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Fig. 1. We present new algorithms for computing geodesic foliations on discrete surfaces. A geodesic foliation on a six-fold branched cover of the Stanford
bunny (left) describes the ribbon layout of a triaxial weave (center), which we fabricate out of birch veneer (right).

We study discrete geodesic foliations of surfaces—foliations whose leaves
are all approximately geodesic curves—and develop several new variational
algorithms for computing such foliations. Our key insight is a relaxation of
vector field integrability in the discrete setting, which allows us to optimize
for curl-free unit vector fields that remain well-defined near singularities
and robustly recover a scalar function whose gradient is well aligned to
these fields. We then connect the physics governing surfaces woven out of
thin ribbons to the geometry of geodesic foliations, and present a design
and fabrication pipeline for approximating surfaces of arbitrary geometry
and topology by triaxially-woven structures, where the ribbon layout is
determined by a geodesic foliation on a sixfold branched cover of the input
surface.We validate the effectiveness of our pipeline on a variety of simulated
and fabricated woven designs, including an example for readers to try at
home.
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1 INTRODUCTION
Birds in the family Ploceidae have been weaving their nests since
the Miocene; humans likewise have been using weaving to con-
struct baskets, mats, and other two and three-dimensional aspects
of the built environment for at least 10,000 years. More recently,
composites woven out of non-traditional materials like carbon fiber
and shape memory alloy have been gaining popularity in a number
of domains, where improved material properties, as well as cost-
effectiveness and the increasing capability of looms to weave in
three dimensions, make it a particularly attractive technique for
fabrication. Figure 2 shows some modern applications of weaving
to architecture, art, chemical engineering, and medicine.

Away from singularities, fibers of the weave can be grouped into
nearly-parallel families—two families at right angles in the case of
simple weaves (plain, twill) and three interleaved at sixty degree
angles for triaxial weaves. In their simplest form, all of these weave
patterns are planar; curvature can be introduced into the woven
structure by varying the spacing between consecutive members of
the ribbon families, varying the angles at which two families cross,
or inserting singularities or dislocations into the weave pattern. Such
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Fig. 2. Inspirations: thanks to their simplicity, beauty, and deployability,
triaxial weaves have seen application in diverse areas such as (clockwise
from top-left): architecture [Fornes 2017], art [Puryear 1998], nanochem-
istry [Lewandowska et al. 2017], and medicine [Boston Scientific 2015].

dislocations are desirable because they concentrate curvature, al-
lowing for more symmetric and stable weaving patterns of complex
surfaces that are simpler to fabricate and require less material.

The key principle relating the physics of a weave to its geometry
is the following: ribbons are thinner than they are wide, and so bend
much more readily out-of-plane (about their width axis) than in-
plane (about their thickness axis). Attempting to force high in-plane
curvature causes ribbons to buckle and twist instead of lying flush
to a woven structure. Therefore the weave must be designed so that
ribbons lie along geodesics of the target surface. We leverage this
observation to cast the problem of laying out families of ribbons
weaving an arbitrary curved surface as the geometry problem of
covering the surface by one-parameter families of approximately-
geodesic curves. Such geodesic foliations are interesting mathemati-
cal objects in their own right with a long history of study [Poincare
1905], and appear in the modeling of a wide array of phenome-
non in physics, ranging from the orbital dynamics of objects in
space [Klingenberg 1978] to the structural stability of thin shells
under tension [Vandeparre et al. 2011] to the micro-magnetics of
controlling LCD panels and other settings that exhibit “domain-wall”
effects [Kohn 2006] [Machon et al. 2019].

Contributions. We systematically study the geometry processing
problem of designing discrete geodesic foliations on surface meshes.
Our contributions include:
• a vector field design algorithm, based on a discretization and
relaxation of the geodesic equation, for computing geodesic vector
fields on triangle meshes. This algorithm is global and handles
nontrivial topology and field singularities;

• a novel method for global vector field integration, specifically
designed to yield a global periodic function whose isolines align
with the input vector field. Applying this second algorithm to
fields computed using our first yields geodesic foliations;
• a design and fabrication pipeline for triaxial weaves approximate
arbitrary target geometries, based on computing and integrat-
ing geodesic foliations on six-fold branched covers of the input
surface.

2 RELATED WORK
Vector Field Design. The problem of optimizing vector fields on

surfaces, for various purposes, is well-trodden ground in computer
graphics. The survey by Vaxman et al [2016] provides a thorough
overview. Methods vary in the objectives they optimize (smoothness,
intrinsic and/or extrinsic feature alignment, etc) and in whether
number and location of singularities are prescribed [Crane et al.
2010; Fisher et al. 2007; Zhang et al. 2006] or placed automati-
cally [Bommes et al. 2009; Knöppel et al. 2013; Panozzo et al. 2014;
Ray et al. 2009; Viertel and Osting 2019]. Specialized algorithms exist
for enforcing rotational symmetry of the fields [Diamanti et al. 2014;
Hertzmann and Zorin 2000; Palacios and Zhang 2007], including
six-fold symmetry [Nieser et al. 2012], and for aligning to surface
curvature directions [Campen et al. 2012]. Our approach shares
many ideas and elements with this long tradition of work, though
no existing approach is directly applicable to our problem.

Discrete Geodesics Field Design. Pottmann et al [2010] describe
three methods for designing geodesic fields on surfaces: (1) sweep-
ing one geodesic into a family of parallel curves along a Jacobi field;
(2) a level set method for solving the geodesic equation; and (3) pro-
jecting an initial field onto a small basis of approximately-geodesic
fields, and “sharpening” into locally-geodesic patches. We compare
our approaches to geodesic field design in detail in Section 4.1;
briefly, their work is most concerned with finding geodesic vector
fields that are locally well-spaced and nearly parallel, but do not
thoroughly treat singularities or complex global geometry. Note that
the geodesic field design problem is unrelated to that of comput-
ing single-source geodesic distances, or specific length-minimizing
geodesics between points [Crane et al. 2013; Lin et al. 2013; Mitchell
et al. 1987; Polthier and Schmies 2006; Surazhsky et al. 2005].

Integrating Vector Fields. There are two classes of methods for
robust reconstruction of integral curves from a vector field: one
can trace curves by locally integrating the vector field from face
to face [Bhatia et al. 2011], and with care numerical integration
issues such as intersection of streamlines [Ray and Sokolov 2014]
can be avoided. However, tracing methods are fundamentally lo-
cal, and cannot ensure that streamlines reconnect properly after
circulating around holes. Alternatively, integral curve extraction
can be viewed as a field-guided mesh parameterization problem,
where integral curves become isolines of the parameterization func-
tion, as described by Ray et al [2006] and numerous recent papers.
Much work has been done on quadrilateral or hexagonal remesh-
ing aligned to 2- or 3-direction fields in particular [Bommes et al.
2009; Campen and Kobbelt 2014b; Jakob et al. 2015], including by
representingm-vector fields by complex polynomials rather than
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angles or explicit sets of tangent vectors [Diamanti et al. 2014, 2015].
Parameterization is global, and yields closed loops even around com-
plex topological features, but the orientation of the extracted curves
may not match the input vector field if that field is not globally
integrable. Although some methods include constraints or objec-
tive terms [Campen et al. 2016] to improve alignment, we present
a method designed from the ground up to preserve, as much as
possible, integral curve orientation.

Designing Weave Patterns. Several papers look at computational
design of biaxial and triaxial weave patterns. A combinatorial half-
edge twisting operation can be used to plain-weave any surface [Ak-
leman et al. 2009], a technique that was demonstrated in practice
using paper sculpture [Xing et al. 2011]. The Rhino plugins Compu-
Woven [Tao et al. 2016] and WeaveMesh [Tao et al. 2017] present
users with a simple parametric model of plain weaves, which can be
used to explore the space of woven 3D shapes. Campen et al. [2014a]
consider the biaxial weaving problem, though they focus primarily
on meshing applications. Akleman et al. [2011] describe a method
for triaxially twill-weaving any surface, though their method is com-
binatorial and limited to subsets of edges of a provided input mesh.
Similarly, Ayres et al. [2018] describe synthesizing triaxial weaves
subordinate to a given triangulation. Takezawa et al. [2016] decom-
pose arbitrary surfaces into two orthogonal families of woven strips
aligned to curvature directions. Zwierzycki et al. [2017] explore
design and simulation of braided yarn. Garg et al. [2014] compute
approximations of surfaces using Chebyshev nets. Also related are
methods not directly concerned with weaving, but which optimize
approximations of surfaces by interlocking wire loops [Miguel et al.
2016], connected curves [Zehnder et al. 2016], stripe patterns [Er-
colani and Venkataramani 2009; Knöppel et al. 2015], mesh join-
ery [Cignoni et al. 2014], interlocking flexible quadrilateral ele-
ments [Skouras et al. 2015], and reciprocal frame structures (stable
assemblies of rods in closed circuit) [Song et al. 2013].

Simulating Rods and Ribbons. To model ribbon physics in our
weave design tool, we adopt the Cosserat rod model of Bergou
et al [2010; 2008], as its representation using centerline vertices
and edge directors allows us to easily convert integral curves on
manifold surfaces into rods. We note in passing that several other
approaches to rod physics are available, including models based
on masses and springs, super-helices [Bertails et al. 2006], other
centerline formulations [Shen et al. 2015], etc. Finally, several papers
have studied simulation of knitted cloth, using various reduced
representations of the fibers and contacts between them [Cirio et al.
2014; Kaldor et al. 2008; Yuksel et al. 2012].

Designing Knitted Cloth. Several recent works describe algorithms
for designing knitting patterns that reproduce 3D shapes [Igarashi
et al. 2008; Narayanan et al. 2018; Popescu et al. 2018; Wu et al. 2018],
modeling or designing knitted cloth [Leaf et al. 2018; Yuksel et al.
2012], etc. Although weaving and knitting are similar in that they
both entail fabricating 2D structures from 1D elements, the physical
and geometric characteristics of ribbons are very different than that
of yarns—as discussed in Section 1, ribbons must be laid flat along a
weave, and cannot be deformed into arbitrary stitch patterns.

3 PRELIMINARIES AND OVERVIEW
The remainder of the paper is organized into two parts: in the first
(Section 4) we will define, discretize, and present algorithms for
designing geodesic foliations on curved surfaces. In the second
(Section 5), we will use these algorithms to develop a computational
pipeline that takes as input a curved surface and computes a weaving
pattern that approximates the surface.

