SIMD in JavaScript via C++ and Emscripten

Peter Jensen
Intel Corporation
peter.jensen@intel.com

Ivan Jibaja
Intel Corporation
ivan.jibaja@intel.com

Ningxin Hu
Intel Corporation
ningxin.hu@intel.com

Dan Gohman
Mozilla
sunfish@mozilla.com

John McCutchan
Google Inc.
johnmccutchan@google.com

1. Abstract
Emscripten, Mozilla’s C/C++ to JavaScript compiler, can be used to port existing native C/C++ applications to the Web platform. When paired with a fast JavaScript engine, the applications run at near-native speeds. However, compute intensive C/C++ applications, such as games and media-processing, making use of SIMD intrinsics or gcc style vector code cannot achieve near-native speed, because JavaScript does not have language support for expressing SIMD operations. This paper presents SIMD.JS, an evolving new JavaScript standard, enabling SIMD operations at the JavaScript language level, and extensions to Emscripten, enabling compilation of C++ programs that make use of SIMD intrinsics or gcc style vector code. An extensive subset of available C++ SIMD x86 intrinsics is supported. Using Emscripten, we show how C/C++ SIMD programs are compiled into JavaScript resulting in equivalent speedups compared to scalar code. The new powerful combination of SIMD.JS enabled JavaScript engines and Emscripten’s newly added ability to utilize the SIMD.JS primitives for it’s code generation will allow a new set of compute intensive C/C++ applications to be ported to the Web platform, thereby enabling the next leap in performance on the web platform.

2. Introduction
Games, multimedia, image and video processing, and other compute intensive applications are being ported to JavaScript and made available on the Web. A popular approach for porting existing applications, originally written in C/C++, to the web, is to use Mozilla’s Emscripten C++ to JavaScript compiler. Emscripten compiles C/C++ source code into a subset of JavaScript, known as asm.js. Modern JavaScript engines are able to execute the asm.js JavaScript subset at near-native speeds without the use of any plugins. Historically, plugins have been the source of many security and instability issues in web browsers, so avoiding those is highly desirable.

Typically, compute intensive C/C++ applications will make use of SIMD/vector code to achieve the desired performance. However, because JavaScript does not have an equivalent way of expressing SIMD operations, the JavaScript code resulting from compiling the C/C++ applications via Emscripten is missing out on potentially significant performance gains.

With the recent introduction of SIMD.JS; a new JavaScript language proposal, it is now possible to use SIMD JavaScript primitives to improve performance of critical code, thus making better use of the SIMD hardware’s full potential.

This paper explores the implementation and evaluation of Emscripten’s ability to generate SIMD.JS code from its native C/C++ intrinsics counterparts. We present performance data for a set of SIMD/vector benchmarks written in C++ and an equivalent set of benchmarks handwritten in JavaScript. The SIMD vs. scalar speedups for the natively compiled C++ benchmarks is compared to the speedups for the handwritten JavaScript benchmarks as well as for the benchmarks compiled into JavaScript from the C++ benchmarks. Google’s V8 and Mozilla’s SpiderMonkey JavaScript engines are used for JavaScript execution.

3. SIMD.JS
SIMD is short for Single Instruction, Multiple Data. It refers to CPU instruction level data parallelism. Most modern CPUs have a significant portion of their available instructions dedicated to operating on data in parallel. Typically, those instructions will perform the same operation on elements in short vectors, e.g. vectors of length 4, 8, or 16. Use of these instructions leads to increased performance, because more data processing is achieved with fewer instructions executed, and fewer instructions also means power savings, which is of utmost importance on mobile battery powered devices. Figure 1 shows how four scalar additions are combined into a single operation.

JavaScript is quickly emerging as one of the most popular languages among software developers. It was originally used for simple web page scripting for creating interactive web pages. Around 2008, very efficient and high performance JavaScript engines emerged (e.g., Firefox’s TraceMonkey [?] and Chrome’s V8 engines). Since then, JavaScript has become a viable language for things beyond just basic web page interactivity, as witnessed by it’s use in large web based applications, such as office applications; e-mail, document processing, etc. Also, large games, which were previously standalone, natively compiled programs, have been ported to JavaScript to run within the browser environment. More recently, JavaScript has been adopted as a server side scripting language (node.js), and lately, JavaScript has found it’s
way to the mobile platform as a language that offers better portability between the different mobile platforms without sacrificing performance and features. For example, platform sensors (location, accelerometers, etc) are accessible from JavaScript via W3C APIs.

