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There are natural synergies between shared autonomous vehicle (AV) fleets and electric
vehicle (EV) technology, since fleets of AVs resolve the practical limitations of today’s
non-autonomous EVs, including traveler range anxiety, access to charging infrastructure,
and charging time management. Fleet-managed AVs relieve such concerns, managing
range and charging activities based on real-time trip demand and established charging-
station locations, as demonstrated in this paper. This work explores the management of
a fleet of shared autonomous electric vehicles (SAEVs) in a regional, discrete-time, agent-
based model. The simulation examines the operation of SAEVs under various vehicle range
and charging infrastructure scenarios in a gridded city modeled roughly after the densities
of Austin, Texas.
Results based on 2009 NHTS trip distance and time-of-day distributions indicate that

fleet size is sensitive to battery recharge time and vehicle range, with each 80-mile range
SAEV replacing 3.7 privately owned vehicles and each 200-mile range SAEV replacing 5.5
privately owned vehicles, under Level II (240-volt AC) charging. With Level III 480-volt
DC fast-charging infrastructure in place, these ratios rise to 5.4 vehicles for the 80-mile
range SAEV and 6.8 vehicles for the 200-mile range SAEV. SAEVs can serve 96–98% of trip
requests with average wait times between 7 and 10 minutes per trip. However, due to the
need to travel while ‘‘empty” for charging and passenger pick-up, SAEV fleets are predicted
to generate an additional 7.1–14.0% of travel miles. Financial analysis suggests that the
combined cost of charging infrastructure, vehicle capital and maintenance, electricity,
insurance, and registration for a fleet of SAEVs ranges from $0.42 to $0.49 per occupied
mile traveled, which implies SAEV service can be offered at the equivalent per-mile cost
of private vehicle ownership for low-mileage households, and thus be competitive with
current manually-driven carsharing services and significantly cheaper than on-demand
driver-operated transportation services. When Austin-specific trip patterns (with more
concentrated trip origins and destinations) are introduced in a final case study, the simu-
lation predicts a decrease in fleet ‘‘empty” vehicle-miles (down to 3–4% of all SAEV travel)
and average wait times (ranging from 2 to 4 minutes per trip), with each SAEV replacing 5–
9 privately owned vehicles.
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1. Introduction

Recent transportation trends in increasing electric vehicle (EV) sales and growing carsharing membership have important
impacts on greenhouse gas emissions and energy use. Incentivizing plug-in EV adoption and shared-vehicle use may be key
strategies for helping regions achieve national- and state-level air quality standards for ozone and particulate matter, and
ultimately carbon-emissions standards. At the same time, with the rise of the shared-use economy, carsharing is emerging
as an alternative mode that is more flexible than transit but less expensive than traditional private-vehicle ownership. How-
ever, the growth of EVs and carsharing are both hindered by technological and social factors. For EVs, the most significant
hindrance may be ‘‘range anxiety,” a user’s concern for being stranded with a fully discharged battery and no reasonable
recharge option (Bartlett, 2012). Meanwhile, as EVs penetrate the private and commercial vehicle fleets, they are also gaining
ground in the carsharing world. EVs are a natural match for carsharing operations as existing members of carsharing oper-
ations tend to drive smaller and more fuel efficient vehicles than non-carshare members (Martin and Shaheen, 2011).
Cutting-edge carsharing operators (CSOs) are already employing EVs in their fleets (such as Daimler’s Car2Go and BMW’s
DriveNow operations), but the manual relocation of fleets in one-way carsharing systems continues to present profitability
challenges to CSOs. The introduction of autonomous driving technology would remove the challenge of manual vehicle relo-
cation and presents a driver-free method for shared EVs to reach travelers’ origins and destinations as well as charging sta-
tions. In a carsharing setting, a fleet of shared autonomous electric vehicles (SAEVs) would automate the battery
management and charging process, and take range anxiety out of the equation for growth of EVs. With the recent popularity
of on-demand transportation services through transportation network companies, it is possible to imagine a future travel
system where autonomous vehicle (AV) technologies merges with carsharing and EVs in a SAEV fleet. But can self-driving
vehicles be shared, self-charged, and right (battery-) sized for the trip lengths that travelers desire?