Fig. 3. A qualitative comparison of approaches to designing geodesic giraffe
foliations. Naive tracing of intrinsic geodesics over the surface produces
a mess of intersecting streamlines (left). Integral curves of as-smooth-as-
possible vector fields (center-left) are evenly spaced, but may have high
amounts of geodesic curvature, visualized in red. Pottmann et al.’s [2010]
spectral design and sharpening method (center-right) produces a locally-
geodesic field, but with a large number of singular lines. Our approach
(right) yields globally, nearly geodesic foliations.

Geodesic Foliations. On a smooth surface M , a geodesic foliation
is a one-dimensional foliation ofM whose leaves are all geodesics.
This foliation can be represented in two ways, and we will make
use of both: (i) as a submersion θ : M → S1, whose level sets are
immersed closed curves by the inverse function theorem. If the level
sets of this periodic function θ are all geodesics, then the foliation as
a whole is called geodesic. We can also represent geodesic foliations
as (ii) complete vector fields w on M whose integral curves are
closed geodesics. Examples include any constant vector field on
the plane, and vector fields w = α∂θ + β∂z on the cylinder, for
constants α and β (see figure 4). Notice that the two representations
are related by w = (∇θ )⊥, where v⊥ denotes clockwise rotation of
each vector of the vector field v by ninety degrees about the surface
normal.
Unfortunately, geodesic foliations do not exist on most mani-

folds [Yampolsky 2005]. However, there is an extremely rich space
of almost-foliations, which we define equivalently as:
• geodesic foliations of M \ S, where S is a measure-zero set of
singularities;
• periodic functions θ : M → S1 with singularities at S, all of
whose level sets are geodesics;
• complete vector fields w vanishing at S whose integral curves
are all (not necessarily closed) geodesics.
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Fig. 4. Two different periodic (S1-valued) scalar fields θ1, θ2 on the surface
of the cylinder, and level sets of each. The functions are minimizers of
Equation (1), with the only change being to the global rescaling of the
normalization constant c . All of the traced curves are intrinsic geodesics.

To see that this space is rich, notice that for any point p ∈ M , one
can take S to be the cut locus of p, with minimizing geodesics to p
partitioning the rest ofM into a geodesic almost-foliation.
Our ultimate goal in Section 4 will be to recover a discrete ana-

logue of the periodic function θ defining a geodesic almost-foliation
on a triangle mesh T . This formulation is convenient, because given
θ we can then sample a sparse, evenly-spaced collection of level
sets of θ to guide placement of ribbons when we design weave
patterns in Part 2 of our paper. However, to find such a θ we will
instead first work with the definition based on w. From there, we
will relax the problem to that of finding approximately-geodesic
almost-foliations, and present two numerical algorithms: the first
computes an approximately-geodesic direction field ŵ on the faces
of T whose integral curves are the leaves of the foliation (Equa-
tion (5)). The second solves a vector field integration problem to find
the θ whose isolines align with the integral curves of ŵ as closely
as possible:

min
θ,s



∇θ − sŵ⊥

2 s.t. ∥s∥2 = c, (1)

where we discretize θ as an S1-valued function on the vertices of
T , s is a scalar field of integration factors on the faces of T and sŵ
is face-wise multiplication, and c is a global scale controlling the
frequency of θ . This approach to splitting computation of ŵ and θ
allows us to separate the concerns of finding solutions which are
consistent with the local surface geometry, and the global manifold
topology, a common strategy also leveraged in related problems such
as surface parameterization. We evaluate our algorithms against
prior methods for designing geodesic foliations (see Figures 3 and 7).

Computational Basket-Weaving. As we argue in the introduction,
weaving surfaces requires laying out the ribbons of the weave along
surface geodesics. In Section 5 we apply our geodesic foliation tool-
box to design of triaxial weaves approximating arbitrary input sur-
faces. We will discuss (i) how a triaxial weave can be represented by
a geodesic foliation of a six-fold branched cover of the surface, (ii)
how to extract a weave pattern using the algorithms from Part 1 of
the paper, (iii) how to polish the weave design using elastic ribbon
simulation, and (iv) practical aspects of fabricating the weave from
real materials. We validate our approach on a variety of fabricated
and simulated examples.

Fig. 5. Directly minimizing the Dirichlet energy of a vector field on a mani-
fold leads to singularities with vorticity (integral curves traced on left). Our
energy produces singularities that are irrotational and recovers geodesics
with non-uniform spacing (center). Further, our method can recover fields
which are almost everywhere geodesic except on glassy “domain wall” [Aha-
roni et al. 2017] boundaries by conditioning with very small amounts of
global smoothness (λ = 10−8 here) (right).

4 PART 1: DISCRETE GEODESIC FOLIATIONS
In this part, we discuss how to solve for approximately-geodesic
almost-foliations of discrete two-manifolds (represented as trian-
gle meshes T ). As discussed in Section 3, there are two ways to
represent the leaves of such foliations: as level sets of a function
θ : T → S1, or as integral curves of a vector field w on T . Lacking
an obvious way to solve for θ directly, we proceed in two steps:
first, we describe an algorithm for finding direction fields ŵ whose
integral curves are nearly geodesics (Section 4.1). Second, we de-
scribe a global integration algorithm (Section 4.2) that recovers a θ
whose isolines are well-aligned to a given input direction field; this
algorithm is general, and when applied to the geodesic direction
field ŵ, computes a θ : T → S1 whose isolines are approximately
geodesic.

4.1 Discrete Geodesic Field Design
In the discrete setting, it is straightforward to define geodesic curves,
either as arclength-minimizing paths between pairs of points, or
integral curves of the gradient of the geodesic distance function
from a source point; several algorithms efficiently compute geodesic
distance and geodesic curves [Crane et al. 2013; Mitchell et al. 1987;
Polthier and Schmies 2006; Surazhsky et al. 2005]. We instead want
an entire unit vector field ŵ whose integral curves are all discrete
geodesics, where we make the common choice to represent ŵ as an
assignment of tangent vectors ŵi to the faces F of T [de Goes et al.
2016]. It is not obvious how to discretize the geodesic condition
to entire vector fields. We will present our definition below, in
Section 4.1.1, but first discuss some less suitable approaches, which
motivated our choices.

Via Geodesic Integral Curves. One might ask for all of ŵ’s integral
curves, when traced over T , to be discrete geodesics; unfortunately
there are no such fields except on intrinsically flat T . Denote by
Tj←i the parallel transport operator rotating tangent vectors on face
i to those on neighboring face j by “unfolding” face i along their
common edge1. To have geodesic integral curves the field would

1This operator Tj←i can be viewed as a discrete affine connection, and is trivial, but
should not be confused with the more sophisticated “trivial connections” of Crane et
al [2010], which also include an in-plane rotation by a correction angle in order to
concentrate singularities at a few user-specified points.
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need to satisfy
∠
(
wj ,Tj←iwi

)
= 0 (2)

for every pair of neighboring faces i, j, which is impossible since
around any interior vertex with nonzero angle deficit, theT s do not
compose to the identity [Crane et al. 2010].

Via the Geodesic Equations. A different task is to discretize geo-
desic fields by way of the geodesic equation ∇ŵŵ = 0. The chief
difficulty here is that on surfaces of genus , 1, singularities are
inevitable, and at such singularities the covariant derivative ∇ŵ of
the field is not well-defined. Although there has been some work
studying discrete covariant derivative operators [Azencot et al. 2015;
Liu et al. 2016], defining discrete geodesic fields so that they are well-
behaved near singularities requires a discrete notion of covariant
derivative that is insensitive to them, motivating the following.

Via Curl and Unit-norm Conditions. Since ŵ is unit, the geodesic
equation is equivalent to vanishing of the field’s curl, ∇ × ŵ = 0.
This relationship is at the heart of Pottmann et al [2010]’s third
geodesic design algorithm; they defined a discrete curl in terms
of failure of the Jacobian averaged over triangle neighborhoods
to be symmetric, which is again ill-defined near singularities. A
singularity-insensitive characterization of curl-free discrete vector
fields has been studied in the context of vector field integration [Dia-
manti et al. 2015; Polthier and Preuß 2003]. Let E denote the edge
set of T and Eint the interior edges, with ei j the edge common to
neighboring faces i and j (and oriented consistently with face i). A
vector field v is curl-free if, for every edge,

vi · ei j = vj · ei j , (3)

which we can write compactly as Cv = 0 for linear curl opera-
tor C |Eint |×2 |F | . This curl-free condition is well-defined even near
singularities (see Figure 6, left).

Unfortunately, the conditionCŵ = 0 together with the unit-norm
condition ∥ŵi ∥ = 1 over-constrains the space of geodesic vector
fields, as can be seen by counting degrees of freedom (the vector
on each face is parameterized by an angle, but constrained across
each edge), or by noting that the choice of a unit vector on one face
eliminates all but two choices of unit vector on each neighboring
face. Most non-flat triangle meshes T admit no vector fields that
are both curl-free and unit, in contrast to the rich space of geodesic
almost-foliations in the smooth setting.

4.1.1 Discrete Geodesic Fields. Starting from the expression of the
geodesic equation in terms of curl, we relax the unit-norm constraint
on the field and define a discrete geodesic field ŵ as any solution to

arg min
ŵ,δ

1
2
∥δ ∥2 s.t.

C(ŵ + δ) = 0

∥ŵi ∥ = 1.
(4)

Notice that at critical points of Equation (4), the field ŵ and the
residual δ must be everywhere parallel2. In the smooth setting,
the solutions are geodesic fields, with δ = 0 (see appendix A). In
the discrete setting, the intersection of the space of curl-free fields
and that of unit fields is insufficiently rich; optimal solutions to
equation (4) are those where simultaneously ŵ + δ is as unit as

2Since otherwise, the objective value can be improved by setting ŵ← ŵ+δ
∥ŵ+δ ∥ .

Fig. 6. Left : discrete curl measures whether vectors on neighboring faces
agree upon projection onto the common edge, and is well-defined near
singularities. Right : unfortunately, requiring a vector field ŵ to be both
unit-magnitude and discretely curl-free overconstrains the field. Instead,
given a unit vector field ŵ (black vectors), our algorithm finds the minimal
perturbation δ (red vectors) needed so that ŵ + δ is curl-free. Our relaxed
definition of a discrete geodesic field is one for which δ is locally minimized.

possible, while ŵ is as curl-free as possible, with ∥δ ∥ quantifying
the failure of these conditions in both cases (see Figure 6, right).