Even with the past 7 years of JavaScript performance advances, the desire for better performing JavaScript engines has not lessened, quite the contrary. It’s a spiral that keeps on going; better performance leads to more uses, more uses require better performance. Specifically, software that uses data parallelism to achieve adequate performance have, so far, been restricted to natively compiled languages, such as C++, because such languages offer ways of utilizing the SIMD instructions available in modern CPUs. JavaScript has only one number type, Number, which is an IEEE-754 floating point number, and JavaScript offers no abstraction primitives for writing algorithms utilizing data parallelism, so it’s imperative that this shortcoming is dealt with, such that the next leap in JavaScript performance is made possible. This is what the SIMD.JS proposal addresses.

SIMD.JS is an emerging standard developed collaboratively by Intel, ARM, Mozilla, Google, and Microsoft. It provides low level data types and operations that map well onto the available SIMD instructions of the underlying hardware. Currently, the defined data types and operations are a representative and useful overlap between SIMD types and operations available in most modern CPUs.

The SIMD.JS proposal is structured as an object hierarchy, with SIMD being the top level global object. The immediate properties between SIMD types and operations available in most modern CPUs. Currently, the defined data types and operations that map well onto the available SIMD instructions of the underlying hardware. JavaScript provides low level data types and operations that map well onto the available SIMD instructions of the underlying hardware. Currently, the defined data types and operations are a representative and useful overlap between SIMD types and operations available in most modern CPUs.

Figure 1. Replacing four scalar additions with one SIMD addition

Figure 2. SIMD.JS object hierarchy

Figure 3. SIMD JavaScript code for finding the average of an array of numbers

Figure 4. JIT compiler generated code for the for loop in the average function

The polyfill also serves as documentation for the semantics and approval process.

As an example use case, Figure 3 shows the SIMD JavaScript code for finding the average of an array of floating point numbers. The numbers are held in a Float32Array typed array; data. The benefit of using SIMD operations, for computing the average, is that four numbers can be added in one operation, thereby reducing the number of iterations by a factor of 4, and achieving an equivalent speedup.

The optimizing Just-In-Time (JIT) compiler in our Chrome/V8 SIMD enabled prototype is able to produce the code in Figure 4 for the body of the loop. The code shows how the compiler is able to utilize 128-bit SIMD registers (xmm) to hold the value of sum and to use the addps instruction for adding 4 single precision numbers in one instruction. The details for this code snippet are as follows:

- line 1-2: Check the loop index, i, against the upper bound and exit the loop if upper bound is encountered. eax holds the loop index and edx holds the upper bound.
- line 3-4: Check to enable the JavaScript engine to abort the execution, if the loop has been running for too long. It will prevent a user program from hanging the browser.
- line 5-11: Bounds check for the SIMD float32x4 load operation. eax holds the index and ecx holds the upper bound.
- line 12: Load the 4 32-bit float values. edi holds the base address of the data. The reason the index is multiplied by 2 and not 4 is that the V8 represents integers in bits 1-31, so the value in eax is already holding the value of the index variable times 2.
- line 13-14: Add the four 32-bit float values.
```c
float averageScalar(float *a, uint32_t length) {
    float sum = 0.0f;
    for (uint32_t j = 0, l = length; j < l; j = j + 4) {
        sum = sum + (*(a++));
    }
    return sum/length;
}
```

Figure 5. Scalar C code for the `average` function

```c
function _averageScalar(&$a, $length) {
    $a = &a | 0;
    $length = $length | 0;
    var $addr$06 = 0, $add = 0.0, $j$05 = 0;
    $sum$0$lcssa = 0.0, $sum$04 = 0.0, sp = 0;
    sp = STACKTOP;
    if (($length | 0) == 0) {
        $sum$0$lcssa = 0.0;
    } else {
        $addr$06 = $a;
        $j$05 = $j$05 + 4
        if (($j$05 | 0) < $length >>> 0) {
            $sum$0$lcssa = $add;
            break;
        } else {
            $addr$06 = $a$addr$06 + 4 | 0;
            $sum$04 = $add;
        }
    }
    return +(+$sum$0$lcssa / +(+$length >>> 0));
}
```

Figure 6. JavaScript code generated by Emscripten for the `averageScalar` function

```
var buffer = new ArrayBuffer(TOTAL_MEMORY);
HEAP8 = new Uint8Array(buffer);
HEAP16 = new Uint16Array(buffer);
HEAP32 = new Uint32Array(buffer);
HEAPU8 = new Uint8Array(buffer);
HEAPU16 = new Uint16Array(buffer);
HEAPU32 = new Uint32Array(buffer);
HEAPF32 = new Float32Array(buffer);
HEAPF64 = new Float64Array(buffer);
```

All of these typed arrays are views on the same array buffer, so they all access the same physical memory. Notice that the index expression `&aaddr$06 >> 2` is shifted right by 2. This is because `$addr$06` is a byte address, and elements in the HEAPF32 are 4 bytes each.