This study attempts to answer this question through the simulation of a SAEV fleet in a discrete-time agent-based model,
examining fleet operations in a 100-mile by 100-mile gridded metropolitan area. Scenarios combine short-range and long-
range electric vehicles with Level II and Level III charging infrastructure to look at the impacts of vehicle range and charging
time on fleet size, charging station sites, ability to meet trip demand, user wait times, and induced vehicle-miles traveled
(VMT). Following the discussion of the simulation results, a financial analysis highlights the tradeoffs between capital invest-
ment in vehicles and charging infrastructure and user benefits.
2. Prior research

There is a wealth of literature examining carsharing, electric vehicles and charging infrastructure planning, and autono-
mous vehicles as separate topics. Studies looking at gasoline-propelled and (especially) electric AVs in a shared setting are
more limited. Wang et al. (2006) proposed a dynamic fleet management algorithm for shared fully automated vehicles based
on queuing theory. In a simulative environment with five stations and five vehicles, the average passenger waiting time was
3.37 min with average vehicle usage rate of 4.3 vehicles, compared to a fixed dispatch algorithm where average passenger
wait time was 4.89 min and vehicle usage rate 3.7 vehicles. Spieser et al. (2014) modeled a fleet of shared self-driving vehi-
cles in Singapore in the absence of any private vehicles, and found that each shared vehicle can replace three privately owned
vehicles and serve 12.3 households. In Kornhauser (2013), aTaxiStands (autonomous taxi stands) are placed in every half
mile by half mile pixel across New Jersey, and passengers walk to taxi stands rather than allowing AVs to relocate.
Douglas (2015) uses the base model proposed in Kornhauser (2013) to size the fleet of an autonomous taxi system in a
5-mile by 5-mile subset of the New Jersey model and found a minimum of 550 vehicles was needed to serve the trip demand.
Burns et al. (2013) examined the performance of a shared autonomous fleet in three distinct city environments: a mid-sized
city (Ann Arbor, Michigan), a low-density suburban development (Babcock Ranch, Florida), and a large densely-populated
urban area (Manhattan, New York). The study found that in mid-sized urban and suburban settings, each shared vehicle
could replace 6.7 privately owned vehicles. Meanwhile, in the dense urban setting, the current taxi fleet could be downsized
by 30% with the introduction of autonomous driving technology with average wait times at less than 1 min. The
International Transport Forum (2015) looked at the application of shared and self-driving vehicles in Lisbon, Portugal,
and found that with ride-sharing enabled, each shared vehicle can replace approximately 10 privately owned vehicles
and induces 6% more VMT than the current baseline. Without ride-sharing, each sequentially shared vehicle can replace 6
privately owned vehicles but induces 44% more travel distance. This study also looked at the impact of electrifying shared
self-driving vehicles, assuming an electric range of 175 km (108 miles) and a recharge time of 30 min, and found that the
fleet would need to be 2% larger. Fagnant and Kockelman (2014) presented an agent-based model for Shared Autonomous
Vehicles (SAVs) which simulated environmental benefits of such a fleet as compared to conventional vehicle ownership and
use in a dense urban core area. Simulation results indicated that each SAV can replace 11 conventional private owned vehi-
cles, but generates up to 10% more travel distances. When the simulation was extended to a case study of low market pen-
etration (1.3% of trips) in Austin, Texas, each SAV was found to be able to replace 9 conventional vehicles and on average,
generated 8% more VMT due to unoccupied travel (Fagnant et al., 2015).