The above variational characterization of discrete geodesic fields
can be used for geodesic field design, by choosing an initial unit
field ŵ0 and flowing it towards optimality. As we will discuss below,
despite its non-convexity the variational problem can be solved with
guaranteed convergence to a stationary point. Note, though, that
the solutions of Equation 4 may contain singularities. This property
is necessary and desirable, but choosing ŵ0 arbitrarily can yield
geodesic fields that are “glassy” with an undesirably large number
of singularities. For design applications, it is useful to promote
smoothness of the field, which we address in the next section and
illustrate in Figures 9 and 10.

4.1.2 Smoothness and Control. A geodesic vector field can have
arbitrarily many singularities, so for design it is useful to (1) tune
between field smoothness and geodesicness; and (2) force alignment
of the field to user-prescribed handles. Both can be easily incor-
porated into the variational problem in Equation (4). Let H ⊂ F
denote a set of faces on which the user wishes to constrain the vector
field to some predetermined directions ŵH ; then an approximately-
geodesic field obeying the handle constraints can be computed by
solving

arg min
ŵ,δ

1
2
∥δ ∥2 +

λ

2
∥∇(ŵ + δ)∥2 s.t.

C(ŵ + δ) = 0

∥ŵi ∥ = 1

ŵi = ŵHi ∀i ∈ H
δi = 0∀i ∈ H ,

(5)

where the parameter λ controls the smoothness of the field. As λ
grows large, Equation (5) prioritizes smoothness over straightness
of the field, and penalizes singularities3; Figure 9 shows the effect
of λ when optimizing equation (5) for initially-random fields ŵ0

on the unit disk. Discrete geodesic fields can be designed by first

3We note in passing that the variational problem (5) bears similarity to Aviles-Giga
functionals originally studied in mathematical physics to better understand magneti-
zation in thin films [1987], and later discretized [Jabin et al. 2002; Rivière and Serfaty
2001], though these functionals place an additional constraint on the divergence of δ .
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+

-

∇
×
w
i

Fig. 7. Streamlines of a vector field on a discretized unit sphere, where the field was optimized using (from left to right): Knöppel et al. [2013]’s Dirichlet
energy formulation; Knöppel et al.’s anti-holomorphic energy formulation; Pottmann et al. [2010]’s field optimization; our geodesic field optimization. Notice
that only our method yields a field aligned to the expected great circles, with no vorticity at the two field singularities. Colors of streamlines encode geodesic
curvature (warmer curves have higher curvature). Colormap on the surface (right) indicates the signed curl, as calculated in Appendix B.1.

Fig. 8. We compute geodesic fields on a variety of surfaces with complex
geometry and topology. We include a numerical evaluation in Table 1

solving for ŵ with λ large, then “sharpening” [Pottmann et al. 2010]
the field by reducing λ; all geodesic fields we show in this paper
were designed using this methodology.

Figures 3, 7, and 8 show the results of our method on a variety
of surface geometries and topologies. On simple shapes, such as
the sphere or disk, our method reproduces fields whose streamlines
are the expected straight lines and great circles. On more complex
shapes, our method produces fields whose integral curves are locally
geodesics, with no vorticity near singularities.

Relation to Pottmann et al. Pottmann et al. [2010] propose several
algorithms for designing geodesic fields. Their level set method is
purely local and cannot be applied to surfaces with non-disk topol-
ogy. Their sharpening-based pipeline does succeed in computing
high-quality geodesic fields on local patches, but it is not designed
to be robust near singularities and does not yield vorticity-free fields
there; see, for instance, Figure 7.

4.1.3 Numerical Solution. Although Equation (5) is not convex and
admits multiple solutions, it can be solved in alternating fashion,
by solving a linear least squares problem to update δ , and then

Table 1. Curl statistics for vector fields optimized using Algorithm 1, for the
fields shown in Figure 8. We initialize each field ŵ0 by removing the curl
constraint in Equation 5, which produces smooth vector fields qualitatively
similar to the globally optimal fields of Knöppel et al. [2013]. The left column
lists the total curl (measured using the methodology described in Appen-
dix B.1) of this initial field, and the right, the curl of optimized field. Our
algorithm significantly reduced the total curl (and hence the geodesicness
of the field’s integral curves).

Model Pre-optimization Curl Post-optimization Curl
Armadillo 20.60 7.32
Moomoo 13.36 4.19
Rocker Arm 8.78 6.6
Schwarz-p 30.15 15.65

directly updating ŵ to align with ŵ+δ , as described in Algorithm 1.
Notice that this greedy update of ŵ is also optimal, given fixed δ .
Each step of the alternation is guaranteed to decrease the objective
function while maintaining all constraints, so convergence to a
stationary point is assured. Appendix B contains more details about
the algorithm, including implementation hints and convergence
proof.

ALGORITHM 1: Computing approximate discrete geodesic fields given an
initial guess ŵ0 and handle constraints.

for i = 1, . . . , imax do

δ̃ ← arg minδ
1
2 ∥δ ∥

2 + λ
2 ∥∇(ŵ

i−1 + δ ) ∥2 s.t. C(ŵi−1 + δ ) = 0
δj = 0∀j ∈ H ;

for j = 1, . . . , |F | do
ŵi
j ←

(
ŵi−1
j + δ̃j

)
/




ŵi−1
j + δ̃j




;
δ ij ← ŵi−1

j + δ̃j − ŵi
j ;

end
if



ŵi − ŵi−1

 < ϵ then break;
end
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Fig. 9. The parameter λ in equation 5 gives us extra control over our vector
field design process. Initializing a random vector field on the unit disk and
setting λ = 0 produces very disordered solutions (left). Setting λ = 10−7

crystallizes the field into large ordered domains (right), and increasing λ
further results in a uniform field. The heatmap illustrates signed curl.

4.1.4 Sharpening Incompatible Handles. We can probe the behavior
of Equation 5 by assigning handlesH that admit no smooth global
geodesic vector field, and running Algorithm 1 for different choices
of λ (see Figure 10). In the limit λ → ∞, Equation 5 converges to
the convex problem of computing the smoothest-possible curl-free
field on T ; this field is far from unit-magnitude (and so far from
being geodesic) and δ is large throughout the surface (left). As
λ→ 0, solutions qualitatively change: the field becomes geodesic
away from sharp domain wall boundaries (top right) and δ becomes
sparse, away from point and line dislocations (bottom right).

Relation to Smoothness Optimization. Many techniques exist for
optimizing vector or direction fields with respect to different smooth-
ness criteria, and subject to design constraints. Most methods are
tailored to the quadratic Dirichlet energy 1

2 ∥∇w∥
2, or its gener-

alizations, such as the Killing [Ben-Chen et al. 2010] or so-called
(anti-)holomorphic energies [Knöppel et al. 2013]; connections have
also been drawn [Viertel and Osting 2019] to the Ginzburg-Landau
functional from mathematical physics. While smoothness energy
measures also promote “straightness” of a vector field in some sense,
and many of these methods are convex and straightforward to solve
(using e.g. a sparse eigenvalue problem [Knöppel et al. 2013], gradi-
ent descent via LBFGS, approximation via MBO [Viertel and Osting
2019]) smoothness is not equivalent to the (nonlinear) geodesic en-
ergy: for instance, consider that the vector field w(x ,y) = (x ,y) is
geodesic on any neighborhood of the punctured plane, but has non-
vanishing Dirichlet energy. Note that all quadratic energies share
the same shortcoming: near singularities, the vector field vanishes,
and so does the energy density, regardless of the vorticity of the
field. Figure 3 compares our method to fields that minimize Dirichlet
or antiholomorphic energy.

4.2 Recovering θ
The geodesic field ŵ on T computed by Algorithm 1 in principle
represents a discrete geodesic almost-foliation. However, in practice
one desires to extract a sparse set of leaves of the foliation, so
that these curves are nicely-spaced over the surface. An implicit
representation of the geodesic foliation in terms of a function θ :

λ = 1000 λ = 0

+

-

∇
×
w
i

no curl constraint λ = 10−7

1

0

∥δ
i∥

Fig. 10. We compute solutions to Equation 5 on a disk with two handles
(red and cyan arrows), and λ = 103 (left) and λ → 0 (right). We visualize
the curl of the resulting field ŵ (top) and magnitude of δ (bottom). As
the smoothness regularization λ sharpens to zero, curl and δ concentrates
at singularities, globally improving geodesicness of ŵ. Without the curl
constraint the δ distribution is similar to the one in the λ →∞ limit, but
the underlying fields are qualitatively different (purple traces, left).

T → S1 is more useful for this purpose, since standard isoline-
extraction algorithms can then be applied to θ . In this section, we
discuss the challenges in recovering such aθ from a discrete geodesic
field, and present a new algorithm for doing so.

4.2.1 Vector Field Integrability. Let us first examine the problem
of finding θ in the smooth setting, for a unit vector field ŵ on an
oriented manifold M . In order for θ ’s isocontours to agree with
integral curves of ŵ, the gradient of θ must lie parallel to ŵ⊥ at all
point p ∈ M :

∇θ (p) = s(p)ŵ(p)⊥, s(p) > 0. (6)

Notice that such a θ is only expected to exist if we rescale the input
field ŵ by a scalar field of integration factors s : M → R+; for oth-
erwise ŵ and ŵ⊥ are both curl-free, and therefore ŵ is unit-norm
and harmonic, impossible except on surfaces of constant curva-
ture [Boeckx and Vanhecke 2000].

The trick then is finding an s for which such a θ exists. sŵ⊥ cannot
be the gradient of a scalar function unless it is globally integrable: for
each closed curve γ : S1 → M , we must have

∮
γ ⟨sŵ

⊥,γ ′⟩ ds = 0.
IfM is simply-connected, it is enough to check that sŵ⊥ is locally
integrable, i.e. is curl-free; more generally, it is sufficient for sŵ⊥ to
be curl-free, and for the global integrability condition to be satisfied
for all generators γ of the fundamental group ofM .
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Fig. 11. Rescaling a vector field to be locally integrable isn’t sufficient
to guarantee global integrability. Consider, for instance, an annulus (left)
around which any S1-valued function θ must have period 2πN . We dis-
cretize such functions on the vertices of a triangle mesh (center) and given
a vector field, find the θ whose gradient best matches a rescaling of the
field. Mesh resolution limits the frequency of θ , and we find solutions with
a sparse collection of edge dislocation [Knöppel et al. 2015], as illustrated
for a geodesic field on a sphere (right).

