Feng, University of
California, Santa Barbara, USA, yufeng@cs.ucsb.edu; Rastislav Bodik, University of Washington, USA, bodik@cs.washington.
edu; Alvin Cheung, University of California, Berkeley, USA, akcheung@cs.berkeley.edu; Isil Dillig, University of Texas at
Austin, USA, isil@cs.utexas.edu.

2018. 2475-1421/2018/1-ART1 $15.00
https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/


1:2 Chenglong Wang, Yu Feng, Rastislav Bodik, Alvin Cheung, and Isil Dillig

flurry of research activity around building programming systems like D3 [Bostock et al. 2011] and
Vega-Lite [Satyanarayan et al. 2017] to further facilitate real-world visualization tasks.

Despite all these recent efforts, data visualization still remains a challenging task that requires
considerable expertise — in fact, so much so that some companies even have job titles like “data
visualization expert” or “data visualization specialist.” Generally speaking, there are three key
reasons that make data visualization a challenging task. First, beyond having a good insight about
how the data can be best visualized, one needs to have sufficient knowledge about how to use
the relevant visualization libraries. Second, different visualization primitives typically require the
data to be in different formats; so, in order to experiment with different types of visualizations,
one needs to constantly reshape the data into different formats. Finally, generating the intended
visualization typically requires modifications to the original dataset, including aggregating and
mutating values and adding new columns to the input tables, and doing so often require deep
knowledge in data manipulation.

In this paper, we propose a new technique, coined visualization-by-example, for automating data
visualization tasks using program synthesis. In our proposed approach, the user starts by providing
a so-called visual sketch, which is a partial visualization of the input data for just a few input
points. Given the original data set Tin and a visual sketch S provided by the user, our technique can
synthesize one or more visualization scripts whose output is consistent with S for the input data
set. These visualization scripts can then be applied to Tin to generate several visualizations of the
entire data set, and the user can choose the desired visualization among the ones that are generated.

Despite these appealing aspects of our approach to end-users, the data visualization problem
presents unique challenges from a program synthesis perspective. First, as hinted earlier, data
visualization tasks almost always involve two distinct steps, namely (1) data wrangling (reshaping,
aggregating, adding new columns etc.) and (2) invoking the appropriate visualization primitives on
the transformed data. Asking users to manually decompose the problem into these two individual
steps would defeat the point, as the user would have to at least understand which visualization prim-
itives to use and what format they require. Thus, it is imperative to have a compositional technique
that can automatically decompose the end-to-end task into two separate synthesis problems.

One of the key contributions of this paper is to show how to automatically decompose an
end-to-end visualization task into two separate synthesis problems over two different languages.
Specifically, given an input data source Tin and a visual sketch S, our goal is to learn a table
transformation program PT and a visual program PV such that executing PV ◦ PT on Tin yields a
visualization that is consistent with the provided visual sketch S. In order to solve this problem in a
compositional way, our method infers an intermediate specification ϕ that constrains the output
(resp. input) of the target program PT (resp. PV). This intermediate specification is in the form
of table inclusion constraints T ⊆⋄ t specifying that input t of the visual program must include all
tuples in T but it can also contain additional rows and columns. As we demonstrate experimentally,
having this intermediate specification is crucial for the scalability of our approach.

A second key contribution of this paper is a new algorithm for synthesizing table transformation
programs. While there has been recent work on automating table transformation tasks using
programming-by-example [Feng et al. 2017; Wang et al. 2017a], these techniques focus on the
case where the specification is a pair of input and output tables. In contrast, the intermediate
specification in our setting is a set of table inclusion constraints rather than a concrete output
table, and pruning strategies used in prior work are not effective in this setting due to lack of
precise information about the output table. To deal with this challenge, we introduce a new table
transformation synthesis algorithm that uses lightweight bidirectional program analysis to prune
the search space. As we demonstrate experimentally, this new table transformation algorithm results
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in much faster synthesis compared to prior work [Feng et al. 2017] for automating visualization
tasks.

We have implemented the proposed “visualization-by-example” approach in a new tool called
Viser and evaluated it on 83 visualization tasks collected from on-line forums and tutorials. Our
experiments show that Viser can solve 84% of these benchmarks and, among those benchmarks
that can be solved, the desired visualization is among the first 5 outputs generated by Viser in
70% of the cases. Furthermore, given that it takes on average of 11 seconds to generate the top-5
visualizations, we believe that Viser is fast enough to be beneficial to prospective users in practice.

To summarize, this paper makes the following key contributions:
• We introduce the visualization-by-example problem and present an algorithm for synthesizing

visualization scripts given the original data set and a small visual sketch.
• We show how to decompose the synthesis task into two sub-problems by inferring an

intermediate specification in the form of table inclusion constraints.
• We propose a new algorithm for synthesizing table transformations from table inclusion spec-

ifications. Our algorithm leverages lightweight bidirectional program analysis to effectively
prune the search space.
• We evaluate our approach on over 80 tasks collected from on-line forums and tutorials and

show that Viser can solve 84% of the benchmarks, and that the desired visualization is among
the top-5 results in 70% of the solved cases.

2 OVERVIEW
In this section, we give an overview of our approach with the aid of a simple motivating example
depicted in Figure 1. In this example, the user has two tables T1 and T2 that record the results
of a scientific experiment. Specifically, Table T1 stores an experiment identifier (ID), a so-called
"experiment condition" (Cond), and the experiment result, which consists of an A value as well as an
Aneg value. An additional table T2 stores the gender of the participant in the corresponding study:
That is, for each experiment (ID), the Gender column in T2 indicates whether the participant is male
(M) or female (F). The user wants to visualize the result of this experiment by drawing a scatter plot
that shows how the sum of A and Aneg changes with respect to Cond for each of the two genders. In
particular, the top right part of Figure 1 illustrates the desired visualization. In the remainder of
this section, we explain how our approach synthesizes the desired visualization script in R using
the tidyverse package collection, which includes both visualization primitives (e.g., provided by
ggplot2) and data wrangling capabilities (e.g., provided by tidyr and dplyr).

User input. In order to use our visualization tool, Viser, the user needs to provide the data
source (i.e., tables T1 and T2) as well as a visual sketch S, which is a partial visualization for a tiny
subset of the original data source. In this case, since the user wants to draw a scatter plot, the
visual sketch is very simple and consists of a few data points, as shown in the "Input" portion of
Figure 1. Specifically, the visual sketch contains two points, one at (1, 7) and the other at (2, 6),
and both points have label "M". In general, one can think of a visual sketch as a set of visualization
elements (e.g., point, bar, line, . . . ) where each visualization element has various attributes, such
as coordinates, color, etc. In particular, we can specify the visual sketch shown in Figure 1 as the
following set of visual elements:

{point(vx = 1,vy = 7,vcolor = M), point(vx = 2,vy = 6,vcolor = M)}

We refer to this alternative set-based representation of a visualization as a visual trace. In general, we
can represent both visual sketches as well as complete visualizations in terms of their corresponding

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.



1:4 Chenglong Wang, Yu Feng, Rastislav Bodik, Alvin Cheung, and Isil Dillig

ID Gender
A M
B M
C F
D F
… …

Input Tables (T1,T2):

Input

(2) Synthesize PT 
from Tin and Φ 

s.t. Φ(PT(Tin))=true

t1 = join(T1, T2, T1.ID=T2.ID) 
t2 = mutate(t1, c3 = A + A_neg) 
Tout = select(t2, [Cond,Gender,c3])

Table Program (PT):

Synthesizer

Output

…

ID Cond A Aneg
A 1 6 1
B 2 4 2
C 1 2 5
D 2 3 6
… … … …

Final Program: Visualization:

…

t1 = inner_join(T1,T2,“ID”,“EID”) 
t2 = mutate(t1,c3=A+A_neg) 
Tout = select(t2,Cond,Gender,c3) 
ggplot(Tout) + geom_point( 

aes(x=Cond,y=c3,color=Gender))

(3) Update column 
refs in PV and 
return PV ◦ PT

c1 c2 c3
1 7 M
2 6 M

Visual Program (Pv), Table Constraint (Φ) 

…

 ⫅ t

Visual Sketch (S):

(1) Induce (Pv, Φ) 
pairs from S

ggplot(T)  
+ geom_point( 

 aes(x=c1, 
     y=c2, 
     color=c3))

Fig. 1. Overview of our synthesis algorithm: the system takes as input an input table Tin and a visual sketch
S, and returns a list of candidate visualizations satisfying the inputs.
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ggplot(T)  
+ geom_point( 
    aes(x=c1, 

     y=c2, 
     color=“M”))

ggplot(T)  
+ geom_point( 

 aes(x=c1, 
     y=c2, 
     color=c3))

ggplot(T)  
+ geom_point( 

 aes(x=c1, 
     y=c2, 
     color=“M”)) 

+ facet_grid(.~c3)

 ⫅ t  ⫅ t  ⫅ t

Fig. 2. Sample visual programs and their corresponding intermediate specification for the visual sketch
from Figure 1. The bottom part of each figure shows the corresponding visualization if the visual program is
adopted; observe that all of these visualizations are consistent with the visual sketch.

visual trace; thus, we use the term "visual trace" interchangeably with both "visualization" and
"visual sketch".

Synthesis problem and approach. Given the input data source I and a visual sketch S, our synthesis
problem is to infer a visualization script P such that P(I) yields a visual trace that is a superset of S.
As mentioned in section 1, a visualization script consists of a pair of programs PV (“visual program”)
and PT (“table transformation program”), for plotting and data wrangling respectively. Since PV
and PT do conceptually different things and are expressed in separate languages, we decompose
the overall synthesis task into two sub-tasks, namely that of synthesizing a visual program PV and
separately synthesizing a table transformation program PT.

Synthesis of visual programs. To achieve the decomposition outlined above, our synthesis algo-
rithm first infers a set of visual programs that are capable of generating a visualization consistent
with S. This inference step is based purely on the visual sketch and does not consider the input
data (i.e., tables T1, T2). For our running example, there are multiple visual programs (expressible
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using ggplot2) that can generate the desired result; we show three of these programs in Figure 2.
All three programs start with the code “ggplot(T) + geom_point(...)”, which indicates that the
resulting visualization is a scatter plot drawn from table T . However, the three visual programs
differ in the following ways:
• All points generated by the first visual program have the same color (indicated as color="M")
• For the second visual program, the color of the points is determined by the corresponding

value of column c3 in table T (indicated as color=c3)
• The visualization generated by the last program contains multiple subplots determined by c3.

That is, the visualization is partitioned into a list of subplots according to different values in
column c3 of the input table.