Charging/refueling in a fleet of shared self-driving vehicles has remained a missing component in all of the prior studies
mentioned here except ITF (2015) and Fagnant and Kockelman (2014), both of which model the refueling process rather sim-
plistically. Fagnant and Kockelman (2014) modeled the logistics of refueling by assuming the 400-mile range SAVs could
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refuel at any location within the grid with a fixed service lag time. In ITF (2015), recharging of EVs is only looked at in terms
of equivalent fleet sizing compared to longer-range and shorter-recharge-time, gasoline-propelled vehicles. No study has
examined the operations of shared autonomous vehicles looking specifically at the vehicle propulsion system and charging
infrastructure, both of which have direct impacts on the vehicle’s ability to travel to passengers as well as fueling/charging
stations. The work described here builds from the framework in Fagnant and Kockelman (2014) and analyzes the operations
of a SAEV fleet under different vehicle range and charging infrastructure assumptions. There are natural synergies between
AVs and EVs, as the ‘‘smart” nature of AVs resolve the practical limitations of the non-autonomous EV in the market today.
These limitations include the previously discussed all electric range, charging station density, and charging time manage-
ment. Fleet managed ‘‘smart” AVs relieve such concerns from the individual traveler, managing range and charging activities
based on predicted trip demand and established locations of charging stations, as demonstrated in the work here.
3. Methodology

3.1. Model setup

The discrete-time agent based model used here is an expansion of the 10-mile by 10-mile model proposed by Fagnant and
Kockelman (2014). In its setup, the model generates a square 100-mile by 100-mile gridded metropolitan area, divided into
160,000 quarter-mile by quarter-mile cells. The gridded city (roughly modeled after the population density pattern of Austin,
Texas) is divided into four zones as shown in Fig. 1: downtown (the innermost 2.5-mile radius), urban (the next ring 7.5-mile
radius), suburban (the next ring 15-mile radius), and exurban (the remainder area). Zone population densities and trip rates
are determined with data from the Austin travel demand model segmented by population density (see Table 1). Each zone
has its own unique average trip generation rate (representing approximately 10% of all trips in the Austin region inclusive of
return trips, reflecting what Shaheen et al. (2006) estimates as market potential for carsharing in a manually-driven setting)
and average peak and off-peak travel speeds (derived from sample peak and off-peak trips from the Austin travel demand
model), as shown in Table 1.

The actual trip generation rate in each cell is drawn from a Poisson distribution with Table 1’s value used as the average
rate for each 5-min time step within a 24-h temporal distribution following the 2009 National Household Travel Survey
(FHWA, 2009). The destination cells for each trip generated are assigned as a function of the trip length (drawn from the
2009 NHTS trip length distribution) and proportional to the share of cells to the north, south, east, and west of the origin
cells. In other words, the trip generation methodology used here favors higher attraction levels towards the city center. In
the simulation, roughly 680,000 SAEV trips are generated per day (representing roughly 10% of trips in a simulated 2.9 mil-
lion people region). For detailed information on the step-by-step trip generation methodology used here, please refer to
Fagnant and Kockelman (2014).

The model first runs through a two-phase warm start, during which the number of charging stations and the size of the
SAEV fleet is determined. After the warm start completes, the model then runs for 50 consecutive days with the predeter-
mined fleet size and charging station layout to output fleet operation performance metrics. Each phase of the model is dis-
cussed in detail in the following sections.
Fig. 1. City zones and zone limits.



Table 1
Zone trip generation rates & travel speeds.

Population density (persons/mi2) Avg trip gen. rate (trips/cell/day) Travel speed (mi/h)

Peak Off-peak

Downtown 7500–50,000 129 15 15
Urban 2000–7499 39 24 24
Suburban 500–1999 11 30 33
Exurban <499 1 33 36
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3.2. Charging stations generation

In Phase 1 of the warm start, consecutive 24-h days are modeled to determine the number of charging stations needed for
full service of the SAEV fleet. Fig. 2 demonstrates the process of how and where charging stations are generated in the warm
start.

Once a trip is generated by the process discussed in Section 3.1, a traveler looks for the closest available status SAEV
within a 5-min travel time radius through a greedy search algorithm (searching at increasing distances starting from its
own origin cell). If an available SAEV is located within a 5-min travel-time radius, the traveler claims the SAEV and the SAEV
falls under in use mode for the subsequent time periods to pick up the traveler, complete the assigned trip, and release trav-
eler. If a SAEV is not available within a 5-min travel-time radius, the traveler joins a waitlist. In the following 5-min time
step, travelers on the wait list are prioritized and served first, before new trips generated during the current time step
are served by SAEVs. When a traveler has been on the waitlist for 10 min (or two time steps), a new SAEV is generated with
full charge in the traveler’s origin cell.