Given ŵ⊥, does there exist a rescaling s of the vector field which
is locally integrable? Globally integrable? Both questions are sur-
prisingly subtle. Unfortunately, existence of an s is not guaranteed,
even for smooth ŵ⊥ on a simply-connected neighborhood of the
plane [Qmechanic 2018]; one counterexample [Boyling 1968] is

w⊥(x ,y) =
(
y3(1 − y)2,y3 − 2(1 − y2)

)
,

which is not integrable on any neighborhood of a point on the line
y = 1 (integrability would require s to diverge as y → 1).

Global integrability poses its own challenges. The codomain of θ
was chosen to be S1 rather than R since it is clear that θ must be
periodic whenwwraps around holes inM or singularities in the field
(see Figures 4 and 11). Methods in the literature allow periodicity of
θ either by introducing integer variables that encode jumps in θ on
the universal cover ofM [Bommes et al. 2009], or by representing θ
with trigonometric functions or complex numbers [Knöppel et al.
2015; Ray et al. 2006]. Note that allowing periodic θ is necessary,
but still insufficient, to guarantee existence of s , even for locally-
integrable vector fields.

Our Approach. We do not attempt a full solution of the (ill-posed)
global vector field integration problem. Rather, we present a new
variational approach for finding a good s which renders sŵ⊥ as
close as possible to being integrable, based on the same relaxation of
discrete vector field integrability we leveraged in Section 4.1. With
a good estimate for s we can apply prior work on global integra-
tion [Knöppel et al. 2015; Ray et al. 2006] to round sŵ⊥ to a globally
integrable field without significantly altering the orientation of its
streamlines. We show significant improvement of this approach
over alternative global integration techniques (see Figure 15).

4.2.2 Preprocessing the Mesh. Since the vector field ŵ encodes an
almost-foliation, it can have singularities, and θ is only expected
to be continuous and smooth away from those singularities. To
simplify subsequent calculations, we compute the singularities S
of ŵ (by computing the index of the vector field when circulating
around every vertex of T ) and puncture T by deleting from it all
singular vertices and their neighboring faces. Since θ is a submersion

Fig. 12. We seek to recover an S1-valued function θ on the vertices of the
mesh T whose isolines are as close as possible to the integral curves of
an input unit vector field ŵ. Left : a field ŵ (in cyan) oriented similarly to
Figure 10 (top-right), and its rotation w⊥ (in black). Middle: we solve for
a scalar field s per face so that sw⊥ (rescaled black vectors) is as close to
integrable as possible; here s vanishes near each line singularity along the
four diagonals. Right : we recover θ , a vertex-based scalar function whose
gradient aligns to sw⊥ as closely as possible, by solving Equation (8).

on T \ S, this preprocessing step allows us to assume θ is smooth
(and continuous) for all subsequent calculations.

4.2.3 Approximating an Initial s . Recall that a discrete vector field
v on the faces of T is locally the gradient of a scalar function on
the vertices if and only if it satisfies the edge-based compatibility
condition Cv = 0 (see Equation (3)). We thus desire a rescaling
vi = si ŵ⊥i of ŵ⊥ with Cv approximately zero. Since per the above
discussion, an exact solution is generally not expected to exist, our
main idea is to apply the same relaxation as in the geodesic field
design step, and consider vector fields of the form sŵ⊥ + δ , and
ask for the smallest possible δ for which this relaxed vector field
is integrable. Notice that the equation C

(
sŵ⊥ + δ

)
= 0 is linear

in both sets of unknown variables si and δi ; if we unroll δ into a
vector, we can write this integrability constraint as

B

[
δ
s

]
= 0

for matrix B, and solve for an optimal s and δ using the variational
problem

arg min
s,δ

1
2
∥δ ∥2 +

µ

2
∥∇s∥2 s.t. B

[
δ
s

]
= 0,

∥s∥2 + ∥δ ∥2 = 1,
(7)

where µ controls a regularization term promoting smoothness of
s; we use µ = 10−4 in all of our examples. The norm constraint
is needed to prevent degeneration since the problem is otherwise
invariant to uniform scaling of δ and s . The matrix B is sparse,
and Equation 7 can be solved to global optimality as a generalized
eigenvalue problem. For details, see Appendix C. Figure 12 illustrates
an example of optimizing for s.

Relation to Local Curl Minimization. It is tempting to try directly
solving for s to make v⊥ as integrable as possible, without use of
the δ relaxation, e.g. by computing

arg min
s

1
2





B [
δ
s

]



2
s.t. ∥s∥2 = 1.

This idea has been proposed in work on surface parameterization as
a “curl-correcting” preprocessing step; Ray et al. [2006] discretized
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Fig. 13. Using our method, we compute the rescaling field s needed to
make the geodesic field on the unit sphere, shown in Figure 7 left, discretely
integrable (left). We compare against the ground truth s (center), and against
s computed using local curl correction [Ray et al. 2006] (right).

curl using linear finite elements over each triangular face. Although
these ideas share with our solution the goal of rescaling ŵ⊥ to
be approximately locally integrable, there is a subtle but important
difference: where curl-correction seeks tominimize curl of the vector
field on each triangle, our optimizationminimizes the global distance
of sŵ⊥ away from the nearest (pointwise) integrable vector field.
Minimizing local measures of curl to find s suffers from the same
pitfall as trying to design geodesic fields by minimizing the L2
norm of curl: near singularities, it is equally efficient to reduce curl
by scaling the vector field, as by straightening it. Our variational
approach, equation (7), results in significant improvement in the
quality of the rescaled vector field, especially in regions requiring
very large rescaling of ŵ⊥. We compare against local curl reduction
in Figures 13 and 15.

Globally Scaling s . After solving Equation (7) and recovering a
rescaling of ŵ⊥ that is close to locally integrable, there is no guar-
antee that sŵ⊥ is close to globally integrable (see Figure 11). To
recover θ , we use the s from the above initialization step as an initial
guess to an alternating optimization algorithm that jointly finds s
and θ . Before this joint optimization, we rescale s (whose scale was
set arbitrarily in Equation (7)) so that sŵ⊥ is not too large on any
individual edge of T ; this rescaling avoids recovery of a θ that is
aliased on mesh edges4. After this automatic rescaling, the user can
further multiply S by an optional scale parameter to control the
frequency of θ . We make use of this parameter in Part 2 to decrease
the ribbon density in our weaving patterns.

4.2.4 Joint Optimization of s and θ . The optimization described in
the previous section allows us to find a rescaling sw⊥ that renders
w⊥ approximately locally integrable. We can then apply standard
periodic global parameterization techniques to jointly compute θ :
T → S1 (discretized as an assignment of θα ∈ S1 to each vertex
α ) and an update to s, so that ∇θ well-aligns with sw⊥. The basic
idea [Knöppel et al. 2015; Ray et al. 2006] is the following: if pα and
pβ are two vertices of face i , then agreement of ∇θ with sw⊥ can

4Knöppel et al. [2015] propose a solution to aliasing (their “frequency adjustment” step)
that takes the advantage of knowing how many periods of θ to expect over an edge,
given s . However our aim is to recover sparse integral curves, and so restrict ourselves
to solutions with at most half a period per edge. Specifically, we compute

ρ = max
ei j ∈E

��si ŵ⊥i · ei j ��
and globally scale s by π /ρ .

Fig. 14. Convergence of the alternating minimization of equation (8). For
the fertility model in figure 15 we show, over 50 iterations, the value of the
energy (8) (blue, bold) and the changes ∥∆θ ∥ (red, dashed) and ∥∆s∥ (green)
to θ and s each iteration.

be written as

R
(
θβ

)
= R

[
θα + si ŵ⊥i · (pβ − pα )

]
,

where R(θ ) = [cosθ , sinθ ]. Joint global recovery of θ and s then
amounts to optimizing

min
θ,s

∑
i ∈F

∑
α,β

ωα,β

2
Eiso
i,α,β (θ , s) +

µ

2
∥∇s∥2 (8)

where the second sum is over consecutive vertices α , β of face i ,
ωα,β is an inner product weight on edges (we use the cotangent
weight of the edge), and

Eiso
i,α,β (θ , s) =

(
R
(
θβ

)
− R

[
θα + si ŵ⊥i · (pβ − pα )

] )2

measures failure of θ and sŵ⊥ to agree on each edge.
We solve Equation (8) in alternating fashion, by iteratively com-

puting (i) the scale values s while holding the θ fixed, with Gauss-
Newton optimization; and (ii) the function θ , while holding s fixed,
which amounts to an eigenvector problem [Knöppel et al. 2015]. In
all of our examples, we found that ten alternations of steps (i) and
(ii) was sufficient. We illustrate the convergence of this procedure
in Figure 14.

4.2.5 Pipeline Summary. We briefly summarize our full pipeline for
finding approximately-geodesic almost-foliations θ , given an initial
guiding unit vector field ŵ:
(1) project ŵ onto a geodesic vector field, by solving Equation (5)

using Algorithm 1;
(2) puncture T at the singularities of ŵ (Section 4.2.2);
(3) solve for an initial estimate of s for which sŵ⊥ is close to being

discretely integrable (Section 4.2.3);
(4) globally rescale s to avoid aliasing across edges;
(5) refine s , while solving for θ , as described in Section 4.2.4.
Figure 15 shows the results of steps 2–5 of the above pipeline when
applied to two examples. Notice that in both cases the isolines of
the resulting θ are well-aligned to the geodesic field ŵ, even near
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Fig. 15. For fertility and torus, we compare our global integration method with others. For the first two rows, we compute θ and extract isolines using,
from left to right: (i) PGP-based [Knöppel et al. 2015; Ray et al. 2006] global integration with no correction; (ii) PGP-based global integration with local curl
correction [Ray et al. 2006]; (iii) global integration with mixed-integer programming [Bommes et al. 2009]; and (iv) mixed-integer parameterization using
an anisotropic metric (we used anisotropy factor 0.001). We show our result on the third row. Streamline of the vector fields are shown in blue, while the
recovered isolines are shown in purple. We shade the models by the angle of deviation between the tangents to the integral curves, and the input vector field.
(Black means aligned.) Our method simultaneously offers the usual benefits of PGP-based integration—integral curves well-aligned to the vector fields, and
maintaining nice spacing between curves—while being robust to singularities.

singularities. For comparison, we also show ablation experiments
where we compute a parameterization with no rescaling of the vec-
tor field (skipping step 3); and when using local curl reduction [Ray
et al. 2006] to initialize s rather than our step 3.