As indicated in the bottom part of Figure 2, the visualizations generated by all three programs are
consistent with the visual sketch in that they contain the two data points specified by the user.

Intermediate specification inference. Next, given the visual sketch S and a candidate visual program
PV, our synthesis algorithm infers an intermediate specification ϕ that constrains the input that PV
operates on. Furthermore,ϕ has the property that executing PV on any concrete table consistent with
Tin yields a visual trace that is a superset of S. Going back to our running example, Figure 2 shows
the intermediate specifications inferred for each of the three visual programs. These intermediate
specifications are of the form T ⊆⋄ t indicating that the input t of the visual program must contain
table T but can also include additional rows and columns. Looking at the intermediate specifications
from Figure 2, we can make the following observations:
• The inputs of the first visual programs must contain at least two columns (referred to as c1,
c2) and these columns should contain the values 1, 2 and 7, 6 respectively. However, the input
table can also contain additional attributes and values.
• The specification for the second visual program imposes one additional constraint over the

other ones. In particular, the input table must contain an additional third column (referred to
as c3), and this column must contain at least two occurrences of value M.
• The specification for the third visual program requires that the table should contain an

additional column c3 to specify which subplot each point belongs to. Since the visual sketch
contains two points in the same subplot, column c3 contains two duplicate values with the
same subplot identifier.

Input for the second synthesis task. As mentioned earlier, the key reason for inferring an inter-
mediate specification is to decompose the problem into two separate synthesis tasks. Thus, given
an initial data source Tin and intermediate specification ϕ, the goal of the second synthesis task
is to generate a table transformation program PT such that applying PT to Tin yields a table that
is consistent with ϕ. To illustrate how our method synthesizes the desired table transformation
program for our running example, let us consider the following data wrangling constructs:
• Projection: The construct select(t , c̄) computes the projection of table t onto columns c̄ .
• Join: The construct inner_join(t1, t2,p) computes the product of tables t1, t2 and then filters

the result based on predicate p.
• Mutation: The construct mutate(t , ctarget , carg1 + carg2 ) takes as input a table t and returns a

table with a new column called ctarget , where the values in ctarget are obtained by summing
up the two columns carg1 and carg2 ; 1

1General mutate operator supports arbitrary column-wise computation besides ‘+’, we only consider mutate with ‘+’ in
overview for simplicity.
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t1 = inner_join(T1,T2,□1) 
Tout = select(t1,□2)

start

t1 = mutate(T1,□1=□2+□3) 
Tout = select(t1,□4)

t1 = inner_join(T1,T2,□1) 
t2 = mutate(t1,□2=□3+□4) 
Tout = select(t2,□5)

t1 = inner_join(T1,T2,□1) 
t2 = mutate(t1,c3=□3+□4) 
Tout = select(t2,□5)

t1 = inner_join(T1,T2,□1) 
t2 = mutate(t1,c1=□3+□4) 
Tout = select(t2,□5)

t1 = inner_join(T1,T2,□1) 
t2 = mutate(t1,c3=A+Aneg) 
Tout = select(t2,□5)

t1 = inner_join(T1,T2,□1) 
t2 = mutate(t1,c3=Cond+A) 
Tout = select(t2,□5)

t1 = inner_join(T1,T2,NULL) 
t2 = mutate(t1,c3=A+Aneg) 
Tout = select(t2,Cond,Gender,c3)

t1 = inner_join(T1,T2,“ID”,“EID”) 
t2 = mutate(t1,c3=A+Aneg) 
Tout = select(t2,Cond,Gender,c3)

…

❌

❌

❌

✓

✓

❌

Instantiate  
□2

Instantiate
□3 and □4

EID Gender
A M
B M
C F
D F

ID Cond A Aneg
A 1 6 1
B 2 4 2
C 1 2 5
D 2 3 6

Input Tables: T1,T2 Requires:  
Φout = T ⫅ Tout, where

c1 c2 c3
1 7 M
2 6 M

t1 = inner_join(T1,T2,□1) 
t2 = mutate(t1,c3=Cond+Aneg) 
Tout = select(t2,□5) ❌

T=

Fig. 3. The synthesis process for PT using T1, T2 and ϕout in Figure 1. At each step, the synthesis algorithm
first picks a known variable and expands it (new values expanded at each step are labeled in red), then it
evaluates each program sketch using abstract semantics of the table transformation language and prune it if
the evaluation process results in conflicts.

We will now illustrate how to synthesize the desired table transformation program PT for the
input tables T1, T2 shown in Figure 1 and the intermediate specification ϕout shown in the second
column of Figure 3.

Table transformation synthesis overview. Viser employs an enumerative search algorithm to find
a table transformation program that satisfies the specification. Similar to prior program synthesis
techniques [Feng et al. 2018, 2017; Wang et al. 2017a], Viser uses lightweight deductive reasoning
to prune invalid programs during the search process. However, because the specification does not
involve a concrete output table, pruning techniques used in prior work (e.g., [Feng et al. 2017])
are not effective in this context. As mentioned in section 1, our algorithm addresses this issue
by leveraging lightweight bidirectional program analysis and an (also lightweight) incomplete
inference procedure over table inclusion constraints.

As illustrated schematically in Figure 3, Viser performs enumerative search over program sketches,
where each program sketch is a sequence of statements of the form v = op(□1, . . . ,□n) where op is
one of the data wrangling constructs (e.g., select, inner_join etc.) and □i denotes an unknown
argument. Since program sketches contain only table-level operators but not their arguments, the
sketch enumeration process is tractable, and the main synthesis burden lies in searching the large
number of parameters that each hole □i can be instantiated with.

Sketch completion. Given a program sketch, Viser’s sketch completion procedure alternates
between hole instantiation and pruning steps until a solution is found or all possible sketch comple-
tions are proven not to satisfy the specification (see Figure 3). The first step (i.e., hole instantiation) is
standard and makes the initial sketch iteratively more concrete by filling each hole with a program
variable or constant. The pruning step, on the other hand, is more interesting, and infers table
inclusion constraints of the form e1 ⊆⋄ e2 indicating that the table represented by expression e1 can
be obtained from the table represented by expression e2 by removing rows and/or columns. For the
forward (resp. backward) inference, the generated constraints have the shape t ⊆⋄ T (resp. T ⊆⋄ t ),
where t is a program variable and T is a concrete table. Thus, using a combination of forward
and backward reasoning, we can obtain "inequality" constraints of the form T1 ⊆⋄ t ⊆⋄ T2 for each
program variable t and use this information to reject a partially completely sketch whenever T1
cannot be obtained from T2 by deleting rows and/or columns.
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t3 = inner_join(t1,t2,□1) 
t4 = mutate(t3,c1=□3+□4) 
t5 = select(t4,□5)

Conclude
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based on semantics of program sketches (programs with holes) to pruning invalid programs during
the search process. However, because the speci�cation involves a table sketch rather than a concrete
table in our setting, pruning techniques used in prior work (e.g., [Feng et al. 2017]) are not as
e�ective in this context. On the one hand, abstractions used in prior work are too weak to prune
many invalid abstract programs; on the other hand, naively adding powerful abstractions to existing
systems (e.g., SMT formulas over multi-sets) can result in expensive deductive reasoning time that
overshadows the bene�t from pruning. As mentioned in Section 1, our algorithm addresses this
issue by performing bidirectional program analysis.

In more detail, V���� performs enumerative search over program sketches, where each program
sketch is a sequence of statements of the form v = op(⇤1, . . . ,⇤n) where op is one of the data
wrangling constructs (e.g., select, inner_join etc.) and ⇤i denotes an unknown argument. Since
program sketches contain only table-level operators but not their arguments, the sketch enumeration
process is tractable, and the main synthesis burden lies in searching the large number of parameters
that each hole ⇤i can be instantiated with.

�fw(t3) = t3 ✓ t1 ⇥ t2
�bw(t3) = 7 M

6 M ✓⇧ t3

�bw(t4) = 1 7 M
2 6 M ✓⇧ t4

�req =
1 7 M
2 6 M ✓ t5

7 M
6 M ✓⇧ t3 ✓ t1 ⇥ t2

7 M
6 M 6✓⇧ t1 ⇥ t2

Sketch completion. Given a program sketch, V����’s sketch completion procedure alternates
between hole instantiation and pruning steps until a solution is found or all possible sketch comple-
tions are proven not to satisfy the speci�cation. The �rst step (i.e., hole instantiation) is standard
and makes the initial sketch iteratively more concrete by �lling each hole with a program variable
or constant. The pruning step, on the other hand, is more interesting, and infers table inclusion
constraints of the form e1 ✓⇧ e2 indicating that the table represented by expression e1 can be obtained
from the table represented by expression e2 by removing rows and/or columns. For the forward
(resp. backward) inference, the generated constraints have the shape t ✓⇧ T (resp. T ✓⇧ t ), where t is
a program variable and T is a concrete table. Thus, using a combination of forward and backward
reasoning, we can obtain "inequality" constraints of the form T1 ✓⇧ t ✓⇧ T2 for each program variable
t and use this information to reject a partially completely sketch whenever T1 cannot be obtained
from T2 by deleting rows and/or columns.

Going back to our running example, let us consider the partially completed sketch shown in
Figure 4, where t1, t2 represent the program’s arguments and t5 is the return variable. By considering
the semantics of each construct, we can make the following deductions:

• Since the program’s output must conform to the table sketch eT shown in the middle column
of Figure 2, we can generate the constraint T ✓⇧ t5 where T is the table shown on the left-hand
side of the inclusion constraint �req in Figure 4.

• Due to the semantics of select, we have t5 ✓⇧ t4. Furthermore, since we also have T ✓⇧ t4, we
can conclude T ✓⇧ t4.
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Going back to our running example, let us consider the partially completed sketch shown in
Figure 4, where t1, t2 represent the program’s arguments and t5 is the return variable. By considering
the semantics of each construct, we can make the following deductions:

• Since the program’s output must conform to the table sketch eT shown in the middle column
of Figure 2, we can generate the constraint T ✓⇧ t5 where T is the table shown on the left-hand
side of the inclusion constraint �req in Figure 4.

• Due to the semantics of select, we have t5 ✓⇧ t4. Furthermore, since we also have T ✓⇧ t4, we
can conclude T ✓⇧ t4.
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can show that the height of a�1 is correct. Similarly, the constraint�0 for Line Chart must
follow, otherwise the line won’t be consistent with the generated visual trace.

