Online Kernel Selection for Bayesian RL

Joseph Reisinger, Peter Stone and Risto Miikkulainen
The University of Texas at Austin
7/6/08
• **Quick summary**: In Gaussian Process RL, the choice of kernel is important for performance.

(3) How can we choose the kernel efficiently online?
Reinforcement Learning

States \(x \in S \)
Actions \(a \in A \)
Reward \(r \in \mathbb{R} \)

Transition probabilities
\[x_{t+1} \sim p(\cdot | x_t, a_t) \]

Environment (MDP)

Agent (Controller)

Want to find a policy \(\mu : S \times A \rightarrow [0, 1] \) that maximizes

\[V^\mu(x) = E_\mu[D(x)] \quad \text{the "expected discounted return"} \]

\[D(x) = \sum_{i=0}^{\infty} \gamma^i R(x_i) | x_0 = x \quad x_{i+1} \sim p^\mu(\cdot | x_i) \]

(Sutton and Barto 1998)
Value Function

- Can compute a policy from a value function
- How is the value function represented?
- Generalization without "approximation" is possible!
 \[\text{e.g. with Gaussian processes}\]
Gaussian Processes

- Don’t make complexity assumptions without seeing the data. Nonparametric inference allows the number of parameters to scale with the size of the data set.

- But what about overfitting? Use a Bayesian method: i.e. regularization through the prior.
• Don’t make complexity assumptions without seeing the data. Nonparametric inference allows the number of parameters to scale with the size of the data set

• But what about overfitting? Use a Bayesian method: i.e. regularization through the prior
Gaussian Processes

- Don’t make complexity assumptions without seeing the data. **Nonparametric inference** allows the number of parameters to scale with the size of the data set.

- But what about overfitting? Use a **Bayesian** method: i.e. regularization through the prior.
Gaussian Processes

Let \(\mathcal{D} = \{(x_i, y_i)\}_{i=0}^{N} \) be the observed (labeled) data.

Assume that the random variables \(y \) are distributed

\[
y \sim \mathcal{N}(0, K) \quad \text{where} \quad [K]_{ij} \overset{\text{def}}{=} k(x_i, x_j)
\]

Using the data, we can infer an unknown value \(y^* \) at a test pt \(x^* \)

\[
\begin{bmatrix}
y \\
y^*
\end{bmatrix} \sim \mathcal{N} \left(0, \begin{bmatrix} K & k \\ k^\top & \sigma^* \end{bmatrix} \right)
\]

where, \(k \overset{\text{def}}{=} (k(x_0, x^*), \ldots, k(x_n, x^*))^\top \). This has posterior moments

\[
\begin{align*}
\mathbb{E}[y^* | y] &= k^\top K^{-1} y \\
\text{Var}[y^* | y] &= \sigma^* - k^\top K^{-1} k
\end{align*}
\]

i.e. we can do prediction given the covariance.

(Rasmussen and Williams 2006)
Gaussian Processes

Let \(\mathcal{D} = \{(x_i, y_i)\}_{i=0}^{N} \) be the observed (labeled) data. Assume that the random variables \(y \) are distributed \(y \sim \mathcal{N}(0, K) \) where \([K]_{ij} \overset{\text{def}}{=} k(x_i, x_j) \)

A Gaussian process is completely defined by the data and the kernel:

- Straightforward adaptation to RL:
 - value function model
 - sparsification: don’t save all of the data
 - \(O(n) \) online updates

(Engel 2005, Rasmussen and Williams 2006)
Gaussian Processes

Properties of learned function depends on the choice of kernel (e.g. smoothness)
Kernel Selection

- Kernel notion is very powerful, defining a metric on $\mathcal{S} \times \mathcal{A}$

- How can we choose kernels?

- Typically some model selection step, e.g. cross-validation... also Bayesian model-averaging

- ... but these methods weren’t designed to work online
Online Kernel Selection

\(\theta_i \) kernel instantiation \(\theta_i \in \Theta \) the model space

\[
\{ \theta_i^{(0)} \}_{i=1}^n \sim p(\theta)
\]

Calculate \(\{ w_i^{(t)} \}_{i=1}^n \)

\[
w_i \overset{\text{def}}{=} \frac{p(\mathcal{D}|\theta_i^{(t)}) p(\theta_i^{(t)})}{\sum_m p(\mathcal{D}|\theta_m^{(t)}) p(\theta_m^{(t)})}
\]

\(p(\mathcal{D}|\theta_i^{(t)}) \) likelihood of the data given the kernel

simplification: use average reward as a surrogate

\(\theta_i \) kernel instantiation \(\theta_i \in \Theta \) the model space
Online Kernel Selection

θ_i kernel instantiation $\theta_i \in \Theta$ the model space

$$\{\theta_i^{(0)}\}_{i=1}^n \sim p(\theta)$$

Calculate $\{w_i^{(t)}\}_{i=1}^n$

Resample $\{\tilde{\theta}_i^{(t+1)}\}_{i=1}^n$

Dictionary of observations \mathcal{D} can be “inherited” here, unlike e.g., NEAT+Q
Online Kernel Selection

\(\theta_i \) kernel instantiation \(\theta_i \in \Theta \) the model space

\[\{ \theta_i^{(0)} \}_{i=1}^n \sim p(\theta) \]

Calculate \(\{ w_i^{(t)} \}_{i=1}^n \)

Resample \(\{ \tilde{\theta}_i^{(t+1)} \}_{i=1}^n \)

Transition kernel
Experimental Setup

- Three methods:
 - **GPSARSA** - standard model-free GPRL + grid search over kernel parameters
 - **RKRL** - SMC kernel selection
 - **EP-RKRL** - RKRL + dictionary of training points is inherited

Basic Kernel Example

$$k(x, x') = \exp \left[-\frac{||x - x'||^2}{\sigma^2} \right]$$

Expanded Kernel Example

$$k(x, x') = \exp \left[-\sum_{i} w_i (x_i - x'_i)^2 \right]$$
Results: Mountain Car

\[\mathbf{x} = (\dot{x}, x) \in \mathbb{R}^2 \]
\[a \in \{-1, 0, 1\} \]

100 eps/eval

White (2007): -53.92 (± 0.37)

(Figure from Singh and Sutton, 1996)
Results: Sailboat Steering

\[\mathbf{x} = (\theta, \dot{\theta}, \ddot{x}) \in \mathbb{R}^3 \]

\[a \in [-90, 90] \times [-1, 2] \subset \mathbb{R}^2 \]

discretized actions
(3 degrees, 0.5 thrust)

1000 steps/episode
Results: Capture Go

\[x \in \{-1, 0, 1\}^{25} \]
\[a \in [0, 25] \]

afterstates
Conclusion

- Introduced an online kernel selection procedure: RKRL
- RKRL significantly improves the performance of Gaussian process reinforcement learning
- RKRL is practical online even with many parameters
Thanks!
Questions?
Acknowledgements

- Thanks to Yaakov and Matthew Taylor, Bryan Silverthorn and special discussions.
- This work was supported by an NSF Graduate Research Fellowship and NSF CAREER award IIS-0237699
Parameters

<table>
<thead>
<tr>
<th>Basic RL Parameters</th>
<th>GPRL Parameters</th>
<th>RKRL Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\epsilon = 0.01$</td>
<td>$\sigma = 1.0$</td>
<td>$N = 25$</td>
</tr>
<tr>
<td>$\gamma = 1.0$</td>
<td>$\nu = 0.0$</td>
<td>$\mu = 0.01$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\tau = 0.5$</td>
</tr>
</tbody>
</table>