Comparison to Mixed-Integer Approaches. In principle, the pe-
riodic global integration of Section 4.2.4 could be replaced by a
mixed-integer approach, as in Bommes et al. [2009]’s mixed-integer
quadrangulation algorithm. We compare against this alternative in
Figure 15. In its raw form, the MIQ algorithm does not force exact
alignment of ∇θ to the field (which is beneficial when quad meshing,
to avoid anisotropic stretching of the quadrangulation streamlines),
and we observe that the method yields isolines that do not align as
well to the input field.

To promote alignment with the input field, several recent pa-
pers [Bommes et al. 2009; Campen et al. 2016] suggest adopting an

anisotropic metric when computing θ :

arg min
θ

∑
i ∈F



[∇θ ]i −w⊥i 

2
дi
, дi = wi ⊗ wi + αw⊥i ⊗ w⊥i ,

where α = 1 is the standard inner product on vector fields, and α = 0
penalizes only components of ∇θ orthogonal to w⊥. In Figure 15
we evaluate this variant of global integration as well. Although an
anisotropic metric promotes alignment to the input field, this comes
at the cost of very poorly-spaced integral curves for examples with
complex geometry and topology; there unfortunately is no free
lunch when choosing α . As has been observed by others comparing
these techniques [Bommes et al. 2013; Knöppel et al. 2015], global
integration using PGP (with our s-initialization step) benefits from
the ability to introduce edge dislocations in regions where integral
curves diverge, yielding overall higher-quality foliations.
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5 PART 2: DESIGNING TRIAXIAL WEAVES
We now apply our geodesic foliation optimization tools to the in-
verse triaxial weaving problem: given an embedded surface M in
R3, how do we weave it out of flexible ribbons?
Ribbons in a triaxial weave can be grouped (away from singu-

larities) into one of three nearly-parallel families, with ribbons of
different families crossing at roughly sixty degrees to each other. As
mentioned in the introduction, thin flexible ribbons resist geodesic
curvature, and must follow approximate geodesics along the target
surfaceM . In this section we create a pipeline for weaving arbitrary
shapes out of ribbons.
Since the three ribbon families of a triaxially-woven object lie

along geodesics, a natural idea is to lay out ribbons along isolines
of three independent geodesics foliations {θi }i=1,2,3 ofM (one for
each family). However, designing each family independently does
not allow for creation of dislocation singularities in the weave pat-
tern (see inset). We will see that by instead solving for a single
geodesic foliation on a sixfold branched cover ofM , we can exploit
singularities to improve the weave design.

Dislocations in a weave [Mar-
tin 2018] induce cone singular-
ities where curvature concen-
trates. Notice that away from
the singularity, ribbons can
be grouped into three nearly-
parallel families; one circula-
tion around the singularity
permutes the identity of the
three ribbon families (the sin-
gularity has index 2

3 .)

More specifically, the summary
of our strategy, described in detail
in the remainder of this section,
is the following: we place branch
points and branch cuts on the in-
put surface T using the approach
detailed in Appendix D. We then
cut and glue six copies of T into
a sixfold cover C of T : this cover
is a manifold triangle mesh with
boundary (though it may have
multiple connected components,
and may not be simply-connected
even if the original surface is), and
so the pipeline from Part 1 can be
applied directly to C to find a geo-
desic foliation θ : C → S1 on the
cover. After computing this folia-
tion on the cover, we trace isolines
of θ on C and realize a weaving
pattern by projecting these curves
back onto the original mesh T .
Our heuristic for placing branch points encourages approximate
3-fold symmetry of the final weaving pattern.

Weave Dislocations. Although ribbons in a triaxial weave can be
grouped locally into three families, singularities are apparent in real-
world weaves of nontrivially curved objects, and such singularities
are neither avoidable (due to the Hopf index theorem) nor undesir-
able, as singularities are a powerful tool for designing weaves with
curvature.

Singularities in the weave can be of two types: ordinary geometric
singularities, where ribbons of one family converge to a point, as
seen in the geodesic fields in Figure 8, and topological singularities
where ribbons of a single family split around the singularity into
two different families, as illustrated in figure 16.

A B C

-A -B -C

Fig. 16. Circulating around topological singularities (here, a simplified
and labeled reduction of Martin’s yellow ribbon weave) alters the identity
and orientation of ribbon families: in this case, moving counterclockwise
around the singularity (of index 1

6 ) permutes the family labeling cyclically
by (A, B, C, −A, −B, −C) ∈ S6.

face i face j face i face j

3
2

1

σ (2)

σ (1)

σ (3)

Fig. 17. We represent triaxial weaves of a surface as geodesic foliations on a
six-fold cover of that surface, with branch points of the cover corresponding
to weave dislocations. We initialize the branch points from the singularities
of a 6-RoSy field: vertices with fractional holonomy ( 1

3 for the figure on left)
become branch points. We first remove the 1-ring of all singular vertices,
then split the resulting mesh into 6 copies. We re-glue each copy of a face
i to a copy of a neighboring face j based on the permutation σi j which
optimally assigns vectors of the RoSy on face i to those on face j (right).

Following ideas from cross field parameterization [Kälberer et al.
2007] we approach the problem of globally integrating a poly-vector
field with topological singularities by lifting to a branched cover,
and illustrate our discretization in figure 17. However, borrowing
an observation from the study of one-directional stripe patterns
on surfaces [Knöppel et al. 2015], we note that in a weave, ribbons
are oriented, and so ribbons in the same family may actually travel
anti-parallel to each other. We thus represent a triaxial weave as
a single approximately-geodesic foliation θ on a sixfold branched
cover C of T . Each face of T lifts to six faces, one on each cover,
and likewise isolines of θ project down to three families of curves
on T .

5.1 Branch Point Initialization
Constructing the branched cover C requires choosing the branch
points and branch cuts on the original surface. We do not attempt
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to solve the interesting, yet challenging, problem of jointly optimiz-
ing for the cover topology and geodesic foliation, opting instead to
first fix the topology of C and then solve for θ on that fixed cov-
ering space. Our heuristic for fixing the topology is based on the
observation that a globally-optimal [Knöppel et al. 2013] (as-smooth-
as-possible) 6-RoSy field on a surface distributes singularities over
the surface in a manner that minimizes distortion of the RoSy field.
While not optimal, we find that this approach is generally suitable
for optimizing geodesic foliations for fabrication. We did not need
to hand-tune singularity placement for any of the examples in this
paper, including the examples in Figure 24.
Specifically, after computing a globally optimal 6-RoSy on the

faces of T , we split the RoSy into six vectors per face, and for each
edge ei j ∈ E we compute an optimal permutation σi j ∈ S6 assign-
ing each vector on face i to one on face j, so as to minimize the
sum of squared angles between corresponding vectors. Although in
principle the entire foliation-optimization pipeline of Part 1 could
be implemented on an abstract covering space represented by these
permutations [Kälberer et al. 2007], we found that explicitly materi-
alizing C as a triangle mesh using a gluing construction similar to
the one described by Roy et al. [2018] was conceptually simple and
more straightforward to implement.
In our implementation, we first detect branch points on T , i.e.

vertices around which the permutations σ do not compose to the
identity. We puncture T by removing these branch points and all
neighboring faces. Then we create six copies of each remaining
face and glue copy k of face i to copy σi j (k) of neighboring face
j, as illustrated in Figure 17. Note that while the resulting surface
C is a manifold, it may contain multiple connected components.
Finally, we also remove geometric singularities from C by similarly
puncturing a neighborhood of each singularity, to allow for recovery
of a continuous θ on the branched cover.

5.2 Pipeline Overview
Figure 18 illustrates our pipeline for computing a triaxial weave
approximating a given surface T (in this case, a 3D scan of brain
aneurysm). The main steps of our pipeline are:
• Cover Initialization.We intrinsic-Delaunay-remesh T and cre-
ate a branched cover C of T using the RoSy heuristic described
in the previous section. The RoSy lifts to a plain unit vector field
ŵ0 on C.
• Geodesic Foliation Optimization. Using ŵ0 as an initial guess,
we apply the pipeline from Section 4 to compute an approximately-
geodesic almost-foliation θ on every connected component of the
cover C.
• Paired Cover Rounding. Each face of T lifts to six faces of C,
and these six faces can be grouped into three pairs on which the
isolines of θ correspond to ribbons with identical direction, but
opposite orientation. To ensure that isolines on paired covering
faces are well-spaced relative to each other, we round θ to differ by
exactly half of a phase shift on paired faces, using mixed-integer
programming and the CoMiSo library [2012] as described by, for
instance, Kahlbehrer et al. [2007].
• Centerline Extraction. We extract isolines of θ on the six-fold
cover. These isolines approximate the centerlines of ribbons in

Fig. 18. Our weave design pipeline, illustrated on a 3D reconstruction of
a brain aneurysm. We solve for a globally optimal 6-RoSy field [Knöppel
et al. 2013] to place singularities on the model (i). We then optimize an
approximately geodesic vector (Section 4.1) on that cover. From there, we
lift to a branched cover and solve for periodic scalar valued function which
aligns with the geodesic vector field (Section 4.2), (ii). The level sets of this
function specify the ribbon centerlines (see Figure 4). We trace these and
project them from C back to T to materialize a weaving pattern, and then
fine tune the pattern via a physics simulation (iii).

a weaving pattern. However, due to numerical aliasing, isolines
which pass close to edge dislocations (like those discussed in Fig-
ure 11, right) may be highly non-geodesic at points. Further, our
technique of removing faces in the neighborhood of topological
singularities can also result in disconnected weaves that come
undone during simulation (see Figure 22, right). To account for
these artifacts, we post-process the isolines in several ways. We:
– resample the isolines so that all segments are approximately
the same length;

– cut the ribbons into two pieces at pointswith very high amounts
of geodesic curvature;

ACM Trans. Graph., Vol. 38, No. 4, Article 34. Publication date: July 2019.



Weaving Geodesic Foliations • 34:13

– prune very short ribbon short segments;
– ensure that ribbons terminate at crossings without “loose ends,”
by slightly extending ribbons along geodesics and then subse-
quently trimming them to the nearest crossing. The process
also helps “patch” the weave near singularities.