• Case 5 & 6: the proof for MultiPlot and MultiLayer follows immediately by induction.
Thus we conclude (1) for each PV, there is a rule in Figure 10 that generates a pair PV,� from the
output of PV, (2) all table satisfying T ` PV + � must satisfy the constraints� in their corresponding
rules in Figure 10 when we evaluated on a sub-trace � 0 ✓ � . ⇤

P������� 3 (P������ S��������). Given a partially completed sketch P, suppose we have� " P :
�� and (t = Tin) # P : �+. Let P be a completion of P such that P(Tin) |= � , and let � be the resulting
valuation after executing P on Tin. Then, we have � |= �+ ^ ��.

P����. The only way our inference rule to conclude ? is by checking T1 ✓⇧ t ✓⇧ T2 but T1 6✓⇧ T2.
Let t be a variable in P, then �� ) T1 ✓⇧ t and �+ ) t ✓⇧ T2. We decompose P into P+ + P�
where + indicates concatenating statements, and t ✓⇧ T2 is concluded from analyzing P+ forwardly
and T1 ✓⇧ t is concluded from analyzing P� backwardly. Then according to properties of forward
and backward analysis, all instantiations of P should satisfy T1 ✓⇧ t ✓⇧ T2, which indicates that all
instantiations of the programs contradicts the fact that T1 6✓⇧ T2, and thus our pruning is sound. ⇤

�fw(t3) = t3 ✓ t1 ⇥ t2

�bw(t3) = 7 M
6 M ✓⇧ t3

�bw(t4) = 1 7 M
2 6 M ✓⇧ t4

�out =
1 7 M
2 6 M ✓ t5

7 M
6 M 6✓⇧ t1 ⇥ t2
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Fig. 4. Demonstration of how Viser prunes invalid abstract programs in Figure 3 using forward and backward
analysis. ϕout is the requirement from the synthesis task, and ϕfw(t),ϕbw(t) refers to abstractions of t derived
from forward / backward analysis.

Going back to our running example, let us consider the partially completed sketch shown in
Figure 4, where t1, t2 represent the program’s arguments and t5 is the return variable. By considering
the semantics of each construct, we can make the following deductions:
• Since the program’s output must conform to ϕout = (T ⊆⋄ t) (where T is the table from

Figure 2) and we have t = t5, we can generate the constraint T ⊆⋄ t5 on variable t5.
• Together with the above constraint and semantics of select, we obtain T ⊆⋄ t4.
• Since we have T ⊆⋄ t4 and mutate(t3, c1, ? + ?) generates t4 by adding column c1 to t3,

we can deduce all columns of T except for the first one should also be in t3. Thus, using
backwards reasoning, we obtain the constraint T′ ⊆⋄ t3 where T′ is the table shown on the
left-hand side of ϕbw(t3).
• Since t3 is the result of inner_join(t1, t2, ?), we cannot deduce something useful about
t1, t2 in the backward direction without introducing expensive case splits because we do not
whether each value in T′ comes from t1 or t2. However, going in the forward direction, we
can generate the constraint t3 ⊆⋄ T1 ×T2, where T1,T2 are the input tables from Figure 1.

Putting together the information obtained from the forwards and backwards analysis, we obtain
the constraint T′ ⊆⋄ t3 ⊆⋄ T1 × T2. However, this creates a contradiction with T′ ̸⊆⋄ T1 × T2, allowing
us to prune the partially completed sketch from Figure 4.

Synthesis output. Continuing in this manner and alternating between more hole instantiation
and pruning steps, Viser finds the sketch completion shown on the bottom right side of Figure 1.
The final output of the synthesizer is shown on the top right of the same figure and generates the
intended visualization, also shown in the top right of Figure 1.

3 PROBLEM DEFINITION
In this section, we formally define the visualization-by-example problem and then introduce two
languages for automating table transformation and plotting tasks.

3.1 Key Concepts and Synthesis Problem

Tables. For the purposes of this paper, a table T with schema [c1, . . . , cn] is an unordered bag (i.e.,
multi-set) of tuples where each tuple r = (v1, . . . ,vn) in T consists of n primitive values (number,
string, datetime etc.). Given a tuple r ∈ T, we use the notation r [c] to denote the value v stored in
attribute c of r . We also extend this notation to tables and write T [c̄] to denote the projection of
table T on columns c̄ and write T [−c̄] to denote the projection of table T on all columns except c̄ .
Finally, we write Mult(r , T) to denote the multiplicity of tuple r in T.
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τ = {e1, . . . , en}
e = bar(ax ,ay1 ,ay2 ,acolor ,asubplot)
| point(ax ,ay ,acolor ,asize,asubplot)
| line(ax1 ,ay1 ,ax2 ,ay2 ,acolor ,asubplot)

Fig. 5. The visualization trace language Lτ , where metavariable a refers to constants.

Given a pair of tables T1, T2, we write T1 ⊆ T2 iff ∀r ∈ T1.Mult(r , T1) ≤ Mult(r , T2). As standard,
we define equality to be containment in both directions, i.e., T1 = T2 iff T1 ⊆ T2 and T2 ⊆ T1. We
further define a table inclusion constraint T1 ⊆⋄ T2 that allows projecting columns in addition to
filtering rows. Specifically, we write T1 ⊆⋄ T2 iff there exists columns c̄ in the schema of T2 such
that T1 ⊆ T2[c̄].
Visual traces. As stated in Section 2, we define the semantics of visualizations in terms of

so-called visual traces. A visual trace, denoted τ , is a set of basic visual elements (point, line, bar),
together with the attributes of each element (position, size, color, etc.). More concretely, Figure 5
shows a small “language” in which we express visual traces. (The full language supported by our
implementation is given in the Appendix.) Here, e denotes a visual element, and a is an attribute of
that element:
• Color attribute: This attribute, denoted acolor specifies the color of a visual element.
• Position attributes: Position attributes, such as ax ,ax1 ,ay2 etc., specify the canvas positions for

a visual element. For example, for line, (ax1 ,ay1 ) specifies the starting point of a line segment,
and (ax2 ,ay2 ) specifies the end point. For the bar visual element, ay1 ,ay2 specify the start and
end y-coordinates of a (vertical) bar.
• Size attribute: The attribute asize specifies the size of a given point element.
• Subplot attribute: The attribute asubplot specifies the subplot that a given visual element belongs

to. For instance, for the visualization shown in the last column of Figure 2, the points in the
first plot have a different asubplot attribute than those in the second one.

In the remainder of this paper, we express both complete visualizations and visual sketches in
terms of their corresponding visual trace, and we often use the symbol S to denote traces that
correspond to visual sketches. Finally, since visual traces are sets of visual elements, the notation
τ1 ⊆ τ2 indicates that visualization τ2 is an extension of visualization τ1.

Problem statement. Given this notion of visual traces, we can now state our visualization-by-
example problem, which is defined by a pair (Tin, S). Here, Tin is a table 2 and S is a visual trace
(i.e., a "program" in the language of Figure 5). Now, let us fix a language LT for expressing table
transformation programs and a visualization language LV for generating plots from a given table.
Then, our goal is to synthesize a pair of programs (PT,PV) such that:

(1) PT and PV are programs written in LT,LV respectively,
(2) the output visual trace PT(PV(Tin)) is consistent with S, i.e., S ⊆ PV(PT(Tin)).
Note that our problem statement strictly generalizes conventional programming-by-example

which requires the program output to be equal to the provided output (i.e., S = PV(PT(Tin))). Thus,
the user is still free to provide a small (but complete) input-output example if this is more convenient
for the user. However, our generalization has the advantage of freeing the user from the burden of
modifying the input data in cases where doing so may be inconvenient.
2We note that our implementation can handle multiple tables in the input. However, we consider a single input table in the
formal development to simplify presentation and reduce notational overhead.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.



Visualization By Example 1:9

PT(t) = t1 = e1; . . . ; Tout = en ;
e = T | filter(T , f ) | select(T , c̄) | join(T1,T2, f )
| mutate(T , ctarget , op, c̄arg) | gather(T , c̄id , c̄target)
| spread(T , c̄id , ckey, cval)
| summarize(T , c̄key,α , ctarget)

T = Tin | t
f = v1 op v2 | is_null(c)
v = const | c
α = min | max
| sum | count | avg

Fig. 6. The table transformation language LT, where Tin, Tout refers to the input/output tables, t refers to
table variables, and c refers to column names.

3.2 Table Transformation Language
Our table transformation language is shown in Figure 6. This language is inspired by existing data
wrangling libraries (e.g., tidyr and dplyr libraries for R), and similar languages have also been used
in prior work for automating table transformation tasks using PBE [Feng et al. 2017; Martins et al.
2019]. As shown in Figure 6, a table transformation program PT is a sequence of side-effect free
statements, where each statement produces a new table by performing some operation on its inputs.
As standard in relational algebra, the constructs select and filter are used for selecting columns and
rows respectively. As also standard in relational algebra, join is used for taking the cross product of
two tables. That is, join(T1,T2, f ) is semantically equivalent to filter(T1 ×T2, f ), where × denotes
the standard cross product operator in relational algebra.

Besides these standard relational algebra operators, our table transformation language contains
four other main constructs, namely spread, mutate, gather, and summarize. Since the semantics of
these constructs are somewhat non-trivial, we illustrate their behavior in Figure 7.

(1) The mutate construct creates a new column (ctarget ) in the output table by applying an operator
op on argument columns c̄args . For example, in Figure 7, the new column c ′ is obtained by
summing up columns c2 and c3.

(2) The spread operator pivots a table by changing values to column names. Specifically, spread
first eliminates the two columns ckey and cval , then creates a new column for each value
stored in the original column ckey , and finally fills new columns using values in the original
cval column. The second drawing in Figure 7 illustrates the semantics of spread.

(3) The gather construct is the inverse of spread: It unpivots the input table by moving column
names into the table body. Specifically, gather first eliminates all columns in c̄target , and then
creates two new columns ckey and cval where ckey is filled with column names in c̄target and
column cval is filled with values in the eliminated columns. This is illustrated in the third
drawing in Figure 7.

(4) The summarize construct first partitions its input table into groups based on values in c̄key and
then applies the function α to each group to aggregate values in column ctarget . For example,
in the rightmost part of Figure 7, the table is partitioned into two groups based on values in
c1 (labeled with different colors), and column c2 is populated by taking the maximum of all
values in the corresponding partition.

