
SPRING 2005

1

Many organizations need to pro-
vide accurate and up-to-date informa-
tion on their web pages. While this
task is relatively straightforward for
micro sites with fewer than 10 pages,
large and frequently revised websites
benefit greatly from the use of a con-
tent management system (CMS) [1]. A
CMS allows people to easily enter or
update information without knowing
anything about the details of HTML
or webpage implementation.

Most of the well-known tools
([2], [3] and [4]) for web content
management target very large and
structurally uniform sites such as on-
line stores. In such websites, every
product has certain pieces of informa-
tion attached to it, such as a price tag,
a picture, and a description, making
the structure uniform and allowing a
single pre-prepared template to fit each
product [5]. Many commercial tools

are available for updating such struc-
turally uniform websites, but there
are no convenient means of managing
content when the nature of the infor-
mation is variegated and when future
revisions are unforeseeable.

Problems associated with a lack
of CMS for structurally heterogeneous
websites arise especially for scientists
who need to share newly-acquired ex-
perimental data through their websites.
For instance, biologists often need
to conveniently post downloadable
DNA sequences and new microarray
data on their website to allow new
experimental data to be shared among
collaborators and fellow specialists.
They also need to incorporate tools
for comparative genomics into their
websites. In cases like this where the
information posted on the web has no
homogeneous structure, expert web-
page implementers must be consulted

before any new information can be
shared via the Internet. However, a
CMS to handle structurally-heteroge-
neous content eliminates this need and
allows research groups and business
organizations to enter new information
conveniently and without significant
delay.

In this paper, we discuss the
implementation of a CMS that works
also for structurally heterogeneous
websites. This CMS is based on
atomic units of information (AUI)
nested hierarchically. A webpage is
constructed by nesting together many
different kinds of AUI’s, where each
kind corresponds to a unique struc-
tural scheme. This technique of using
hierarchically-arranged AUI’s helps
to differentiate between distinct kinds
of structural information and allows
content to be entered within a strictly
hierarchical relationship that makes

Publishing Content on the Web
Content Management fitting any structure

Computer Science

We propose a method for dynamic content management of large and structurally
heterogeneous websites. The content management system (CMS) discussed in this
paper allows even non-specialists to easily update webpages and add new ones
without knowing anything about the details of the HTML language. The database
driven implementation of this CMS adopts a recursive structure that constructs a
complex web page using structural units like a layout table to arrange the elementary
atomic units of information. This CMS completely separates content from structure
and always guarantees well-formed websites, including a well-formed navigation
structure. This system is currently used by the Carnegie Institution’s Department of
Plant Biology as a tool for expanding their project website and for incorporating
new experimental data with highly heterogeneous structure.

Isil Ozgener and Thomas Dillig

SURJ

22

it almost impossible even for a non-
expert to delete crucial information
from the website.

Content on One Page

In our implementation of this
CMS, we differentiate between fi ve
distinct types of AUI that compose a
typical webpage: Text, Image, Hyper-
link, Downloadable File, and Scripting
Module. Text represents plain HTML
text with a specifi ed format; Image al-
lows the user to insert image fi les with
an optional caption. Downloadable
fi les are any binary or text data down-
load such as a PDF fi le. Finally, Script-
ing Modules are any script (i.e. code)
written to perform a special function
such as displaying a news ticker.

Any information on one given
page can be represented as a col-
lection of these AUI’s. However, in
order to structure these elements we
need to defi ne relationships between
them. The relationship between these
AUI’s is defi ned via the atomic unit
of structure (AUS) within one page.
An AUS, which we more informally
name a “layout table”, groups zero
or more AUI’s or AUS’s together and
defi nes the displayed layout of the
information. This grouping, however,
is only uni-level, resulting in at most
one other object per cell. Graphically,
each AUS corresponds to a graph node
with one parent and multiple (possibly

zero) children, where all children are
mapped to fi xed screen layout. The
exact nature of this mapping needs to
be defi ned for each AUS. For instance,
layout tables map each child to its
row/column position on the screen
(see Figure 1).