• Crossing Assignment. We detect crossings of ribbons and per-
form over/under assignment. Ideally, each ribbon should alternate
going over and under the ribbons it intersects; finding a global
over-under assignment can be viewed as a graph-coloring prob-
lem, where the vertices are contact points, edges connect pairs
of contact points that are consecutive on some ribbon, and we
seek a two-coloring of the vertices (representing an over or under
crossing) that minimizes monochromatic edges. We use a greedy
heuristic to approximately solve this NP-hard problem [Poljak
and Tuza 1994]: we choose a ribbon at random, sort its crossings,
and assign it as the over/under ribbon in alternation. We repeat
this process for all other ribbons. In the case where a ribbon’s
desired assignment is impossible (because another ribbon has
already forced it in the opposite position) we respect the prior
decision and resume alternation.
• Physics Fine-tuning.We improve the quality of the weave by
running an elastic rod simulation of the ribbons, allowing ribbons
to slide tangent to the surfaceM to release elastic strain. We then
predict the final equilibrium shape of the weave under its own
weight, to validate the weave design before fabrication. Details
of this simulation and fine-tuning step are given in Appendix E.
During this simulation, we allow ribbons to rotate relative to each
other, which produces a concrete set of joint angles which we
leverage for fabrication.
• Fabrication. We export the weave pattern as a set of flat rib-
bons annotated with crossing position and angle information; the
pattern can then be printed out and physically assembled.

5.3 Pipeline Results
The gallery in Figure 24 shows triaxial weaves computed on a vari-
ety of different surfaces. Our method successfully generates stable
weaving patterns that closely approximate input models with a wide
variety of geometries and topologies. A reference implementation of
our algorithms and design pipeline is included in the supplemental
materials; we used this code to generate all examples in the paper.
As evidence of the robustness of our pipeline, all of these examples
were generated in a single click in our software package with no
parameter tuning. (We did tune the global scaling of θ in Figures 1
and 19 to ease fabrication burden by designing patterns with fewer
ribbons.)

5.4 Fabrication
We develop each ribbon into the plane as parallel strips of width
w , and we export the ribbons as a color-coded and labeled vector
graphics file, illustrated in Figure 20. Our assembly language is
similar to the one used by the modeling program WeaveMesh [Tao
et al. 2017], with one key difference: in addition to marking on each
color-coded and labeled ribbon the locations of its crossings, we also
draw guides on the ribbons showing the in-plane angles at which
they cross, which we find greatly aids in the incremental assembly

of geometrically involved forms. The angle information allows the
weaver to handle each crossing only once, with the confidence that
the crossing orientation will not need to be readjusted later.
A fabrication strategy we have found to be effective is to begin

by assembling several medium length ribbons to serve as the “back-
bone” of the woven structure, and to build everything else off of this
backbone. Even so, our more elaborate examples require substantial
manual effort to fabricate (about fifty hours for the bunny in Fig-
ure 1), owing to the sheer number of ribbons in the weave, the time
required to find the correct position and orientation of each rod at
each crossing, and to correct mistakes—even a few errors early on
may lead to significant distortions in the assembled form.
The fabricated examples in Figure 19 were woven from Bristol

vellum, as vellum allows us to print the ribbon and guide markings
directly onto a structural weaving material. The bunny in Figure 1
was fabricated from birch edge-banding. This material is cheap,
widely available (with adhesive conveniently pre-applied to one
side), and structurally more robust than vellum. For this example we
printed the design file onto transfer paper, which we affixed to the
edge-banding prior to assembly. This model consisted of 108 ribbons
and 1823 ribbon crossings. It stands approximately 1.5 meters tall,
and required 180m of edge banding to fabricate. In contrast, the
torus in Figure 19 consists of 10 ribbons and 84 crossings.

Though quite work intensive, our fabrication methodology allows
non-experts to fabricate large scale spacial structures which would
be difficult to realize any other way. We encourage the reader to try
the system for themselves by fabricating a woven cone; to do so,
print out and assemble the weave pattern in appendix F. You will
need to fasten the ribbons together at their crossings (using glue,
tape, or binder clips).

6 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK
We have presented new algorithms for designing geodesic foliations
on triangulated surfaces, and we have demonstrated how these
geometry processing tools can be applied to the problem of weaving
arbitrary curved surfaces. We have validated our techniques on a
variety of complex examples. There are, however, several limitations
of our pipeline that could be explored in future work, and a number
of avenues for more exploration.

Tessellation-Independence. Each variational problem in Section 4
has been designed to have solutions which are invariant to the scale
of T and resilient to its tessellation. That said, we make no claims of
guaranteed tessellation-independence, and indeed our formulation
requires norms on face-based vector fields, the Laplacian operator
on functions on faces, etc, whose discretization remains an active
area of research [Alexa and Wardetzky 2011]. That said, quality of
the input tessellation is not a practical concern since there is no
reason not to remesh all inputs to have high quality while keeping
the shape the same.

Weave Fidelity. It is clear that there is a limit on the scale of geo-
metric features that can be resolved by a weave pattern, depending
on both the ribbon width and density. Sharp creases are also un-
likely to be preserved (for instance, the icosahedron in the first
column of Figure 19, despite possessing a perfectly regular 6-RoSy
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Fig. 19. The results of our weave design pipeline (top), and the corresponding fabricated model, for an icosahedron, bumpy box, and torus.

Fig. 20. Our visual assembly language—we mark each intersection with an
angle and an indicator pattern to match ribbons to each other. The indicators
are drawn from a small set of visually distinct crossings/patterns. We find
that these greatly aid in accelerating assembly, but also uniquely label each
crossing for disambiguation.

geoedesic foliation, loses its sharp creases when the ribbons relax to
static equilibrium.) Higher-fidelity weaves require more and thinner
ribbons.

Crossing Assignment and Rigidity. Triaxial structures tend to be
truss-like and rigid, particularly if the crossing assignment is chosen
so that three ribbons from the three ribbon families intersecting

Fig. 21. Auto-Chinlone: our pipeline easily extends to weaves with arbitrary
k -fold symmetry, and we illustrate the different choices of k on the sphere
(from left to right: k = 4, 5, 6).

each other in close proximity interleave (see Figure 20, right). Cur-
rently, our crossing assignment heuristic is ad-hoc and does not
take advantage of this observation. Better automatic crossing assign-
ment selection would reduce the need to fasten or manually correct
crossings and increase rigidity during fabrication. However, solving
this problem in generality requires accounting for ribbon tolerances
(they have width and cannot pass through each other) in addition
to regularity when assigning the ribbon pattern. More sophisticated
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Fig. 22. Some models, particularly those with large amounts of negative
curvature and with boundary, may relax to equilibrium (top right) far away
from their initial shape (top left). Our singularity placement heuristic can
also result in an unreasonable number of singularities, disconnecting seams
on somemodels and leading to significant distortion, when the input surface
contains sharp, noisy features, such as a crowning water droplet (bottom)

approximations to the Max-Cut crossing assignment problem [Goe-
mans and Williamson 1995], with theoretical guarantees, also exist
and would be interesting to explore.

Further, while we find that the space of stable woven geometries
is extremely rich, in some cases (particularly for negatively-curved
surfaces with free boundary), the weave design relaxes to an equilib-
rium shape far from the input shape after simulation (see Figure 22
for an example). Developing a more complete understanding of the
space of stable surfaces (and how they respond to external loads) is
an interesting direction for future work.

Singularity Placement. When designing weaves, we automatically
places branch cuts based on the singularities of an as-smooth-as-
possible 6-RoSy field. While this heuristic requires no user inter-
vention and gives good results in practice, we have no theoretical
guarantees that this choice of singularity placement is optimal (and
indeed, more singularities might allow a more geodesic field, and
vice versa). We noticed that in spite of the rigidity induced by fixing
a branched cover prior to optimization, our geodesic optimization
finds weave patterns that are close to geodesic and have low elastic
strain (see Figure 23). There is interesting future work in combining
our approach with automatic singularity placement; one natural
approach would be to extend our geodesic foliation formulation to
use PolyVectors [Diamanti et al. 2014], so that the geometry and
topology of the branched cover does not need to be fixed a piori.
Another option towards a similar goal would be to follow the ap-
proach of Farchi and Ben-Chen [2018] and to use our energy as a
metric to power a search over the space of singularities.

Ribbon Degeneracy. In order to be fabricable, ribbon families
should cross at angles close to sixty degrees. Our current pipeline
does not guarantee that the isolines of θ on the cover C project to
curves on T that meet transversely, and including additional terms

0 J/m3 400

Fig. 23. Left : a weave aligned to a non-geodesic foliation (a smooth 6-RoSy
field [Knöppel et al. 2013], top) and a geodesic foliation that we compute
(bottom). Curvature of the ribbon centerlines induces elastic energy in the
ribbons, with geodesic curvature contributing significantly more energy; we
plot the energy density as a color map on the ribbons. Right : Our simulation
relaxes the weaves to equilibrium. The inset shows the typical buckling and
twisting that occurs if non-geodesics are forced into an unrelaxed weave
pattern.

in the optimization of θ to encourage ribbons to meet at robust
angles might improve the quality of our weaves.

Other Weave Types. Our work focuses on triaxial weaves, as they
are the most geometrically and topologically complex; in principle
our theory and fabrication pipeline could be extended in a straight-
forward manner to design of biaxial (plain, twill) weaves. Such
structures are likely to be less rigid and so might be useful for the
design of forms which respond to external forces in pre-determined
ways. As we demonstrate in Figure 21, our pipeline readily extends
to weaving patterns with arbitrary degrees of symmetry.

Alternative Vector Field Discretization. We discretize vector fields
as assignments of tangent vectors to mesh faces: the face defines
a natural and obvious tangent plane in which the vectors lie, it
allows us to build on prior work tying together discrete curl and
integrability of face-based vectors, and it is a simple representation
to implement. Porting the geodesic foliation algorithms in Section 4
to other discretizations [de Goes et al. 2016] (such as vectors on
vertices or edges, or higher-order bases for vector fields) may be
possible as well.

Automated Fabrication. All of our real-world models were fab-
ricated by hand, with substantial manual effort. Research into au-
tomating fabrication of weaves from our optimized weave patterns,
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along the lines of what has been done for knitted 3D objects [Mc-
Cann et al. 2016; Narayanan et al. 2018], is an important next step
towards bulk manufacturing of complex woven objects.
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Fig. 24. Gallery of examples. All examples in this figure were generated by a fully automated pipeline with no manual placement of singularities or parameter-
tuning (however physical fabrication does require some manual pruning of ribbons, adjustment of crossing assignment, etc.). The number of ribbons in each
model, starting with the duck and the seahorse, are: 173, 123, 170, 177, 110, 658, 259, 115, 117, 283.
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A SMOOTH SOLUTIONS TO GEODESIC VARIATIONAL
PROBLEM

Here we prove that in the smooth setting, the solutions (ŵ,δ) to
equation 4 are precisely geodesic fields, with δ = 0. We begin with
the observation that at optimality, all of the following must be true:
• The two fields ŵ and δ are parallel, so that δ = sŵ for some
function s : M → R;
•
∫
M s dA = 0, since otherwiseδ can be globally rescaled to decrease
the objective function, while maintaining all constraints;
• for any curl-free vector field v,

∫
M ⟨v,δ⟩ dA = 0, since otherwise

the v component of δ can be subtracted from δ to decrease the
objective function.