Once a SAEV releases a traveler at the destination cell, the vehicle changes from in use to available status, and awaits for a
traveler call in the subsequent 5-min time step. If the vehicle is not called in the time step, the SAEV changes from available
to relocating status, and its subsequent actions are discussed in Section 3.5. If a traveler calls, the SAEV checks to ensure that
its remaining range is greater than the distance to the traveler plus the distance of the requested trip before accepting the
call. If the range is insufficient, the call is rejected and the SAEV changes from available to charging status. In charging status,
the SAEV looks for the nearest charging station (by the same greedy algorithm used in trip matching), and if one does not
exist within its remaining range, a charging station is generated in the SAEV’s current cell. The SAEV then stays in charging
status at the charging station for the number of time steps proportional to its remaining range to achieve full charge status,
as shown in Eq. (1):
Fig. 2. Agent based model algorithm: charging station generation.
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Tcharge ¼
Rangefull � Rangecurrent

Rangefull

& ’
Tfull ð1Þ
where Tcharge is the number of time steps a SAEV remains at the charging station in charging status before becoming available
for the next traveler, Rangefull is the number of grid cells a SAEV can travel when fully charged, Rangecurrent is the SAEV’s cur-
rent remaining range, and Tfull is the number of time steps required for a fully depleted SAEV battery to fully charge. Phase 1
continues until the number of charging stations on consecutive days converges to within 1%.

3.3. SAEV fleet generation

When Phase 1 is complete, the charging station layout is set and no more charging stations can be added to the city. The
SAEV fleet is cleared to start Phase 2, which determines the size of the SAEV fleet. The two phases of the warm start operate
independently of each other since the number of SAEVs required in the fleet depends on the number of charging stations
available. During the generation of the charging stations, the corresponding SAEV fleet is (temporarily) oversized. The overall
algorithm for Phase 2 is similar to that of Phase 1. However, because no charging stations are generated in Phase 2, in order
to accept a traveler’s call, the SAEV must have sufficient range to travel to the traveler, complete the requested trip, and tra-
vel to the nearest charging station from the destination cell. Phase 2 is run for 20 days, with vehicles cleared at the end of
each day. The average number of SAEVs generated from the 20 days is taken as the fleet size for the full run.

3.4. Waitlist

Once the charging station locations and SAEV fleet size are determined from the two-phase warm start, the program runs
through 50 consecutive days when vehicles are in continuous operation (no vehicle clearing). The full run’s model structure
is identical to that of Phase 2, except no new SAEVs are generated and travelers remain on the waitlist. If a traveler’s trip
request is rejected after 6 consecutive time steps (equivalent to 30 min on the waitlist), that trip is considered unserved
and is removed from the waitlist.

3.5. Strategic vehicle relocation

During each step of the model (warm start and full run), available SAEVs that are not called by travelers are assigned to
relocating status for that time step. The relocation strategy used in this model first attempts to balance the available SAEVs in
the current time step with the expected demand in a 2-mile by 2-mile block in the subsequent time step, then uses two addi-
tional strategies to efficiently distribute SAEVs among bordering blocks with a large vehicle supply gap. This combination of
relocation strategies was deemed the most effective out of several that were tested in Fagnant and Kockelman (2014), which
also describes the relocation process in detail. To ensure that vehicles in relocating status have sufficient range for relocation,
a check ensures that the SAEV has sufficient range to travel a distance equivalent to 5 min of travel time from its original cell
(roughly equivalent to 2 miles but varies slightly with zone) plus the distance to the nearest charging station to the reloca-
tion destination.