To enable the JavaScript JIT compilers to generate efficient code two type coercion tricks are used.

For integers and pointers the `expr | 0` is used to guarantee that the type of the resulting expression is a 32-bit integer. JavaScript semantics of the the bitwise `|` expression dictate that the resulting expression is a 32-bit integer. A side effect of pointers being 32-bit integers is that compiled C/C++ programs are restricted to a 32-bit address space.

For floating point numbers, the unary `+` operator is applied, because JavaScript semantics dictate that the resulting expression is a floating point number.

Emscripten has been successfully used to compile very large C/C++ code bases (+100K lines of code). For example both Epic’s and Unity’s game engines have been ported, using Emscripten [? . Game engines are one example of software that will have optional implementations of performance critical portions of the code implemented using SIMD features. Since, JavaScript hasn’t had a way of utilizing these powerful low level SIMD features of the CPU, Emscripten has not been able to compile these highly tuned implementations of the performance critical sections of the code. However, with the introduction of SIMD.JS, Emscripten will
5. Compiling C++ with SIMD intrinsics

Figure 7 shows a typical SIMD implementation of the average function in C, using x86 SIMD intrinsics.

The _m128 type holds 4 32-bit float numbers. The _mm_add_ps function calls are the SIMD intrinsics, which operates on single precision _m128 values. For example, the _mm_add_ps intrinsic maps to the x86 addps instruction, which adds 4 32-bit float numbers in one operation. This allows the iteration count to be reduced by a factor of 4, resulting in an equivalent speedup.

The resulting JavaScript code of Figure 8 produced by Emscripten is shown in Figure 9. The generated JavaScript code is virtually identical to the code resulting from the C code using intrinsics. If possible, developers should be encouraged to write their SIMD code using this more universal syntax.

6. Benchmarks

We’ve created a set of benchmark kernels. The kernels are written in both C++ and JavaScript. Each kernel will have both a scalar implementation and a SIMD implementation.

The C++ SIMD implementation is done using x86 intrinsics. The C++ kernels are compiled with both the C++ clang compiler and with the Emscripten compiler. This gives us a basis for comparing SIMD/Scalar speedups for both C++ and JavaScript as well as C++/JavaScript performance differences. For the JavaScript execution we’ve used our two SIMD enabled JavaScript engines; V8 and SpiderMonkey.

The benchmarks are written such that each kernel operation is executed as many times as it takes for it to run in about a second. This guarantees that the optimizing JavaScript JIT compilers kick in, which is essential for optimal performance.

When creating SIMD optimized code from scalar code, there are basically two approaches: 1) Combine a sequential sequence of scalar operations into SIMD operations, and 2) Combine multiple iterations of simple loops, by replacing the scalar operations with equivalent SIMD operations. Typical examples of 1) are matrix/vector operations, where there’s no loops involved with the computations, and a typical example of 2) is the average example shown previously. We cover both of these two types of SIMD optimizations in the benchmarks we’ve written.

The benchmark kernels we’ve collected performance data for are:

- **AverageFloat32x4**: Average 10,000 32-bit float number. The SIMD version of this kernel will use SIMD instructions in the loop to perform vector versions of the equivalent scalar operations, thereby achieving an iteration count reduced by the vector length (4). This kernel for the example used throughout the previous examples.
- **Mandelbrot**: ? Compute how many iterations it takes for $z(i+1) = z(i)^2 + c$ to diverge for seed point c = (0.01, 0.01).
Divergence is determined by $z^{*2} > 4$. Different seed points will typically diverge after different number of iterations. This results in a non-trivial SIMD/vector implementation, since the control flow in the loop will differ for different seed points. Our implementation relies on computing an increment vector, with 0 for the vector elements that have already diverged, and 1 for the elements that haven’t. However, for the chosen seed point the series never diverges, so the loop always runs up to the maximum number of iterations allowed. The maximum number of iterations for this kernel is set to 100. The scalar version of the kernel will compute the iteration count for one seed point, and the SIMD version will compute the iteration count for four seedpoints. As an example of how all the benchmark kernels are structured we’ve shown the handwritten JavaScript and C++ version of this kernel in Figure 11 and Figure 10.