Therefore, AUS’s and AUI’s
recursively defi ne a Page Structure
Graph (PSG), which represents the hi-
erarchical content structure displayed
on a webpage. The PSG for any well-
formed structure is always guaranteed
to be a tree. The root of this tree is a
special node containing a list of objects
– i.e AUI’s or AUS’s- , mapped to a
simple consecutive screen layout (see
Figure 2). Effectively, the root of the
PSG is a default AUS that allows only
one column and has as many rows as
the number of its children. The leaves
of a PSG are always AUI’s. To add a
new object to the PSG, it’s suffi cient to
state its parent to uniquely determine

its place in the PSG. The default parent
of any newly created object is the root
node of the PSG. The implementation
of the PSG as a tree structure makes it
especially easy to move content within
a page from the user’s perspective.
The user only needs to specify a new
parent for the object to reorganize the
PSG and hence the displayed layout
of the webpage. As discussed later,
this approach generalizes across page
boundaries. Figure 2 gives an example
of a typical PSG. Here, the root con-
tains a list consisting of one image
and one layout table. This layout table
contains a link and an image as chil-
dren. The transition between Figure
2a and Figure 2b shows how one can
reorganize information within a PSG.
For instance, if we want “link 1” to be
another child of the root, we simply
specify it as a child of the root, which
also automatically deletes it from
among the children of layout table 1.

Structuring Multiple Pages

 Just as the PSG describes
an ordering of objects resulting in a
specifi c screen layout, the SSG de-
scribes an ordering of pages resulting
in a specifi c navigational structure.
While the kind of navigational links
displayed may vary for each different
site, the complete navigation structure
is determined by the SSG. Also, the
navigation scheme is completely unaf-
fected by any structural changes once

Figure 1: An AUS such as a layout table defi nes how information is displayed on
the webpage, where each piece of information can be an AUI or another AUS.

Figure 2: A typical PSG. The transition between Figure 2a and Figure 2b illus-
trates how the structural layout of information on the webpage can be changed
by an adjustment in the PSG.

SPRING 2005

3

that navigation scheme is specifi ed for
the website. Because our structure is
guaranteed to always preserve mean-
ing, it is impossible to “break links” or
distort the structure in any way while
updating or adding content.

The SSG is therefore constructed
out of page nodes, each page being a
PSG graph. Figure 3 illustrates an ex-
ample of a small SSG. The root node
contains some basic information about
the page and some pictures and has two
child pages, each with its own content.
Also, “Page 4” of Figure 3 is not con-
nected to the root and therefore not vis-
ible to website visitors. Nonetheless,
“Page 4” can be made reachable from
the navigational structure by specify-
ing its parent page. Furthermore, one
can also add part of the content of
“Page 4” to any other PSG to make
it “visible” within the navigational
structure. Implementing an SSG as an
acyclical graph rather than as a tree has
some advantages. Since an acyclical
graph allows disconnected parts, we
can easily temporarily deny access
to certain pages by not specifying its

parent without having to completely
remove the page.

Another advantage of the SSG
structure is that we can easily move ob-
jects across different web page bound-
aries rather than just within a single
page. Just as a PSG remains valid if
we change the ordering in the graph
while obeying the afore-mentioned
restrictions, the site structure also
remains valid when moving objects
between pages. Here, for example,
we can move “image 3” into the root
level of “Page 2” by incorporating it
into the PSG that defi nes “Page 2.” The
same holds true for moving any piece
of content, resulting in a site-wide
separation of content, structure, navi-
gation and design that is applicable to
any web page.

Implementation

We chose to implement the ideas
discussed above using a standard SQL
database and readily available free
software components. The code base
was written in PHP (Version 5), and

we chose Apache and MySQL for
hosting the data ([6], [7]). Our system
is composed of two parts, the display
engine and the content modifi cation
framework. The display engine re-
ceives the page requests sent by web-
site visitors and generates the actual
web page. In other words, the display
engine queries the SQL database and
builds an HTML representation from
this retrieved information. The content
modifi cation framework allows the us-
ers of this CMS to change and update
the web content.