ACM Trans. Graph., Vol. 38, No. 4, Article 34. Publication date: July 2019.

https://doi.org/10.1145/2870629
https://doi.org/10.1145/2870629
https://doi.org/10.1007/s00220-019-03366-y
http://gallery.bridgesmathart.org/exhibitions/2013-bridges-conference/alison-martin
http://gallery.bridgesmathart.org/exhibitions/2013-bridges-conference/alison-martin
https://doi.org/10.1145/2897824.2925940
https://doi.org/10.1145/2897824.2925940
https://doi.org/10.1145/2897824.2925978
https://doi.org/10.1137/0216045
https://doi.org/10.1137/0216045
https://doi.org/10.1145/3186265
https://doi.org/10.1109/TVCG.2011.118
https://doi.org/10.1145/1276377.1276446
https://doi.org/10.1145/1276377.1276446
https://doi.org/10.1145/2601097.2601179
https://doi.org/10.1145/2766998
https://doi.org/10.1145/2766998
http://www.jstor.org/stable/1986219
https://books.google.com/books?id=-AaZMwEACAAJ
https://books.google.com/books?id=-AaZMwEACAAJ
https://doi.org/10.1145/1185657.1185664
https://doi.org/10.1007/978-981-10-6611-5_24
http://doi.acm.org/10.1145/1778765.1778780
https://doi.org/10.1145/1183287.1183297
https://doi.org/10.1145/1183287.1183297
https://doi.org/10.1145/2602145
https://doi.org/10.1145/1640443.1640444
https://doi.org/10.1002/1097-0312(200103)54:3<294::AID-CPA2>3.0.CO;2-S
https://doi.org/10.1002/1097-0312(200103)54:3<294::AID-CPA2>3.0.CO;2-S
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/1097-0312%28200103%2954%3A3%3C294%3A%3AAID-CPA2%3E3.0.CO%3B2-S
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/1097-0312%28200103%2954%3A3%3C294%3A%3AAID-CPA2%3E3.0.CO%3B2-S
https://doi.org/10.1109/TVCG.2017.2744038
https://doi.org/10.1111/cgf.12753
https://doi.org/10.1145/2816795.2818128
https://doi.org/10.1145/2461912.2461915
https://doi.org/10.1145/1073204.1073228
https://doi.org/10.1145/2980179.2982406
https://doi.org/10.1145/2851581.2892293
https://doi.org/10.1145/3025453.3025699
https://doi.org/10.1103/PhysRevLett.106.224301
https://doi.org/10.1103/PhysRevLett.106.224301
https://doi.org/10.1111/cgf.12864
https://doi.org/10.1137/17M1142703
http://arxiv.org/abs/https://doi.org/10.1137/17M1142703
https://doi.org/10.1145/2037715.2037781
http://arxiv.org/abs/arXiv:math/0503566
https://doi.org/10.1145/2185520.2185533
https://doi.org/10.1145/2897824.2925888
https://doi.org/10.1145/1183287.1183290
https://doi.org/10.1145/1183287.1183290


Weaving Geodesic Foliations • 34:19

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6 6

7 7 7 7 7 7 7 7 7

8 8 8 8 8 8 8

9 9 9 9 9 9 9

10 10 10 10 10 10 10

1 1
6cyan

6cyan
1

5green

5green
1

9purple

9purple

7yellow

7yellow
1

2blue

2blue
1 1

10red

10red

2
6blue

6blue
2 2

3orange

3orange
2

8cyan

8cyan

10yellow

10yellow
2

1blue

1blue
2

7green

7green

3
7orange

7orange
3 3

4purple

4purple
3 3

9green

9green

6red

6red
3 3

2orange

2orange
3

8blue

8blue

4 4
8purple

8purple
4

5cyan

5cyan
4 4

10orange

10orange

7yellow

7yellow
4 4

3purple

3purple
4 4

9red

9red

5
10yellow

10yellow
5 5

4cyan

4cyan
5 5

8green

8green

6blue

6blue
5

1green

1green
5 5

9cyan

9cyan
5

6 6
1cyan

1cyan
6

5blue

5blue

8red

8red
6

7purple

7purple
6

10blue

10blue
6 6

9orange

9red

3red

3red
6 6

7 7
2green

2green
7

1yellow

1yellow

9cyan

9cyan
7 7

8green

8green
7

6purple

6purple
7 7

10yello

10yellow

4yellow

4yellow
7 7

3orange

3orange

8
3blue

3blue
8

2cyan

2cyan

10red

10red
8

9purple

9purple
8

7green

7green
8

6red

6red

5green

5green
8

4purple

4purple
8

9
5cyan

5cyan
9 9

1purple

1purple

7cyan

7cyan
9

8purple

8purple
9

10orange

10orange
9 9

6orange

6orange

3green

3green
9 9

4red

4red

10
1red

1red
10

2yellow

2yellow

8red

8red
10

9orange

9orange
10

6blue

6blue
10

7yellow

7yellow

4orange

4orange
10 10

5yellow

5yellow

Fig. 25. Try assembling this design file for a cone with angle 60 degrees

Put together, these facts imply that at optimality, δ = sŵ is orthog-
onal to ŵ + δ = (1 + s)ŵ since the latter is curl-free:

0 =
∫
M
⟨(1 + s)ŵ, sŵ⟩ dA =

∫
M
s2 dA

which implies s = 0. Thus δ = 0 and ŵ is geodesic.

B GEODESIC FIELD OPTIMIZATION
In code, we represent vector fields on faces of T in reduced coordi-
nates u ∈ R2 |F | , where ui are the two barycentric coordinates of
wi in the coordinate system of face i . We will denote by ūi ∈ R3

the inclusion of ui into ambient space.
Throughout the appendices we will make use of the following

discrete operators:
• the linear discrete curl operatorC |Eint |×2 |F | acting on vector fields
in the barycentric basis, defined as in equation 3. Here Eint is the
set of interior (non-boundary) edges;
• the L2 inner product on functions on facesMF , an F ×F diagonal
matrix with entries equal to the areas Ai of triangles i;
• the corresponding L2 inner product on vector fieldsMv

F
, defined

by

uTMv
F
u =

∑
i ∈F

Ai ∥ūi ∥2;

• the Laplacian on faces LF , which we discretize using the recipro-
cal cotan weights of the ordinary vertex Laplacian, e.g.(

LFs
)
i =

∑
j∼i

sj − si

ωi j
,

where the sum is over all face neighbors of face i and ωi j is the
cotan weight of the shared edge;

• the Dirichlet energy on vector fields u, given by

∥∇u∥2 =
∑

ei j ∈Eint

1
ωi j




Tj←iui − ūj



2
,

where Tj←i is the transport operator from face i to face j, as in
equation (2). We write the Dirichlet energy in matrix form as

∥∇u∥2 = −uT Lv
F
u.

In terms of these operators, the variational problem (5) becomes

min
δ,u

1
2
δTMv

F
δ −

λ

2
[u+δ]T Lv

F
[u+δ] s.t.

C(u + δ) = 0,
∥ūi ∥ = 1,

ui = uHi ∀i ∈ H
(9)

As described in Algorithm 1, we solve this problem in alternat-
ing fashion: (1) fix u and solve for δ , which amounts to a convex
quadratic program; (2) fix δ and update u. Both steps decrease the
energy (9) while maintaining the constraints, and hence the alter-
nation will converge.

δ Update Step. Suppose we have current values δ i , ui for the
optimization variables that satisfy all constraints. Fixing ui and
finding δ i+1/2 which minimizes equation (9) amounts to linearly-
constrained least squares, since the unit-norm constraint on ui is
irrelevant. We introduce |Eint | Lagrange multipliers µ (the handle
constraints can be incorporated either by deleting the constrained
δi from the optimization, or by introducing additional, trivial con-
straints and Lagrange multipliers) and solve

δ̃ = arg ext
δ,µ

1
2
δTMv

F
δ+

λ

2
[
ui + δ

]T
Lv
F

[
ui + δ

]
+µTC

[
ui + δ

]
.
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Fig. 26. Convergence of our algorithm on the sphere example in Figure 7
(with λ = 100). Both the total curl (blue) and change in ŵ per iteration (red)
decreases quickly with increasing number of iterations. The dotted blue
line is the total curl of a globally optimal vector field [Knöppel et al. 2013],
which we use as input to Algorithm 1. As illustrated in Figure 9, the curl can
be further reduced on many examples by allowing λ −→ 0 after converging
on an initial smooth solution.

The KKT conditions of the above problem form a linear system in
terms of δ and µ:[

Mv
F
+ λLv

F
CT

C 0

] [
δ
µ

]
=

[
−λLv

F

(
ui + δ

)
−C

(
ui
) ]

which we solve using sparse QR decomposition.

u Update Step. In the second alternation step, we set

ui+1
j =

uij + δ̃j


uij + δ̃j


 δ i+1
j = −ui+1

j + uij + δ̃j .

Notice that ui + δ̃ = ui+1 + δ i+1, while the norm of δ i+1 has
decreased, so that this step decreases (9) while maintaining both
constraints.

B.1 Convergence
Figure 26 shows convergence of our algorithm on the sphere ex-
ample considered in Figure 7 (with λ = 100). We plot the change
in w between iterations, as well as the total curl

∫
M ∥∇ × ŵ∥ over

the surface. The curl rapidly decreases after a few iterations of the
above alternation (it never reaches exactly zero due to both dis-
cretization error in estimating the total curl, and the influence of
the regularization term ∥∇(ŵ + δ)∥2.)
We measure curl of a vector field w on each face of a mesh as

follows: with ei j the edge vector shared by faces i and j, oriented
consistently with face i , we compute

(∇ ×w)i =
1
Ai

∑
j∼i
(wj −wi ) · ei j ,

where the sum is over faces j neighboring face i .

C COMPUTING AN INITIAL RESCALING
Here we provide details regarding the numerical recovery of s that
minimizes Equation (7) by solving a generalized eigenvalue problem.