4. Model scenario results

The agent-based model described here is run for several scenarios to examine the sensitivity of various fleet operation
metrics to model inputs, as shown in Table 2. A non-electric SAV scenario (assuming 400-mile range and 15 min refueling
time) is run as a reference case for comparison to the results in Fagnant and Kockelman (2014). Next, the SAEV scenario
assumes the vehicle has an 80-mile range (similar to current models of the Nissan Leaf, Chevrolet Spark, Honda Fit EV,
and BMW i3) and 4 h recharge time, corresponding to charging times of current market BEVs with a 240-volt AC Level II
charger. A SAEV Fast Charge scenario combines the same 80-mile vehicle with a recharge time of 30 min, mimicking the
specifications of current market BEVs with a Level III 480-volt DC high-current charger. Following fast charging guidelines,
the SAEVs in the fast charge scenarios will only be charged to 80% full to protect the batteries from losing capacity with
repeat fast charging, which effectively reduces the range to 64 miles. The last two scenarios looks at various types of charging
in combination with long-range BEVs (LR SAEV) matching the 200-mile range specification of the upcoming Chevrolet Bolt
and Tesla Model 3 (both with 2017 planned release dates). The LR SAEV scenario combines a 200-mile range with a 4-h
recharge time while the LR SAEV Fast Charge scenario combines a 160-mile effective range with a 30 min fast charge time.

Simulation results show that the number of vehicles needed in a fleet is highly sensitive to charge time and, to a slightly
lesser degree, vehicle range. Substituting Level III in place of Level II chargers for SAEV and LR SAEV fleets reduced the
required fleet size by 30.9 and 23.3%, respectively. On the other hand, increasing the electric range of vehicles from 80 to
200 miles reduced the fleet size by 28.1 and 19.5% respectively for Level II and Level III charging schemes. Combining these
effects, the necessary fleet for the SAEV scenario is almost double the size of that for the LR SAEV Fast Charge scenario. Using
2009 NHTS rates for 3.02 private car trips per licensed U.S. driver and 0.99 household vehicles per licensed driver (Santos
et al., 2011), the private vehicle replacement rate is highest at one shared vehicle for every 7.3 private vehicles in the



Table 2
Scenario results.

Scenario SAV SAEV SAEV fast charge LR SAEV LR SAEV fast charge

Range (mi) 400 80 64 200 160
Refuel/Recharge Time (min) 15 240 30 240 30
# of Charging/Fueling Station Sites 1062 1562 1573 1555 1517
# of Chargers/Fuel Pumpsa 2245 30,129 16,510 16,554 2389
Fleet Size 29,939 57,279 39,593 41,179 31,859
Avg Daily Miles per Vehicle 259 131 197 190 241
Avg Daily Trips per Vehicle 22.3 11.4 16.9 16.3 20.8
Private Veh Replacement Rate 7.32 3.73 5.53 5.33 6.82
% Trips Unserved 2.13 3.94 4.36 2.29 2.73
Avg Trip Distance (mi) 10.1 9.41 9.08 10.0 10.0
Avg Wait Time Per Trip (min) 9.3 8.1 7.7 8.4 9.5
Avg Range Remain. at Recharge (mi) 1.6 43.1 40.7 5.4 2.5
% Total Unoccupied Travel Distance 6.6 10.7 14.0 7.1 7.1
% Unoccupied Travel for Trips 5.2 4.1 3.0 4.7 4.9
% Unoccupied Travel for Charging 0.3 2.5 5.0 0.6 0.7
% Unoccupied Travel for Relocation 1.1 4.1 6.1 1.9 1.4
Max % Concurrently Charging Vehicles 7.5 52.6 41.7 40.2 7.5

a As proxied by the maximum number of concurrent charging/refueling vehicles in the day.
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SAV scenario, in line with the results from the mid-sized urban and suburban models in Burns et al. (2013) and the regional
model in Fagnant et al. (2015). However, once the fleet is electrified, the private vehicle replacement rate ranges from a com-
parable 1:6.8 vehicle ratio in the LR SAEV Fast Charge scenario to a much lower 1:3.7 vehicle ratio in the SAEV scenario. Non-
electric SAV fleet requires the fewest number of vehicles (29,939) for full service, and the closest competitive EV scenario (LR
SAEV Fast Charge) increases that fleet size by 6.6%, a slightly larger difference than estimated in ITF (2015) despite longer EV
range assumption. As seen in Fig. 3, a snap shot of each vehicle’s activity during the peak 5-min period (defined as the time
step with the most in use vehicles) demonstrates that with longer charging times and shorter ranges, vehicles are simply tied
up at charging stations not able to service trip demand. While the number of in use vehicles is relatively consistent across all
scenarios, the number of charging vehicles increases significantly with longer vehicle charge times and shorter electric range.