3.3 Visualization Language
Our visualization language LV is shown in Figure 8, which formalizes core constructs in Vega-
Lite [Satyanarayan et al. 2017], the ggplot2 visualization library for R and VizQL [Hanrahan 2006]
from Tableau. This formalization enables concise descriptions of visualizations by encoding data
as properties of graphical marks. It represents single plots using a set of mappings that map data
fields to visual properties, and supports combining single charts into compositional charts through
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c1 c2 c3
x1 y1 z1
x2 y2 z2
x3 y3 z3

c1 c2 c3 c’
x1 y1 z1 y1 + z1
x2 y2 z2 y2 + z2
x3 y3 z3 y3 + z3

mutate(T,c’,+,[c2,c3])

c1 c2 c3
x1 y1 z1
x2 y2 z2

c1 ckey cval

x1 c2 y1
x1 c3 z1
x2 c2 y2
x2 c3 z2

gather(T,c1,[c2,c3])

c1 c2 c3
x1 y1 z1
x1 y2 z2
x2 y1 z3
x2 y2 z4

c1 y1 y2
x1 z1 z2
x2 z3 z4

spread(T,c2,c3)

c1 c2
x1 y1
x1 y2
x2 y3
x2 y4

c1 c2
x1 max(y1,y2)
x2 max(y3,y4)

summarize(T,[c1],max,c2)

Fig. 7. Examples of table transformation operators in LT and how they operate on example input tables.
Colored cells shows how parts of the output table are computed from the input table.

PV = MultiPlot(SP , csub) | SP
SP = MultiLayer(L̄) | L

L = Scatter(cx , cy , ccolor , csize) (Scatter Plot)
| Line(cx , cy , ccolor ) (Line Chart)
| Bar(cx , cy , cy2 , ccolor ) (Bar Chart)
| Stacked(cx , ch , ccolor ) (Stacked Bar Chart)

c = column | ϵ
Fig. 8. The visualization language LV.

layering and subplotting. A program PV in this language takes as input a table T and outputs a
visual trace τ . Throughout this paper, we refer to programs in this language as visual programs.

As shown in Figure 8, a visual program PV either creates a grid of multiple plots using the
MultiPlot construct or a single plot SP . Each plot can in turn consist of multiple layers (indicated
by the MultiLayer construct) or a single layer. Each layer is either a scatter plot (Scatter), a line
chart (Line), a bar chart (Bar), or a stacked bar chart (Stacked). The MultiLayer construct in this
language is used to compose different kinds of charts in the same plot (e.g., a scatter plot and a line
chart), but our visualization language is nonetheless rich enough to allow layering the same type
of chart within a plot: For example, the Line primitive can be used to render multiple line charts
where each individual line chart has a different color.

In terms of its semantics, a visual program PV specifies how each tuple in the input table
corresponds to a visual element in the output trace; thus, all constructs in LV refer to column
names in the input table. For instance, for the MultiPlot construct, the column name csub specifies
that tuples sharing the same value of csub are to be visualized in the same subplot, whereas tuples
with different values of csub belong to two different subplots. Similarly, for the Line construct, tuples
that agree on the value of ccolor are rendered as part of the same line chart, whereas tuples that
disagree on the ccolor value correspond to different layers.

In what follows, we explain the semantics of our visualization language with the aid of the
examples shown in Figure 9.

Example 1. The first example in Figure 9 shows a visual program for rendering a stacked bar chart
visualization of a study report. This program specifies using x=Task that each different (stacked) bar on
the x-axis should correspond to a different task (Q1, Q2 etc.) from the input table. The second argument,
y=Percent, specifies that the height of each bar (within a stack) is determined by the Percent column

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.



Visualization By Example 1:11

Area

0.0

0.2

0.4

0.6

0.8

1.0

va
lu
e

APAC EMEA LATAM North America

Ad
op

te
d

En
ga

ge
d

Pi
tc
he

d
Ta
rg
et
ed

C2

Ad
op

te
d

En
ga

ge
d

Pi
tc
he

d
Ta
rg
et
ed

C2

Ad
op

te
d

En
ga

ge
d

Pi
tc
he

d
Ta
rg
et
ed

C2

Ad
op

te
d

En
ga

ge
d

Pi
tc
he

d
Ta
rg
et
ed

C2

Q1
Q2
Q3

C1

Stacked( 
  x=Task,  
  h=Percent, 
  color=Response)

Scatter(  
  x=IMDB,  
  y=RT,  
  size=Count)

MultiPlot( 
  Line(x=C2, y=value,  
       color=C1), 
  sub=Area)

MultiLayer( 
  Bar(x=Month, y=maxTemp,  
      y2=minTemp), 
  Line(x=Month, 
y=Precip))

Task Response Percent
Q1 Disagree 9.1%
Q1 Agree 59.9%
… … …

IMDB RT Count
1-2 0-10 3
4-5 10-20 76
… … …

50
100

150

Count

1.0 3.0 5.0 7.0 9.0
IMDB Rating

0
10
20
30
40
50
60
70
80
90

100

Ro
tt

en
 T

om
at

oe
s 

Ra
ti

ng

Area C1 C2 Value
APAC Q1 Adopted 3
APAC Q1 Engaged 4
… … … …

Month maxTemp minTemp Precip
Jan 8 3 4
Feb 9.5 4 3.5
… … … …

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
date (month)

0

5

10

15

20

25

Av
g.

 T
em

pe
ra

tu
re

 (
°C

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Precipitation (inches)

Strongly disagree
Disagree
Neither
Agree
Strongly agree

Response

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Task

0

20

40

60

80

100

Pe
rc
en

ta
ge

Fig. 9. Examples of visualization operators in LV and their corresponding visualizations.

in the input table. Finally, the third argument, color=Response, specifies that the color of each bar
(within the stack) is determined by the value stored in the Response column of the input table.

Example 2. The second visual program in Figure 9 renders a scatter plot that visualizes the correlation
between IMDB and Rotten Tomato reviews. Specifically, the Scatter construct draws a point for each
row in the input table. In our example, the first (resp. second) argument specifies that the x (resp. y)
coordinate is determined by the value in the IMDB (resp. RT) column of the input table. Finally, the third
argument size=Count specifies that the size of the point is determined by the corresponding value
stored in the Count column.

Example 3. The third program from Figure 9 renders multiple subplots, as specified by the MultiPlot
construct. The second argument subplot=Area specifies that each subplot corresponds to a separate
value in the Area column of the input table (APAC, North America etc.). The first argument, on the
other hand, specifies that each subplot is a line chart. Furthermore, since the third argument of the
Line construct is color=C1, each subplot consists of multiple line charts of different colors, determined
by the value of the C1 column in the input table. Finally, the (x ,y) coordinates of the points within
each line chart are determined by the values in C2 and Value columns respectively.

Example 4. The last program in Figure 9 draws a layered chart consisting of a bar chart and a line
chart using the MultiLayer construct. Here, bars show the temperature range for each month because
the x value corresponds to the Month field in the input table, and y and y2 correspond to the maxTemp

and minTemp values for that month. On the other hand, the line chart shows the precipitation for each
month; this is again specified using x=Month and y=Precip.

4 SYNTHESIS ALGORITHM
In this section, we first give an overview of our top-level synthesis algorithm (Section 4.1) and then
present techniques for learning visual programs (Section 4.2) and table transformation programs
(Section 4.3) respectively.

4.1 Overview

Algorithm 1 describes our top-level visualization-by-example algorithm, which takes as input a
table Tin and a visual sketch S (expressed as a visual trace in the notation of Figure 5) and returns
a pair of programs (PT,PV) such that S ⊆ PV(PT(Tin)) (or ⊥ to indicate failure). As mentioned
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Algorithm 1 Top-level Synthesis Algorithm
1: procedure Synthesize(Tin, S)
2: input: Input table Tin, visual sketch S
3: output: A table transformation program PT and visual program PV, or ⊥ if failure

4: Ω← LearnVisualProgs(S)
5: for all (PV,ψ ) ∈ Ω do
6: r ← LearnTableTransform(Tin,ψ )
7: match r
8: case ⊥: continue
9: case (PT,σ ): return (PT,PV[σ ])

10: return ⊥

previously, our synthesis algorithm is compositional in the sense that it uses an intermediate
specification to guide the search for table transformation programs.

Internally, the Synthesize procedure first uses the input visual sketch S to infer a set Ω of
intermediate synthesis results. Each intermediate result r ∈ Ω is a pair (PV,ψ ), where PV is a visual
program that is consistent with the provided visual sketch andψ is a constraint that imposes certain
requirements on the input to PV. In other words, for a given visual program PV, ψ serves as an
intermediate specification that constrains the space of possible table transformation programs.
However, since we do not know the column names used in this intermediate table, both PV andψ
refer to "made-up" column names to be resolved in the next phase.

In the second phase of the algorithm (lines 5-9), we try to find a table transformation program that
satisfies the intermediate specification. Specifically, for each intermediate synthesis result (PV,ψ ),
the LearnTableTransform procedure is used to synthesize a table transformation program PT and
a column mapping σ such that PT(Tin) satisfies the constraintψ [σ ]. Thus, if LearnTableTransform
does not return ⊥ to indicate failure, the program PV[σ ] ◦PT is guaranteed to satisfy the end-to-end
specification defined by (Tin, S).

4.2 Synthesis of Visual Programs
In this section, we describe the LearnVisualProgs procedure used in Algorithm 1. This procedure
is described using inference rules of the form τ ⇑ (PV,ψ ) where τ is a visual trace, PV is a visual
program, andψ is a constraint. The meaning of this judgment is that, if the input table T satisfies
constraintψ , then PV(T) yields a visualization that is consistent with τ (i.e., τ ⊆ PV(T)). Observe
that, for a given visual trace τ , there may be multiple programs that are consistent with it — i.e.,
we can have τ ⇑ (PiV,ψ i ) for multiple values of i . This is the reason why the LearnVisualProgs
procedure used in Algorithm 1 returns a set rather than a singleton. In what follows, we explain
each of the inference rules from Figure 10 in more detail.

Multiple plots. The first rule, labeled Multi-Plot, is used to synthesize programs for generating
multiple subplots. Since each element in a visual trace has an attribute that identifies which subplot
it belongs to, we first partition the visual elements according to the value of this attribute. This
allows us to obtain n different visual traces τ1, . . . ,τn , and we recursively synthesize a visual
program pi and a constraint ψi for each visual trace τi . However, since the MultiPlot construct
takes a single program as argument, this means that all subplots must be generated using the same
visual program; thus, the premise of this rule stipulates that all pi ’s must be the same program p.
On the other hand, each subplot can impose different restrictions on the input table; thus, the input

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.