ALGORITHM 2: Inverse power iteration for finding s .

x0 ← rand();
x0 ← x0/∥x0 ∥A2 ;
for i = 0, . . . , imax do

x̃i+1 ← (A1 + A2)
−1A2xi ;

µ ← (BBT )−1Bx̃i+1 ; // project onto nullspace of B
xi+1 ← x̃i+1 − BT µ ;
xi+1 ← xi+1/∥xi+1 ∥A2 ;

end

Equation (7) is equivalent to the constrained Rayleigh quotient
problem

min
x

xTA1x
xTA2x

s.t. Bx = 0

with x =
[
δ s

]T and

A1 =

[
Mv
F

−µLF

]
, A2 =

[
Mv
F

MF

]
,

in the notation of Appendix B.
Concretely, note thatA1 is positive-semidefinite andA2 is positive-

definite. As usual, the solution to the Rayleigh quotient optimization
problem is the generalized eigenvector ofA1 |B with respect toA2 |B ,
where A1 |B is the restriction of A1 to the nullspace of B. We solve
this optimization problem using inverse power iteration, as sum-
marized in Algorithm 2. We add A2 to A1 in the algorithm, as this
addition shifts the spectrum ofA1 without affecting its eigenvectors,
while ensuring that A1 +A2 is invertible.

If the surface T consists of multiple connected components, al-
gorithm 2 must be run separately on each component, as otherwise
the solution will set s = 0 on all but one of the components. Fi-
nally, both matrices A1 +A2 and BBT can and should be Cholesky
pre-factorized before the power iteration loop.

Table 2. We emphasize two differences between Equations 5 and 7.

Constraint Space
( + integrability) Solution Space

Eq 5 Unit norm ∥ · ∥2
per face (non-convex)

Smooth S1 valued
parameterization of
unit field ŵ per face

Eq 7 ∥sw⊥∥2 = C
integrated (quadratic)

Smooth R+ field s
per face

D 6-ROSY OPTIMIZATION
We use a globally optimal [Knöppel et al. 2013] 6-RoSy for the
purposes of initializing branched cover singularities (Section 5.1).
We briefly describe how to compute such a RoSy field, in the interest
of making this paper more self-contained.
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Representing 6-RoSys. Let v denote an arbitrary reference vector
field on the faces F of T . Then the six vectors {ŵj

i }
6
j=1 of a 6-RoSy

on face i are related by a rotation of π/3 radians by the surface
normal. Given a vector w on face i , define Ri (w) to be the rotation
in the tangent plane of face i mapping vi to w; the RoSy can then
be compactly represented by a representative vector field ŵ⋆ with

ŵ⋆
i = Ri (w

j
i )

6vi ;

here the rotation on the right is raised to the sixth power. Note that
the representative vector field for a RoSy is unique, given v, and
does not depend on the labeling of the six vectors in the RoSy on a
face.

Dirichlet Energy. For two adjacent faces i, j, denote by T v
j←i the

parallel transport operator on RoSys, defined by

Rj
(
Tj←iw

)
vj = Tj←iRi (w)vi

for all tangent vectors w on face i . The map T v
j←i is linear and

depends only on T and v, and can be precomputed as a matrix
on each edge of T . The Dirichlet energy on 6-RoSy representative
vector fields is then

∥∇ŵ⋆∥2 =
∑

ei j ∈Eint

1
ωi j




T v
j←i ŵ

⋆
i − ŵ

⋆
i




2
,

in direct analogy to the Dirichlet energy in section B.

Globally Optimal RoSys. Following Knoppel et al. [2013], find-
ing an as-smooth-as-possible 6-RoSy on a surface can be made
well-posed by relaxing the unit magnitude condition on the repre-
sentative vector field:

arg min
w⋆

∥∇w⋆∥2 s.t. ∥w⋆∥2 = 1,

whose solution is given by a generalized eigenvector problem.

E WEAVE SIMULATION AND FINE-TUNING
Although geodesic foliations are good heuristics for weave patterns
that will stably approximate a shape when woven, we perform a
physical simulation to fine-tune the pattern design and to predict
the equilibrium shape of the weave (and in particular, detect if the
weave will remain stable under its own weight) after fabrication. In
this section, we describe this stage of our pipeline, where we solve
a global statics problem to relax the weave to equilibrium while
staying as close as possible to the design goal. At a high level, we
improve the weave in two steps:
• we allow ribbons to slide on the surface of the target mesh, while
remaining constrained to lie tangent to the target surface. This
sliding corrects small artifacts in the field design or integral curve
extraction steps, and reduces strain in the weave, particularly
near singularities where many ribbons terminate.
• we relax the weave to static equilibrium. This step gives the user
a preview of what shape the weave will assume when fabricated.

Both steps make use of a elastic rod simulation of the weave. We
assume that each ribbon of the weave has some user-specified thick-
ness h and width w , with w > h, and represent the weave as an
anisotropic thin elastic rod with rectangular cross-section. We base

our simulation on the formulation of Bergou et al. [2010; 2008],
which models elastic rods using a Kirchhoff kinematic model, with:
• a piecewise-linear centerline specified by centerline vertices Vc =
{p1, . . . , p |Vc |};
• a unit reference director di+1/2 on every line segment connecting
vertices pi and pi+1, and orthogonal to that segment;
• an angle θi+1/2 per line segment, specifying the orientation of
the segment, with the thickness direction τi+1/2 of the ribbon
(normal to the width direction) given by(

cosθi+1/2

)
di+1/2 +

(
sinθi+1/2

)
t̂i+1/2 × di+1/2,

where t̂i+1/2 = (pi+1 − pi )/∥pi+1 − pi ∥ is the unit vector tangent
to the ribbon.

We chose Bergou et al’s method as it was thoroughly validated by its
authors, and has been successfully applied to a variety of problems in
both physics [Brun et al. 2015] and computational fabrication [Pérez
et al. 2015].

We convert the isolines extracted in section 5 into elastic rods by
initially setting θi+1/2 = 0 and di+1/2 equal to the surface normal of
T at the midpoint of each rod segment. We also store a rest length
ℓi+1/2 on each segment, equal to ∥pi+1 − pi ∥ at the start of this step
of the pipeline.

E.1 Fine-tuning By Sliding
To improve the weave, we allow ribbons to slide over each other
while remaining close to the target surface. Let Eint be the total
internal potential energy of the weave; to this elastic energy we
add an energy that penalizes movement of a ribbon away from the
surface, similar to the classic technique of implementing frictional
contact using anchored springs [Howard and Kumar 1993], or point-
to-plane energies to solve ICP registration problems. Denote by
ai an anchor point on T associated to rod vertex i , and by n̂i the
surface normal at ai . Our sliding energy for a rod is then

Eslide =
|Vc |∑
i=1

[
κn
2
∥n̂i · (pi − ai )∥2 +

κt
2




(I − n̂i n̂Ti ) (pi − ai )


2
]
,

where the first term penalizes normal motion of the rod away from
T , and the second, tangential sliding (we use κn = 1000 and κt = 1).
We alternate (i) solving

arg min
p,θ

∑
rods
(Eint + Eslide)

using Gauss-Newton optimization (here the ai are kept fixed), and
(ii) recomputing each ai by projection pi onto T . The optimization
step allows ribbons to slide along the surface in order to relieve
internal stress; theκn term serves as a soft constraint restricting nor-
mal motion, and κt term regularizes the optimization by preventing
rods from sliding too much within each iteration.

E.2 Relaxing The Weave
We perform a final simulation (without any artificial penalty forces
keeping the ribbons near T ) to predict the equilibrium shape of the
weave pattern. If fabricated, the weave will hold together in this
predicted shape. For closed surfaces, or open surfaces with rigid
boundary, the equilibrium shape is almost always very close to the
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input target shape, though we did encounter a few failure cases
where the weave relaxes to a significantly different shape when the
boundary is open (see Figure 22).

We assume that contact between ribbons is unilateral: that either
the over-under weaving of the ribbons is sufficient to hold the weave
together via stiction, or that ribbons are otherwise fastened together
at their crossings. Contact forces at the crossings balance residual
internal forces within the ribbons, yielding a stable curved shape:
without contact forces each ribbon would unravel into a straight, flat
strip. We simulate contact constraints by augmenting the internal
energies of Bergou et al. [2008] with a penalty potential per ribbon
crossing. In modelling this potential, we account for (i) ribbons
weaving over and under each other, so that when they are in contact
their centerlines are distance h apart at the crossing; and (ii) pairs
of ribbons must lie flush when they cross, and so must have parallel
normals at the contact point.5

Suppose a crossing is present on segments i + 1/2 and j + 1/2 on
rods a and b, so that the centerline positions closest to the point of
contact are given by

ca = (1 − αa )pai + α
apai+1; cb = (1 − αb )pbj + α

bpbj+1

for barycentric coordinates αa and αb , where the superscripts a,b
are used to denote quantities associated to the corresponding rod.
Then for this crossing we use contact penalty

Ec = γpos

(


ca + ϵhτai+1/2 − c
b



2
+




cb − ϵhτbj+1/2 − c
a



2
)

+ γorient




∠ (τai+1/2,τ
b
j+1/2

)


2

for stiffness parametersγpos andγorient, and for ϵ ∈ {1,−1} encoding
the over-under assignment. We use γpos = 1000 and γorient = 106

for all of our examples.

Numerical Optimization. Static equilibria of the weave are charac-
terized by extrema of the weave’s total potential energy, including
penalty terms,

E =
∑

rods r
Eint +

∑
contacts c

Ec . (10)

There are always multiple such extrema, since E is invariant under
rigid motions of the weave. We therefore regularize Equation (10)
by constraining the weave center of mass and rigid orientation to
remain constant during optimization.

Although every term inE is quite nonlinear, we useGauss-Newton
optimization with line search to solve equation (10), and in our ex-
perience it quickly converges to a weave equilibrium state. There is
one minor complication: during the line search, the directors di+1/2
stop being normal to their corresponding rod segments, so that the
estimate of the post-step energy in the line search is incorrectly op-
timistic. A correct line search must parallel-transport (see Bergou et
al. [2008] for details) the directors onto the predicted new centerline
segments when evaluating the suitability of a step.

5We note that this model does nothing to ensure that the target weave pattern is
actually fabricable (as the width of the ribbons imposes a constraint on the weaving
pattern that we do not account for).

F EXAMPLE WEAVE PATTERN
We have included in Figure 25 a simple weave pattern generated
using our pipeline; we encourage the reader to assemble the object
(a cone with 60◦ cone angle) themselves. Cut out the ribbons, and
fasten ribbons to each other at the indicated crossing points, with
indicated orientation. All ribbons should be oriented so that the
colored side of the paper points out: the ribbon with thicker guide
marker should be woven under the ribbon with thinner marker.
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