The Display Engine

The display engine performs two
distinct tasks by retrieving information
from the SQL database. First, it queries
the site structure graph to generate a
navigation bar that is displayed ac-
cording to a pre-defi ned template. Our
implementation displays a navigation
bar on the left side of a web page
and displays the parent, children,
and siblings of the current page in a
hierarchical fashion. In addition, we
utilize the same navigational structure
information retrieved from the SSG
to display a “depth indicator” at the
top. The depth indicator shows all the
ancestors of the current page, thereby
allowing the user to go back to any
parent page within the website (see
Figure 4).

The second task performed by the
display engine is to retrieve the content
information of the current page from
the PSG. As discussed before, this
information retrieved from the PSG
defi nes content as well as structure. We
translate the retrieved information into
HTML whenever a visitor requests a
web page. Default header fi les and
pre-defi ned style sheets which defi ne
default color, spacing, and alignment
dictate how information is to be pre-
sented on the web page.

Figure 3: The relationship between an SSG and PSG’s. Each PSG is a node of
the SSG. The SSG defi nes the navigational structure of the website while the
PSG represents the mapping between information and layout on any given page.

SURJ

44

The Content
Modifi cation Framework

The content modifi cation frame-
work, here referred to as CMF, is a
user-friendly environment that allows
even non-technical users to easily
update and add content. Because this
framework is meant to be used by any-
one operating the website to modify
information, the ease of use as well as
elimination of redundancy were the
paramount design goals. The complete
interface is accessed through web
pages in order to ensure independence
from the client’s operating system.
Access to this interface is restricted by
username/password combinations.

After accessing the CMF, the
user is presented with a list of pages
currently available from within the
site (see Figure 5). If the user wishes
to create a new page, the parent of this
page needs to be specifi ed. A page is
allowed to be deleted only if it has
empty content and has no children in
the SSG. With these stipulations, the
SSG is always guaranteed to be well-
formed without restricting fl exibility
and prevents accidental deletion of
crucial pieces of information.

If an existing page is selected,
all the content on the web page is
displayed according to the structure

indicated in the PSG so that the user
can get a feel for what the real web
page looks like. The user can eas-
ily create, modify, and delete AUI’s
and AUS’s. It is also convenient to
change the location of an AUI within
the current page and to move it to a
different page as discussed before (see
Figure 6). Any allowed operation is
guaranteed to result in a valid PSG.
Graphically, moving content can be
viewed as specifying a different parent
for a given subtree of the PSG, where
the parent can be an AUS within the
current page or in a different page.
Here, extensive checks are necessary
to ensure the legality of a move opera-
tion. For example, it is illegal to move
a node into some part of its own sub-

Figure 4: A page taken from the Carn-
egie Plant Biology website developed
using the CMS discussed in this paper.

Figure 5: A user-friendly CMF shows
all pages that are reachable in this
website

Figure 6: The content of one page,
composed of one AUS (here Table1)
and many AUI’s. The structure of
content represents the structure of the
PSG.

Figure 7

Figure 8: Text can either be manually
entered or imported as an RTF docu-
ment.

Figure 9: Images can be easily
uploaded and resized without using
external tools like Photoshop.

SPRING 2005

5

tree (see Figure 7). All the algorithms
employed for this purpose are based
on standard graph-traversal techniques
and are a major source of complex-
ity in implementing this stage. For
an overview of the major algorithms
modified for our purposes, see [8].

Every AUI and AUS can be added
to the page currently under modifica-
tion. Because AUI’s always form leaf
nodes in the PSG, only their content
and parent needs to be specified when
creating them; no layout information
is necessary to fully define an AUS.
For the AUI type “Text”, the user
can enter text with its correct HTML
tags, such as those that define bold,
italic, etc. (see Figure 8). In addition to
specifying text using HTML tags, our
system offers an RTF (rich text format,
[9]) to text converter which automati-
cally converts an RTF document to
its HTML representation. The RTF
format was chosen as a least common
denominator, since all current text
processing tools allow the user to save
in RTF. The tool used in our implemen-
tation is a modified version of RTF to
HTML, which discards any formatting
applied to the RTF document and only
extracts headings, paragraphs and bul-
leting/numbering [10]. Even though
this process is based on heuristics, it
does a reasonably good job when add-
ing content to our reference page. Out
of 17 documents added to our test site,
all of which were at least a page long,

only six mistakes had to be corrected.
While this fact was not established in
a statistically significant way, the tool
greatly reduces the effort and time
required to publish existing Word/Text
Processing documents as part of a web
page—an extremely frequent need in
many organizations.