Visualization By Example 1:13

τi ∈ partitionBySubplots(τ ) csub fresh τi ⇑ (p,ψi ) i ∈ [1,n]
(Multi-Plot)

τ ⇑ (MultiPlot(p, csub),
∧
i ψi )

τi ∈ partitionByType(τ ) τi ⇑ (li ,ψi ) i ∈ [1,n]
(Multi-Layer)

τ ⇑ (
MultiLayer(l̄i ),

∧n
i=1ψi

)
T =

⋃n
i=1(aix ,aiy ,aic,ais,asub) cx, cy, ccolor, csize fresh

(Scatter)⋃n
i=1

{
point(aix ,aiy ,aic,ais,asub)

}
⇑ (

Scatter(cx, cy, ccolor, csize)
)
, T ⊆⋄ t

T =
⋃n
i=1(aix ,aiy ,aiy2 ,a

i
c,asub) cx, cy, cy2 , ccolor fresh

(Simple Bar)⋃n
i=1

{
bar(aix ,aiy ,aiy2 ,a

i
c,asub)

}
⇑ (

Bar(cx, cy, cy2 , ccolor)
)
, T ⊆⋄ t

T =
⋃n
i=1(aix ,aiy2 − aiy ,aic,asub) cx, ch, ccolor fresh

ψ0 = ∀i ∈ [1,n].∑r ∈{r ∈Tin |r [cx]=aix∧r [csub]=asub∧r [ccolor]<aic } r [ch] = aiy
(Stacked Bar)⋃n

i=1

{
bar(aix ,aiy ,aiy2 ,a

i
c,asub)

}
⇑
(
Stacked(cx, ch, ccolor),ψ0 ∧ T ⊆⋄ t

)

T1 =
⋃n
i=1(aix1 ,a

i
y1 ,a

i
c ,ap ) T2 =

⋃n
i=1(aix2 ,a

i
y2 ,a

i
c ,ap ) cx, cy, ccolor fresh

ψ0 = ∀i ∈ [1,n].�r ∈ Tin. (r [ccolor] = aic ∧ r [csub] = ap ) → aix1 ≤ r [cx] ≤ aix2 (Line)⋃n
i=1

{
line(aix1 ,a

i
y1 ,a

i
x2 ,a

i
y2 ,a

i
c ,ap )

}
⇑
(
Line(cx, cy, ccolor),ψ0 ∧ T1 ⊆⋄ Tin ∧ T2 ⊆⋄ t

)

Fig. 10. Inference rules describing synthesis of visual programs

has to satisfy all of these constraints (i.e.,
∧n

i=1ψi ). Finally, since we do not know which column of
the input table is used to generate different subplots, we make up a fresh column name called csub
and return the synthesized program MultiPlot(p, csub) as the solution.

Multiple layers. The second rule, Multi-Layer, is similar to the Multi-Plot rule and is used to
generate programs that compose different types of charts. Similar to the previous rule, we again
partition elements in the visual trace according to their type (i.e., point, bar etc.) to obtain n different
traces τ1, . . . ,τn and recursively synthesize a visual program li and a constraintψi for each τi . Then,
the synthesized program MultiLayer(l̄) will generate a visualization consistent with the visual
sketch as long as the input table satisfies

∧n
i=1ψi .

Scatter plot. The next rule is used to synthesize a visual program that renders a scatter plot. Since
all elements in a scatter plot must be points, the precondition of this rule requires that the visual
trace is a set of points with the same subplot attribute. Furthermore, for each point p with attributes
āi in the visual sketch, there must be a corresponding row in the input table that contains exactly
the values āi . To express this requirement on the input table, we construct a table T that contains
rows āi and generate the constraint T ⊆⋄ t where t refers to the input table for the synthesized
visual program. Finally, since we do not know the names of the columns in the input table, we
introduce placeholder column names c̄ and return the program Scatter(c̄).

Bar charts. The next two rules, labeled Simple Bar and Stacked Bar, both generate bar charts and
are very similar to the previous Scatter rule. For Stacked Bar, ch represents the height of the bar
rather than the absolute y-position; thus, we compute entries in column ch as aiy2 − aiy for the i’th
row in the table sketch. Also, in addition to the constraint T ⊆⋄ t , the Stacked Bar rule imposes an
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additional constraint on the input table. In particular, since the bars in a Stacked Bar chart must
be stacked directly on top of each other, constraint ψ0 essentially stipulates that the starting y
position of one bar is precisely the end y-position of the previous stack below it. In practice, when
computing constraintψ0, we compute the end y position of the stack below by summing the heights
of all the individual bars below the current one.

Line chart. The final rule is used to synthesize a Line program in our visualization language.
Recall that a line visual element is defined by its two end points (ax1 ,ay1 ) and (ax2 ,ay2 ), and these
end points must correspond to two different rows in the input table. Thus, we generate two different
constraints T1 ⊆⋄ t and T2 ⊆⋄ t that describe requirements imposed by the left end and right end of
each line segment respectively. Finally, the constraintψ0 in the second line of the premise imposes
the following additional restriction: If the visual sketch contains a line segment with (ax ,ay ) and
(a′x ,a′y ) as its end points, there should not be another entry in the input table that belongs to the
same line chart (i.e., same color and subplot) but where the x value is in the range (ax ,a′x ). Without
this additional constraintψ0, the generated visualization would not be guaranteed to satisfy the
provided visual sketch.

Properties. Our visual program inference procedure enjoys the following properties that are
important for the soundness and completeness for the overall approach.

Property 1 (Decomposition). Suppose that τ ⇑ (PV,ψ ) and T is a table that satisfies constraintψ
(i.e., T |= ψ ). Then, we have τ ⊆ PV(T).

The above property shows the soundness of the overall the synthesis algorithm. In particular,
let PV be a visual program synthesized in the first phase. Based on the above property, as long as
we can find a table transformation program PT that satisfies the specification (Tin,ψ ), then we are
guaranteed that the composition PV ◦ PT will satisfy the specification of the overall synthesis task.

Property 2 (Completeness). Let τ be a visual sketch, and suppose that there exists a table T and
a visual program PV in LV such that τ ⊆ PV(T). Then, we have τ ⇑ (PV,ψ ) such that T |= ψ .

This second property shows the completeness of the overall synthesis algorithm. In particular, it
states that, if there exists a table T and visual program PV such that PV(T) is consistent with the
given visual sketch, then our inference procedure will (a) return PV as one of the solutions, and (b)
T will satisfy the constraintψ associated with PV.

4.3 Synthesizing Table Transformations via Bidirectional Reasoning

In this section, we describe the LearnTableTransform function used in Algorithm 1. This
procedure is given in Algorithm 2 and takes as input the original input table Tin and the intermediate
specificationψout generated during the first phase. LearnTableTransform either returns a program
PT such that PT(Tin) is consistent with the specificationψout or yields⊥ to indicate failure. If synthesis
is successful, LearnTableTransform additionally returns a mapping σ from the made-up column
names used inψout to the actual column names used in PT(Tin).

From a high level, the outer loop of Algorithm 2 lazily enumerates program sketches based on the
language from Section 3.2. In this context, a program sketch P is a sequence of instructions of the
form t = op(□1, . . . ,□n) where t is a program variable, op is a construct in the table transformation
language (e.g., mutate, join), and each □i is a hole representing an unknown argument. To obtain a
program that is a completion of P, we need to fill each of the holes in the sketch with previously
defined program variables or column names from the input table.
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Algorithm 2 Table transformation synthesis algorithm.
1: procedure LearnTableTransform(Tin,ψout)
2: ψin ← (t0 ⊆ Tin ∧ Tin ⊆ t0)
3: while existsNextSketch() do
4: P0 ← getNextSketch();
5: W ← {(P0,σ ) | σ ∈ Mappings(Cols(ψout),Cols(P0)};
6: while ¬W .isEmpty() do
7: (P,σ ) ←W .next()
8: if IsComplete(P) then
9: if P(Tin) |= ψout[σ ] then return (P,σ )

10: else continue;
11: ϕ ← Analyze+(ψin,P) ∧ Analyze−(ψout[σ ],P);
12: if UNSAT(ϕ) then continue
13: □k ← chooseHole(P)
14: W ←W ∪ {(P[□k 7→ v],σ ′)

�� v ∈ dom(□k ),Mappings(Cols(ψout),Cols(P) ∪ {v}}
return ⊥

In more detail, the algorithm maintains a worklistW of elements (P,σ ) where P is a (partially
completed) program sketch and σ is a possible mapping from the made-up column names inψout to
actual column names in the output table. In particular, σ maps each column name used inψout to an
element in Cols(P), where Cols(P) includes both the columns used in Tin as well as any additional
columns mentioned in P. In each iteration of the inner while loop, the algorithm dequeues (at line
8) a pair (P,σ ) and checks whether P is a complete program (i.e., no holes). If this is the case and
P satisfies the specification under mapping σ (line 9), we then return (P,σ ) as a solution. On the
other hand, if P contains any remaining holes, we perform bidirectional program analysis (line
11) to check if there is any completion of P that can satisfy the (intermediate) specificationψout. In
particular, line 11 of Algorithm 2 generates a constraint ϕ that is a conjunction of atomic predicates
of the form e1 ⊆∗ e2 where ⊆∗ represents the table inclusion relations defined earlier (⊆ , ⊆⋄ ), and
each ei is either a program variable or a concrete table. If these generated constraints result in
a contradiction, there is no sketch completion that is consistent with ψout; thus, the algorithm
moves on to the next element in the worklist (line 12). On the other hand, if we cannot prove
the infeasibility of P, we pick one of the holes □k used in the sketch and add a new set of partial
programs to the worklist by instantiating that hole with some element in its domain (line 13). The
domain of the hole is determined by its type, columns in the input schema for the given statement,
and previously defined variables in the partial program. Since hole □k may have been filled with a
new column namev < Cols(P), we therefore also update the worklist to consider any new mappings
σ ′ that we have not previously considered.