As seen in the results in Table 2, for full service, all EV scenarios produced similar numbers of charging station sites. This
result suggests that the number of charging station sites (cells with charging stations) necessary for full service has an inelas-
tic relationship with the vehicle’s electric range, but is more determined by the geography of the city (or size of the service
geo-fence). Conversely, the total number of chargers needed (as proxied by the average number of charging vehicles in the
time step with the most concurrent charging across 50 days) is highly sensitive to charge time and vehicle range. Using Level
III chargers cuts the charge time for SAEV and LR SAEV fleets by 87.5%, and correspondingly, the number of needed chargers
by 45.2 and 85.6%. Holding charging infrastructure constant, substituting LR SAEVs for SAEVs in the fleet (and increasing
SAV SAEV SAEV Fast
Charge LR SAEV LR SAEV

Fast Charge
Unused/Reloca�ng Vehicles 4339 8741 10359 5145 6408
Charging Vehicles 2085 27668 6459 14340 2288
In Use Vehicles 23515 20869 22774 21693 23162
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Fig. 3. Peak (5-min) period vehicle use.
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vehicle range by 150%), the number of chargers needed decreases 45.0 and 85.6%. Generally speaking, high trip demand peri-
ods coincide with high charging activity periods. Simulation results suggest that the LR SAEV Fast Charge scenario is best at
spreading out charging demand across the day, with a maximum of 7.46% of vehicles in the fleet concurrently charging dur-
ing any time step. On the other hand, in the base SAEV scenario, as many as 52.6% of the vehicle fleet charge concurrently
during the peak charge time period of the day (defined as the 5-min period with the largest percentage of charging vehicles).

Simulation results show that longer vehicle range translates into higher percentages of trips served, as vehicles simply
cannot serve trips longer than its maximum range. In the 2009 NHTS, 1.05% of the trips are over 80 miles long. In the sim-
ulation results, the difference between trips served between the 200-mile LR SAEV and the 80-mile SAEV is 1.65%. However,
longer vehicle range is generally associated with longer wait times in the simulation results, primarily due to the inefficiency
of serving trips originating in low-demand suburban and exurban areas a shared setting. As seen in Table 2, longer-range
vehicles spend more of their ‘‘empty” VMT for passenger pick-up while shorter-range vehicles spend more of their ‘‘empty”
VMT for relocation.

Each autonomous driving scenario produced an additional 7.1–14.0% of unoccupied VMT, in line with estimates in ITF
(2015) and Fagnant et al. (2015). As seen in Table 2, for vehicles with longer range (SAVs and LR SAEVs), the greatest portion
(65.6–78.4%) of that induced travel can be attributed to unoccupied vehicles traveling to pick up passengers. Unoccupied
travel to charging/refueling stations played a relatively minor role in inducing additional VMT, summing to 0.5–0.7% of total
VMT (or 4.5–10.0% of ‘‘empty” miles traveled) for longer range vehicles, as seen in Fig. 4. Due to the more frequent need to
recharge, induced miles traveled for recharging is greater for scenarios with shorter range vehicles. SAEVs registered an addi-
tional 2.5–5.0% miles for charging activity, consisting of 23.6–35.4% of their total ‘‘empty” miles traveled.