- **MatrixMultiplication**: Multiply two 4x4 matrices. For each element in the resulting 4x4 matrix, 4 scalar multiplications and 3 scalar additions are required. The SIMD version will rearrange the source data, using a shuffle operation, and compute an entire row in the result matrix with 4 SIMD multiplies and 3 SIMD additions.

- **VertexTransform**: Multiply a 4x4 matrix with a 4 element vector. This is a common CPU side operation for creating projection matrices for webGL shaders. Typically, it’s used to compute a transformation for a point in 3D space, e.g. rotation around an axis. For each element in the resulting 4 element vector, 4 scalar multiplies and 3 scalar additions must be computed. The SIMD version will compute all 4 elements, using SIMD multiplies and adds, thereby reducing the number of multiply and add instructions. Some shuffling is required to get the input data into the right lanes.

- **MatrixTranspose**: Transpose a 4x4 matrix. This is also a common operation, when doing vector/matrix algebra. Rows are made into columns. The scalar kernel, simply moves the 16 elements around one by one. The SIMD version uses 8 shuffle operations.

- **MatrixInverse**: Compute the inverse of a 4x4 matrix. This is a complex operation, involving hundreds of multiplies and add operations. There are several different ways of computing the inverse of a matrix. Here we have chosen a method called the Cramer rule [7]. This kernel is the most compute intensive.

The sources for the C++ benchmarks can be found here [7], and the sources for the handwritten JavaScript benchmarks can be found here: [2].

7. Results

We’ve collected performance results for these combinations:

- Natively compiled C++
- Handwritten JavaScript executed with V8
- Emscripten produced JavaScript from C++ implementation executed with V8
- Emscripten produced JavaScript from C++ implementation executed with SpiderMonkey

All performance numbers were collected while running on an Intel(R) Core(TM) i7-4770K CPU @ 3.50GHz.

Note, we’re not yet able to run ‘generic’/handwritten SIMD JavaScript code efficiently with SpiderMonkey. SpiderMonkey uses two different JIT compilers; one for ‘generic’ JavaScript code (IonMonkey) and another for the asm.js JavaScript subset (Ondin,...
Only the OdinMonkey JIT compiler has been adapted to work with the SIMD operations.

7.1 SIMD vs. Scalar

Figure 12 shows the relative SIMD vs. Scalar performance of the four combinations. Greater than 1 means that the kernel ran that much faster than the corresponding scalar kernel.

Both the Average and Mandelbrot benchmarks show a 4x speedup. This is inline with expectations since the SIMD version of the kernel have four times fewer iterations.

7.2 Scalar C++ vs. JavaScript

Figure 13 shows the relative scalar C++ vs. JavaScript performance for each of the four combinations. Less than 1 means that the JavaScript kernel ran that much slower than the corresponding C++ kernel.

7.3 SIMD C++ vs. JavaScript

Figure 14 shows the relative SIMD C++ vs. JavaScript performance for each of the four combinations. Less than 1 means that the JavaScript kernel ran that much slower than the corresponding C++ kernel.

8. Future Work

For future work we’re planning on adding a more complete set of SIMD.JS primitives, to better cover all the existing SIMD intrinsics being used. A study of which missing intrinsics have wider use is warranted. When adding more primitives, with direct mapping to hardware instructions on one architecture, but not on another, it might not be possible to achieve the desired performance across all architectures.

9. Summary

This paper describes SIMD.JS and Emscripten, together these technologies allow porting of compute intensive native C/C++ applications to the Web platform with near-native performance. The contributions of our work include the changes to Emscripten enabling

Figure 12. SIMD vs. Scalar relative speedups

Figure 13. Scalar C++ vs. Javascript relative performance

Figure 14. SIMD C++ vs. Javascript relative performance
compilation of C/C++ programs that use SIMD intrinsics or gcc style vector code. Our contributions are publicly available, and our evaluation demonstrates that the SIMD vs. scalar speedup we see with the C++ kernels are equivalent for the equivalent JavaScript kernels.

Acknowledgments
Acknowledgments goes here.