As is evident from the above discussion, a key part of our table transformation synthesis algorithm
is the Analyze+ and Analyze− procedures for performing forward and backward inference to
generate table inclusion constraints. These procedures are described in Figure 11 and Figure 12
using inference rules of the form ϕ ↓ s : ϕ ′ (for the forward analysis) and ϕ ↑ s : ϕ ′ (for the
backward analysis). The meaning of the judgment ϕ ↓ s : ϕ ′ is that, assuming ϕ holds before
executing statement s , then ϕ ′ must hold after executing s . Similarly, ϕ ↑ s : ϕ ′ means that, if ϕ
holds after executing s , then ϕ ′ must hold before s (i.e., ϕ ′ is a necessary precondition for ϕ but may
not be sufficient to guarantee it). Since the inference rules shown in Figure 11 and Figure 12 follow
from the semantics of the table transformation language, we do not explain them in detail. However,
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ϕ ⇒ t ⊆∗ T

ϕ ↓ t ′ = filter(t , _) : ϕ ∧ (t ′ ⊆∗ T)
ϕ ⇒ t ⊆∗ T

ϕ ↓ t ′ = select(t , _) : ϕ ∧ (t ′ ⊆∗ T)

ϕ ⇒ t ⊆∗ T T′ = [[mutate(T, ct , op, c̄)]]
ϕ ↓ t ′ = mutate(t , ct , op, c̄) : ϕ ∧ (t ′ ⊆∗ T′)

ϕ ⇒ (t1 ⊆∗ T1 ∧ t2 ⊆∗ T2)
ϕ ↓ t ′ = join(t1, t2, _) : ϕ ∧ (t ′ ⊆∗ T1 × T2)

ϕ ⇒ t ⊆∗ T T′ = [[gather(T, c̄id , c̄target )]]
ϕ ↓ t ′ = gather(t , c̄id , c̄target ) : ϕ ∧ (t ′ ⊆∗ T′)

ϕ ⇒ t ⊆∗ T T′ = [[spread(T, c̄id , ckey , cval)]]
ϕ ↓ t ′ = spread(t , c̄id , ckey , cval) : ϕ ∧ (t ′ ⊆⋄ T′)

∀i ∈ [1,n]. ϕi−1 ↓ ti = ei : ϕi (Chain)
ϕ0 ↓ {t1 = e1; . . . ; tn = en } : ϕn

Fig. 11. Forward inference. Operator “⊆∗” refers to either ⊆ or ⊆⋄ . In cases where the premise of no rule
matches, we have an implicit judgment ϕ ↓ s : ϕ to propagate the input constraint.

ϕ ⇒ T ⊆⋄ t ′

ϕ ↑ t ′ = filter(t , _) : ϕ ∧ (T ⊆⋄ t)
ϕ ⇒ T ⊆⋄ t ′ T′ = T[−ctarget ]

ϕ ↑ t ′ = mutate(t , ctarget , _, _) : ϕ ∧ (T′ ⊆⋄ t)

ϕ ⇒ T ⊆⋄ t ′

ϕ ↑ t ′ = select(t , _) : ϕ ∧ (T ⊆⋄ t)
ϕ ⇒ T ⊆⋄ t ′ T′ = [[gather(T, c̄id , schema(T) − {c̄id })]]

ϕ ↑ t ′ = spread(t , c̄id , _, _) : ϕ ∧ (T′ ⊆⋄ t)

ϕ ⇒ T ⊆⋄ t ′ T′ = RemoveDuplicates(T[c̄id ])
ϕ ↑ t ′ = gather(t , c̄id , _) : ϕ ∧ (T′ ⊆⋄ t)

ϕ ⇒ T ⊆⋄ t ′ T′ = T[−ctarget ]
ϕ ↑ t ′ = summarize(T , _, _, ctarget ) : ϕ ∧ (T′ ⊆⋄ t)

∀i ∈ [1,n]. ϕi ↑ ti = ei : ϕi−1 (Chain)
ϕn ↑ {t1 = e1; . . . ; tn = en } : ϕ0

Fig. 12. Backward inference. Operator “⊆∗” refers to either ⊆ or ⊆⋄ , and RemoveDuplicates removes duplicate
tuples from the input table. As in the forward analysis, we assume an implicit rule ϕ ↑ s : ϕ that applies if
none of the other premises are met.

a key design decision is that our analysis on purpose does not compute strongest post-conditions
(for the forward analysis) or strongest necessary preconditions (for the backward analysis) in order
to ensure that the cost of deductive reasoning does not overshadow its benefits. For example, in
the reasoning rule for summarize in Figure 12, we over-approximate all aggregation functions as
uninterpreted functions; thus the inferred pre-condition only requires that input table t include
content from non-aggregated columns (T′) in the output table t ′. While a more precise analysis rule
could consider the underlying semantics of different aggregation operators, this kind of reasoning
would be prohibitively expensive [Wang et al. 2018a] and outweigh the benefits obtained from
better pruning.

For the same reason, our procedure for checking satisfiability of table inclusion constraints
(described in Figure 13) is also incomplete and intentionally over-approximates satisfiability. Thus,
while the unsatisfiability of the generated constraints ensures the infeasibility of a given partially
completed sketch, the converse is not true – that is, our deductive reasoning technique may fail to
prove infeasibility of a sketch even though no valid completion exists.
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ϕ = e1 ⊆∗ e2 ∧ ϕ0
ϕ ⇒ e1 ⊆∗ e2

ϕ ⇒ e1 ⊆∗ e2 ϕ ⇒ e2 ⊆∗ e3
ϕ ⇒ e1 ⊆∗ e3

ϕ ⇒ e1 ⊆ e2

ϕ ⇒ e1 ⊆⋄ e2

ϕ ⇒ T1 ⊆∗ t ϕ ⇒ t ⊆∗ T2 T1 ⊈
∗ T2

ϕ ⇒ ⊥

Fig. 13. Inference rules for checking satisfiability of table inclusion constraints. Operator “⊆∗” refers to either
⊆ or ⊆⋄ , and metavariable e refers to either a program variable t in ϕ or a concrete table T.

Properties. We end this section by describing some salient properties of Algorithm 2 that are
important for the soundness and completeness of the end-to-end synthesis approach.

Property 3 (Forward Analysis). Let P be a partially completed sketch with argument t and
return parameter t ′. Then, if t = Tin ↓ P : ϕ and ϕ ⇒ (t ′ ⊆⋄ T′), then any completion P of P satisfies
P(Tin) ⊆⋄ T′.

By design, our forward analysis rules exploits the fact that many table transformation operators
are monotonic over the input. This property essentially captures the correctness of forward inference.
In particular, it says that, if we deduce that the output of P on Tin is a sub-table of T′, then this is
true for every completion of P. The following property states something similar for the backward
analysis:

Property 4 (Backward Analysis). Let ϕ be a constraint and P be a partially completed sketch
with input parameter t . Then, if ϕ ↑ P : ϕ ′ and ϕ ′⇒ (T′ ⊆⋄ t), then for any completion P of P and any
input table T such that P(T) |= ϕ, we have T′ ⊆⋄ T.

Similarly, our backward analysis rules by design conservatively propagate known values from
the output to inputs. This property states that any conclusions reached by backward inference
apply to all completions of P. Finally, we can state the following property about the correctness of
our pruning strategy:

Property 5 (Pruning Soundness). Given a partially completed sketch P, suppose we haveψ ↑ P :
ϕ− and (t = Tin) ↓ P : ϕ+. Let P be a completion of P such that P(Tin) |= ψ , and let σ be the resulting
valuation after executing P on Tin. Then, we have σ |= ϕ+ ∧ ϕ−.

In other words, our pruning technique never rules out completions of P that actually satisfy the
given specification (Tin,ψ ).

5 IMPLEMENTATION
We have implemented the proposed technique in a tool called Viser, which is written in Python.
Viser takes two inputs, namely the original data source (which can consist of one or more tables)
as well as a visual sketch. Currently, Viser requires the visual sketch to be expressed as a visual
trace; however, with some additional engineering effort, it would be possible to integrate Viser
with visual demonstration interfaces such as Lyra [Carr et al. 2014] or VisExemplar [Saket et al.
2017a] to automatically generate visual traces from the demonstration.

Extension to visualization Language. Viser can generate visual programs in Vega-Lite [Satya-
narayan et al. 2017], ggplot2, and a subset of Matplotlib. To handle all of these libraries, our
implementation supports a richer visualization DSL than the one given in Figure 8. In particular,
Viser supports two additional visualization constructs, AreaChart and StackedAreaChart, which
provide another mechanism for visualizing quantities that change over time. To support this richer
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visualization language, we also extend our visual trace language from Figure 5 with an element
called area. Besides adding new constructors, we also extend existing constructors to take additional
attributes as input. For example, the attribute ashape allows specifying the shape associated with
each point in a scatter plot. Another attribute, aorder , for line charts allows specifying a custom
order instead of using the default x-axis value.

Extension to table transformation Language. The table transformation language used in our imple-
mentation extends Figure 6 with a few additional constructs inspired by commonly used operators
in the tidyverse R package. For example, the table transnformation DSL in our implementation
allows another construct called separate that is commonly used for table reshaping as well as a
construct called cumsum for computing cumulative sum for a given column. Our implementation
also allows a more expressive version of the mutate construct that supports a broader set of binary
computations including arithmetic operations and string concatenation.

Multi-layered visualizations. To simplify presentation in the technical section, we assumed that a
visual program takes a single table as input. However, in many visualization libraries (e.g., ggplot2),
the semantics of the MultiLayer(l1, . . . , ln ) construct is that each different nested visual program li
operates on the i’th input table. To support these richer semantics, our implementation synthesizes
multiple different table transformation programs for each layer. To achieve this goal, the inference
procedure for visual programs generates n different intermediate specifications, one for each layer
in the visual program, and we use the same table transformation procedure to synthesize n different
programs.

Ranking. Following the Occam’s razor principle, Viser explores programs in increasing order
of program size up to a fixed bound K . In practice, to leverage the inherent parallelism of our
algorithm, Viser uses multiple threads to search for solutions of different sizes and ranks programs
according to their size.

6 EVALUATION
In this section, we evaluate the effectiveness of our approach on 83 real world visualization tasks
collected from online forums and tutorials for advanced users. The goal of our evaluation is to
examine the following research questions:

(1) Can Viser solve real-world visualization tasks based on small visual sketches?
(2) Does the decomposition of the synthesis task into two sub-problem improve synthesis

efficiency?
(3) Are there any advantages to using our proposed table transformation algorithm compared to

re-using an existing state-of-the-art technique?

6.1 Benchmarks
We evaluate Viser on 83 visualization benchmarks 3, 63 of which are collected from highly-reputed
visualization tutorials for Excel [Duggirala 2019; E90E50 2019; Peltier 2019] and Vega-Lite [Vega-Lite
2019], and 20 of which are collected from the ggplot2 sub-forum on StackOverflow. To collect these
benchmarks, we went through a few hundred visualization examples and retained all tasks that
conform to the following criteria:

(1) The target visualization is expressible in our language. (We note that more than 80% of these
visualizations are expressible in our language and discuss the remaining ones in Section 6.6.)

(2) The example contains the actual input table.

3 Available at https://chenglongwang.org/falx-project
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(3) The task requires some form of table transformation to generate the intended visualization.
(4) There is a way to produce the target visualization based on information in the example.
We have these criteria because (1) tasks that cannot be achieved using our visualization language

are out of scope for this work, (2) we need the raw data as an input to our tool, (3) we do not want
to evaluate on trivial benchmarks, and (4) we need the target visualization to determine if our tool
can produce the correct program.