Images are added in a similar
fashion (see Figure 9). In addition to
simply uploading the file, the user can
also perform basic editing options such
as resizing or turning. This feature,
combined with a tool provided by our
interface to resize every image to “rea-
sonable” dimensions, makes the task
of posting images easy and reliable for
even the most inexperienced users. If
a certain website features many pages
with identical images, it will be more
desirable to create an “image alias”
pointing to one image to allow for easy
duplication. However, the complexi-
ties introduced by this solution are
real and its benefit is doubtful for sites
benefiting most from this interface.
Downloads and links are analogues
to the AUI’s already described; there
are no special features associated with
them.

When adding an AUS, the user
is first asked to choose the dimensions
of the layout table he/she wishes to
use for content. At this stage, all the
auxiliary attributes such as spacing
and alignment are also specified. Then,
already existing content on the current

page can be added to any field in the
table if desired. The table size as well
as all of its attributes and children can
also be changed.

Conclusion

We described a content manage-
ment system that can deal with any
arbitrary structure and content while
accomplishing the prime goals of any
CMS: ease of content modification,
separation of content and structure,
and guaranteed well-formed pages.
There are no restrictions on the kind
of content that can be displayed. Even
if it cannot be built form one of the
described AUI’s, the modularity of
our solution allows new AUI’s to be
introduced very easily.

 The most significant hurdle is
performance. Every page construction
by the display engine consists of mul-
tiple database queries and code to be
executed. Even though we found this
solution to scale extremely well to me-
dium load, it cannot handle extremely
high volume sites. This however can
be easily compensated by caching.
Many commercial and free tools exist
for this purpose and a special version
that regenerates pages only when the
content has changed is in planning for
our system [11].

 Our system is currently de-
ployed at the Carnegie Institute,
Department of Plant Biology (http://
fumarole.stanford.edu).

Acknowledgements

The system described in this paper was developed in the summer of 2004 at the Carnegie Institute of Washington,
Department of Plant Biology, as a result of Dr. Arthur Grossman’s and Dr. Devaki Bhaya’s wish for a totally flexible
web-page design instrumental to their work. We would like to thank Dr. Bhaya and Dr. Grossman for their excellent
mentorship and steadfast support for our project.

SURJ

6

References

1. Dudek, David and Wieczorek, Heidi. “A simple web content management tool as the solution to a web site
 redesign.” Proceedings of the 31st annual ACM SIGUCCS conference on User services, September 2003.

2. Sitecore .NET CMS. http://www.sitecore.net/.
3. The OpenCMS project. http://www.opencms.org/.
4. Vignette. http://www.vignette.com/.
5. Challenger, Jim, Iyengar, Arun and Witting, Karen. “A Publishing System for Efficiently Creating Dynamic

 Web Content.” Proceedings of IEEE INFOCOM, 2000.
6. PHP – Hypertext Preprocessor. http://www.php.net/
7. MySQL – The World’s Most Popular Open Source Database. http://www.mysql.com/.
8. Sedgewick, Robert. Algorithms in C++. Addison-Wesley Publishing, 1992.
9. RTFtoHTML. http://www.pa.msu.edu/reference/rtftohtml-docs/rtftohtml_overview.html/.
10. RTF Standard Version 1.6. http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
 dnrtfspec/html/rtfspec.asp/
11. K. Selcul Candan, Wen-Syan Li, Qiong Lup, Wang-Pin Hsiung Divyakant Agrawal. Enabling Dynamic
 Content Caching for Database-Driven Web Sites. ACM SIGMOD, May 2001.

Thomas Dillig and Isil Ozgener

Thomas Dillig is a junior, who is majoring in computer science and
minoring in Management Science and Engineering. Tom was born in Munich,
Germany.

Isil Ozgener is also a junior, majoring in computer science and minoring
in mathematics. She is originally from Istanbul, Turkey.

Tom and Isil are currently both interested in areas of computer science
related to program analysis and verification. They are both planning on
pursuing doctoral degrees in Computer Science after getting their
bachelor’s degrees next year.