Among our 83 benchmarks, 40 of them contain subplots or multi-layered charts. Furthermore,
for most benchmarks, the original data source consists of a single table whose size ranges from
4 × 3 to 3686 × 9, with average size 100 × 10.

6.2 Key Results

To evaluate Viser on these benchmarks, we programmatically generated small visual sketches
consisting of 4 randomly sampled visual elements per layer. Specifically, given a target visualization
expressed in our visual trace language, we sampled 4 elements from the corresponding visual trace
and used this as our visual sketch. While the number 4 is somewhat arbitrary, we believe that a
visual sketch with four elements is small enough that it would not be too onerous for users to
construct such a sketch.

Given these randomly generated visual sketches, we evaluated Viser using the following method-
ology. We fixed a time budget t , and we let Viser explore multiple visualization scripts consistent
with the provided sketch within this time budget. Then, for a given value of t , we consider the
benchmark to be solved if any of the programs explored by Viser within that time budget generates
the intended visualization.

Time budget # solved
1s 26
10s 49
60s 62
600s 70

Table 1. Summary of experimental results.

# samples top-1 top-5 top-10 >10
1 14 29 36 66
2 20 37 43 68
3 22 45 53 69
4 26 49 57 70
6 31 52 57 70
8 30 58 63 70

Table 2. Impact of size of visual sketch on the ranking.

The results of this experiment are summarized in Table 1. For a time budget of 600 seconds,
Viser is able to solve 70 out of 83 benchmarks (84%). If we reduce the time budget to a minute, then
Viser can solve 75% of the benchmarks. Furthermore, 59% of the benchmarks can be solved within
10 seconds, and 31% can be solved within one second.

Table 2 explores the same experimental data from a different perspective. Specifically, given
a value k , let us consider a benchmark to be "solved" if the desired visualization is one of the
first-k visualizations returned by the tool. As shown in the first row of Table 2, among the 70
benchmarks that can be solved within the 600 second time limit, 26 (37%) of them are ranked as the
top-1 solution, and 49 (70%) and 57 (81%) are ranked as top-5 and top-10 respectively. Given that
a user can quickly look through 10 visualization results and decide if any of them is the desired
visualization, we believe these results affirmatively answer our first research question.

In Table 2, we also explore the impact of sketch size on synthesis results. Specifically, recall that
we generate the visual sketches by randomly sampling n elements from the target visualization,
and, so far, our discussion focused on the results for n = 4. Table 2 shows the ranking of the desired
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Fig. 14. Comparison of Viser against different baselines

visualization as we increase n to 6 and 8 and decrease to 1, 2, 3 respectively. For cases with more
visual trace samples, since the visual sketch contains more information as we increase n, Viser
synthesizes fewer spurious programs and the ranking of the target visualization improves as a
result. 4 This finding indicates that users can incrementally add more visual elements to the output
example and gradually refine the synthesis results when the initial top-ranked solutions fail to
meet the user’s expectation.

6.3 Evaluating Impact of Decomposition
As mentioned throughout the paper, a key design choice underlying our technique is to decompose
the visualization task by inferring an intermediate specification for each possible visual program.
In this section, we aim evaluate the empirical significance of this decomposition.

To perform this study, we implement a baseline using the following methodology: Similar to
Viser, the baseline first infers a visual program PV consistent with the sketch as discussed in
Section 4.2; however, the baseline approach does not generate an intermediate specification. Then,
during table transformation synthesis, for every enumerated program PT, the baseline checks
whether PV(PT(Tin)) is consistent with the visual sketch. In other words, without the intermediate
specification, table transformation synthesis in the baseline approach degenerates into enumerative
search.

Figure 14a compares the performance of Viser against this baseline without decomposition.
Here, the x-axis shows the time budget per benchmark, and the y-axis shows the percentage
of benchmarks that can be solved within the given budget. Furthermore, the solid green line
corresponds to Viser, and the dashed blue line corresponds to the baseline without decomposition.
As we can see from this figure, having an intermediate specification greatly benefits our synthesis
algorithm. In particular, without decomposition, the percentage of benchmarks solved within a
600s (resp. 120s) time-limit drops from 84% (resp. 80%) to 60% (resp. 49%).

6.4 Evaluating Table Transformation Algorithm
In this section, we evaluate the impact of using our new table transformation algorithm over an
existing technique that addresses the same problem. To perform this evaluation, we use a variant
of Viser that we refer to ViserM that uses Morpheus [Feng et al. 2017] as its table transformation
4The reader may notice that n = 6 does better compared to n = 8 for the top-1 result; this is caused by the random sampling
of visual elements.
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Prod1 61 70 132
Prod2 128 22 47
… … … …

MultiLayer( 
  Line(x=Profit,y=value,  
     color=Product), 

  Scatter(x=Profit,y=value,  
      color=Product))

P1:  
t=mutate(T,Top,Base+Inc) 
t=gather(t,key=[Prod,Profit],    
         value=[Base,Top]) 
t=select(t,[Profit,value,Product]) 
P2: 
t=gather(T,[Prod,Profit],[Base]) 
t=select(t,[Profit,value,Product])
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Fig. 15. Illustration of visualization task #1.

back-end. However, since the original Morpheus tool is written in C++, we instead use a newer
implementation of Morpheus written in Python [Martins et al. 2019] (by the original Morpheus
authors). Furthermore, since Morpheus does not support our table inclusion constraints, we
"translate" the generated intermediate specification to Morpheus’ constraint language. In particular,
given an intermediate specification ϕ, our "translation" infers the strongest formula expressible in
Morpheus’ language, which consists of equality and inequality constraints on the number of rows
or columns of the output table.

The results of this comparison are presented in Figure 14b, which plots the number of benchmarks
that can be solved within a given time budget for both Viser and ViserM. As we can see from
this figure, the table transformation synthesizer proposed in this paper yields much better results
compared to Morpheus. In particular, within a 600s (resp. 120s) time-limit, ViserM can solve 69%
(resp. 58%) of the benchmarks compared to 84% (resp. 80%) for Viser.

6.5 Example Tasks
To give the reader some intuition about the class of tasks that can be automated using Viser, we
highlight three representative visualization tasks from our benchmark set.

Task #1. Figure 15 shows a visualization task involving multiple layers, consisting of a stacked
bar chart and a (multi-layered) line chart. The left-hand side of the figure shows the original data
source, and right next to it, we show the visual sketch (and its corresponding visual trace) that
we use to automate this visualization task. The synthesized visualization script is indicated on
both sides of the arrow (visual program on top; table transformation at the bottom). Finally, the
right-most part of the figure shows the resulting visualization that is obtained by applying the
synthesized script to the input table.

Observe that the synthesized visual program refers to columns such as variable and value that
do not exist in the original table and that are introduced by the table transformation program.
Further, as discussed in section 5, Viser synthesizes as many table transformation programs as
there are layers; thus, we have two separate table transformation programs for this example. The
visualization shown on the right is one of the top-2 visualizations produced by Viser for this
example.

Task #2. Figure 16 shows a scenario in which a user has data on corporate profits and wants
to generate a so-called "cherry chart". Since most visualization libraries do not have a "cherry
chart" primitive, generating this plot requires layering a line chart with a scatter plot. The left half
of Figure 16 shows the input to Viser, and right half shows the synthesized programs and the
corresponding visualization of the entire dataset. As in the previous example, we have multiple
table transformation programs, one for each layer, and both the visual program and the table
transformation programs refer to a column called value that does not exist in the original table and
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Fig. 16. Illustration of task #2.
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Fig. 17. Illustration of task #3.

that is introduced by the gather operation. In this case, the intended visualization shown on the
right is top result returned by Viser.

Task #3. Figure 17 shows a visualization task that requires drawing a so-called "heat map" that
visualizes the number of visits to various websites at each hour on different days. In this case, the
input data is very large and contains close to 2000 rows. Furthermore, the corresponding data
transformation program is quite complex and requires both computation as well as reshaping.
Specifically, the table transformation program computes the total number of website visits for each
one-hour time period, which is stored in a column called sumValue introduced by summarize. The
visual program refers to this new sumValue column to generate the desired heat map. Given the
visual trace shown in Figure 17, the intended visualization (on the right) is ranked within the top
20 visualizations, but if we provide a visual sketch with 8 elements instead of 4, then the intended
visualization is ranked number one.

6.6 Discussion of Limitations
As reported in Section 6.2, Viser cannot synthesize 13 of the 83 benchmarks within a time limit
of 10 minutes. To understand the limitations of Viser in practice, we manually inspected these
benchmarks and explain the insights we gained from our examination. Specifically, we highlight
two reasons that are responsible for Viser not finding the desired visualization within the given
time budget.
• Size of the input table. The size of the input table can affect the performance of Viser

in two ways. First, the search space covered by the table transformation language grows
exponentially as we increase the size of the table. This is because constructs in the table
transformation language use names of columns as arguments, and, furthermore, rows can
become columns during the reshaping process. Second, the table transformation synthesis
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engine tracks table inclusion constraints where one size of the inclusion is a concrete table.
Thus, the larger the initial input table, the more overhead associated with program analysis.
• Complex table transformations. Some tasks in our benchmark suite require very sophisticated

table transformations that Viser is unable to explore within the given time budget. For
instance, some benchmarks that Viser cannot solve within 10 minutes require a combination
of relational operations, string manipulation, column-wise arithmetic computations, and
table pivoting.

In addition, recall from Section 6.1 that approximately 20% of the visualization tasks we inspected
are not expressible in our visualization language. These benchmarks fall into roughly three classes:
(1) visualizations involving continuous functions, (2) visualizations that require custom shapes
provided by the user (e.g., emoji icons), and (3) visualizations that cannot be placed in a standard
coordinate system, (e.g., tree-maps and parallel coordinates).

7 RELATEDWORK
In this section, we survey closely related work on data visualization and program synthesis.

Automation for visualization. There has been significant recent interest in (semi-)automating var-
ious types of visualization tasks. These efforts include both visualization recommendation systems
as well as visualization exploration tools. Among these, visualization recommendation systems like
Draco [Moritz et al. 2019], CompassQL [Wongsuphasawat et al. 2016a], and ShowMe [Mackinlay
et al. 2007] recommend top completions of an incomplete visualization program. On the other
hand, visualization exploration tools, such as VisExamplar [Saket et al. 2017b], Visualization-by-
Sketching [Schroeder and Keefe 2016], Polaris [Stolte et al. 2008], and Voyager [Wongsuphasawat
et al. 2016b, 2017], aim to generate diverse visualizations based on user demonstrations, which
can include graphical sketches, manipulation trajectories, and constraints. All of these existing
systems focus on creating visualizations for a fixed dataset and require the user to prepare the
data for a specific visualization API. In contrast, our approach also handles the data preparation
and wrangling aspect of data visualization and can be viewed as being more user-friendly in this
respect. However, it is worth noting that many of these systems are complementary to the approach
proposed in this paper. For example, our approach can be used in conjunction with existing systems
to rank synthesis results that are consistent with the demonstration. Furthermore, our approach
can work with existing visualization demonstration interfaces [Saket et al. 2017b; Satyanarayan
and Heer 2014] to reduce user effort in creating a visual sketch.

Automating table transformations. Our technique for synthesizing table transformations is related
to several recent techniques for automating data wrangling [Feng et al. 2018, 2017; Harris and
Gulwani 2011; Tran et al. 2009; Wang et al. 2017a; Zhang and Sun 2013]. Among these, Scythe
generates SQL queries from input-output examples and prunes the search space by grouping
partial queries into equivalence classes [Wang et al. 2017a]. The Morpheus system automates table
transformation tasks that arise in R programming and leverages logical specifications of R library
functions to prune the search space using SMT-based reasoning [Feng et al. 2017]. Morpheus’s
successor, Neo, generalizes this technique to other domains and further uses logical specifications
to learn from failed synthesis attempts [Feng et al. 2018]. A unifying theme among all these
prior efforts is that the specification is a pair of concrete input and output tables. In contrast, our
specification does not involve a concrete output table but rather a set of table inclusion constraints;
furthermore, our approach works with the original (potentially very large) dataset and does not
require the user to craft a small representative input table. The large input table assumption is
likely to be problematic for systems like Scythe and Morpheus that require evaluating the partial
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program on the input table. Furthermore, since the output specification is much weaker in our
context compared to existing systems, forward reasoning alone is not sufficient to meaningfully
prune the search space, as demonstrated in our evaluation.

Program analysis for program synthesis. Given the large search space that must be explored by
program synthesizers, a common trick is to perform lightweight program analysis to prune the
search space [Feser et al. 2015; Polikarpova et al. 2016; Wang et al. 2017b, 2018b]. The particular
flavor of program analysis varies between different synthesizers and ranges from domain-specific
deduction [Feser et al. 2015; Wang et al. 2017b] to abstract interpretation [Wang et al. 2018b]
to SMT-based reasoning [Feng et al. 2018; Polikarpova et al. 2016]. Furthermore, some of these
techniques leverage program analysis to construct a compact version space [Polozov and Gulwani
2015; Wang et al. 2018b] while others use it to prune partial programs in enumerative search [Feng
et al. 2018; Wang et al. 2017b]. Similar to these efforts, we also use program analysis to prove
infeasibility of partial programs but with two key differences: First, our analysis is tailored to table
transformation programs and infers inclusion constraints between tables. Second, since neither
forward nor backward reasoning is sufficient to meaningfully prune the search space on their own,
we use bi-directional analysis to improve pruning power without having to resort to heavy-weight
semantics motivated by prior work in program analysis [Chandra et al. 2009; Dhurjati et al. 2006;
Reps et al. 1995] and verification [Wang et al. 2018a]. In this respect, our synthesis method is
similar to Synqid [Polikarpova et al. 2016] which uses a form of bidirectional refinement type
checking to prune its search space. However, unlike Synqid which requires precise refinement type
specifications of components, our method uses lightweight semantics that are tailored specifically
for our table transformation DSL. Furthermore, in contrast to Synqid which leverages an SMT
solver, our method uses a custom, and deliberatively incomplete, solver for checking satisfiability
at low cost.

Compositional program synthesis. As mentioned throughout the paper, our technique decomposes
the synthesis task into two separate sub-problems. In this respect, our method is similar to prior
efforts on compositional program synthesis [Feser et al. 2015; Maina et al. 2018; Miltner et al. 2018;
Phothilimthana et al. 2016; Polikarpova et al. 2016; Polozov and Gulwani 2015; Raza et al. 2015].
Among these techniques, λ2 uses domain knowledge about the DSL constructs to infer input-output
examples for sub-expressions whenever feasible [Feser et al. 2015], FlashMeta (and its variants)
use inverse semantics of DSL constructs to propagate examples backwards [Polozov and Gulwani
2015], and Optician [Maina et al. 2018; Miltner et al. 2018] decomposes the synthesis process using
DNF regular expression outlines. Synqid also tries to decompose the overall specification into
sub-goals using a technique referred to as "round-trip type checking" [Polikarpova et al. 2016]. On
a slightly different note, the technique of Raza et al. [Raza et al. 2015] also performs synthesis in a
compositional way, but it leverages natural language to identify sub-problems and asks the user to
provide input-output examples for each auxiliary task. In contrast to all of these techniques, our
method decomposes the visualization synthesis task into two sub-problems over different DSLs
and uses the inverse semantics of the visualization DSL to infer precise constraints on the input
table. The inferred specification is precise in the sense that any table transformation program that
satisfies this specification is guaranteed to be a valid solution.

8 CONCLUSION
In this paper, we introduced visualization-by-example, a new program synthesis technique for
generating visualizations from visual sketches. Given the original raw data and a visual sketch
consisting of a few visual elements, our technique can automatically synthesize visualization scripts
that yield a visualization consistent with the user’s visual sketch. Our technique decomposes the
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synthesis problem into two sub-tasks by inferring an intermediate specification in the form of table
inclusion constraints. This intermediate specification is then used to guide the synthesis of table
transformation programs using a combination of bi-directional program analysis and lightweight
inference over table inclusion constraints.

We have implemented the proposed method as a new tool called Viser that allows users to explore
different visualizations for the entire data set based on a small visual sketch. Notably, and unlike any
other visualization tool, Viser can perform any necessary data wrangling tasks, including reshaping
and aggregation. We have evaluated Viser on a benchmark suite consisting of 83 visualization tasks
obtained from on-line forums and tutorials. Given a visual sketch consisting of four visual elements
and a time budget of 600 seconds, Viser can solve 84% of these tasks. Furthermore, among the 70
tasks that can be solved within the time budget, the desired visualization is ranked within top 5
in 76% of the cases. Beyond showing that Viser can help automate real-world data visualization
tasks, our evaluation also confirms the importance of decomposing the synthesis task as well as
the necessity of our proposed table transformation synthesizer.

In the near future, we are interested in integrating Viser with visual demonstration interfaces
proposed in the visualization literature. Such interfaces can make Viser more user-friendly by
providing a graphical user interface that allows users to draw visual sketches rather than write
visual traces in a semi-formal language. We also plan to improve the search heuristics underlying
Viser so that visualization scripts that generate the intended visualization are more likely to be
explored first.
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A APPENDIX
A.1 Full Visualization Language
In this section, we present definitions of the full visualization language LV and the full trace
language Lτ we use in practice for the visualization by example task.

PV = MultiPlot(SP , crow, ccol) | SP (Faceted Chart)
SP = MultiLayer(L̄) | L (Layered Chart)

L = Scatter[mark](cx , cy , cshape, ccolor , csize, ctext) (Scatter Plot)
| Line(cx , cy , cwidth, corder , ccolor , cdetail) (Line Chart)
| Bar(cx , cx2 , cy , cy2 , ccolor , cwidth) (Bar Chart)
| StackedBar[orient](cx , ch , ccolor , cwidth) (Stacked Bar Chart)
| Area(cx , cx2 , cy , cy2 , ccolor ) (Area Chart)
| StackedArea[orient](cx , ch , ccolor ) (Stacked Area Chart)

c = column | ϵ
mark = point | circle | text | rect | tick
orient = horizontal | vertical

Fig. 18. The full visualization language LV.

Figure 18 defines our full visualization language LV. A visual program PV either creates a grid
of multiple plots using the MultiPlot construct or a single plot SP (where grid index for each
subplot is determined by its value in column ccol and crow). Each plot can in turn consist of multiple
layers (indicated by the MultiLayer construct) or a single layer. Each layer is either a scatter plot
(Scatter[mark], where the paramter mark decides the shape of scatter points), a line chart (Line),
a bar chart (Bar), a stacked bar chart (StackedBar), an area chart (Area) or a stacked area chart
(StackedArea). The MultiLayer construct in this language is used to compose different kinds of
charts in the same plot (e.g., a scatter plot and a line chart), as our visualization language is already
rich enough to allow layering the same type of chart within a plot.

Visual traces encode semantics of visualizations. A visual trace, denoted τ , is a set of basic
visual elements, i.e., point, line, barH (horizontal bar), barV (vertical bar), or area, together with
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τ = {e1, . . . , en}
e = barV(ax ,ay1 ,ay2 ,awidth,acolor ,acol,arow) (Vertical Bar)
| barH(ay ,ax1 ,ax2 ,awidth,acolor ,acol,arow) (Horizontal Bar)
| point(ax ,ay ,ashape,acolor ,asize,acol,arow)
| line(ax1 ,ay1 ,ax2 ,ay2 ,awidth,acolor ,acol,arow)
| area(axt l ,ayt l ,axbl ,aybl ,axtr ,aytr ,axbr ,aybr ,acolor ,acol,arow)

mark = point | circle | text | rect | tick

Fig. 19. The full trace language Lτ , where metavariable a refers to constants.

the attributes of each element (position, size, color, etc.). Figure 19 shows the language in which we
express visual traces. Here, e denotes a visual element, and a is an attribute of that element:
• Color attribute: This attribute, denoted acolor specifies the color of a visual element.
• Position attributes: Position attributes, such as ax ,ax1 ,ay2 etc., specify the canvas positions

for a visual element. For line, (ax1 ,ay1 ) and (ax2 ,ay2 ) specifies the starting and the end points
of a line segment. For the bar visual element, ay1 ,ay2 specify the start and end y-coordinates
of a (vertical) bar. Similarly, attributes axt l ,ayt l ,axbl ,aybl ,axtr ,aytr ,axbr ,aybr specity x ,y
positions of top left / bottom left / top right / bottom right corners of an area element.
• Size / Shape attributes: Attributes asize and ashape specify the size and the shape variation of a

given point element in a scatter plot.
• Width attribute: The attribute awidth specifies the width of a given barH / barV / Line element.
• Subplot attribute: Attributes acol,arow specify the subplot that a given visual element belongs

to. For instance, a point with acol = 1 and arow = 2 belongs to the subplot located the first
column and second row of visualization containing multiple plots.
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