Not only do shorter range vehicles charge more frequently, simulation results in Table 2 also show that they utilize a
smaller percent of their range before a charging event. The phenomenon of shorter-range vehicles recharging with higher
baseline remaining range can be attributed to the demand-based charging strategy employed here, where a vehicle is
assigned to charging status after rejecting a trip request due to insufficient range. With shorter ranges, the SAEVs are more
frequently assigned to charging status due to increased probability of having insufficient range for trips. To explore whether
charging less frequently would improve the fleet performance of the shorter range SAEV scenarios, scenarios incorporating
both demand- (trip rejection) and distance- (maximum remaining range) based charging strategies were also run. Table 3
displays simulation results where SAEVs are assigned to charging status after the vehicle has rejected a trip due to insuffi-
cient range and met a maximum remaining range threshold. Results show that combining demand-based charging with a
75% (60-mile) maximum remaining range criteria yielded the best fleet performance metrics from a user perspective. Aver-
age wait times reduced to 7.37 min per trip and percent of trips unserved decreased to 1.70%, competitive with the SAV sce-
nario results in Table 2. From the operator perspective, applying this charging strategy increases the necessary fleet size
slightly (by 0.1%) and decreases induced travel by 12.7%. Increasingly stringent recharging distance criteria continually
decreases induced VMT, primarily from reduction in relocation miles. However, as relocation miles decrease, induced miles
to pick up travelers increase (and subsequently increases wait times), demonstrating the inherent tradeoffs between reduc-
ing extra VMT and enhancing user experience (as measured by wait times and percent of trips served). Scenarios with
distance-only thresholds for charging were also examined, but those scenarios all yielded longer wait times than charging
strategies that incorporated demand.
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Table 3
Demand- and distanced-based charging (SAEV with Level II charging).

Charging strategy Recharge upon trip rejection,
max remaining range = 80 mi

Recharge upon trip rejection,
max remaining range = 60 mi

Recharge upon trip rejection,
max remaining range = 40 mi

Recharge upon trip rejection,
max remaining range = 20 mi

Fleet Size 57,279 57,354 57,278 57,174
% Trips Unserved 3.9 1.7 3.0 3.4
Avg Wait Time (min) 8.1 7.4 8.2 8.5
Avg Range

Remaining at
Recharge (mi)

43.0 22.2 13.2 6.4

Avg Trip Distance
(mi)

9.5 9.5 9.5 9.5

% Total New Induced
Travel

10.7 9.3 9.1 9.0

% New Induced
Travel for
Charging

2.5 3.3 3.1 3.1

% New Induced
Travel for
Relocation

4.1 1.9 1.6 1.5

% New Induced
Travel for Trips

4.1 4.1 4.4 4.5
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5. Financial analysis

Simulation results offer some insight into how combinations of vehicles and charging infrastructure impact fleet opera-
tions, but a financial analysis is necessary to truly grasp the tradeoff between additional capital investment (into vehicles
with bigger batteries or more expensive fast charging stations) and user benefits (measured in additional trips served or
decreased wait times). For each vehicle and charging station type, analysis was conducted for three cost levels: low-,
medium-, and high-cost scenarios, as shown in Table 4.

For vehicle capital costs, the non-autonomous SAEVs are assumed to cost from $25,000 (similar to Mitsubishi i-Miev and
Smart Fortwo Electric Drive BEVs) to $45,000 per vehicle (approximate retail cost of BMW i3 BEV), with a most likely price of
$30,000 (comparable to Nissan LEAF and Ford Focus Electric BEVs). The non-autonomous LR SAEVs are assumed to cost
between $35,000 (projected price of the future 2017 Tesla Model 3 and Chevrolet Bolt) and $70,000 (retail price for the cur-
rent model Tesla Model S), with a most likely price of $40,000 per vehicle as critics believe the projected pricing for LR BEVs
is too optimistic (see, e.g., Anderman, 2014). These vehicle costs do not consider government rebates and incentives for EV
purchases. AV technology is assumed to add $10,000 to the cost of each vehicle around the time AV technology first hits the
commercial market in 2025, per estimates from IHS (2014) and Schultz (2014). To convert vehicle capital costs to a per-mile
basis, each SAEV is assumed to be in operation for 231,000 miles before replacement, equivalent to the average life span of a
New York City taxicab (New York City Taxi & Limousine Commission, 2014). The battery is assumed to be replaced once dur-
ing the SAEV’s service span (or per 115,500 miles), in line with most BEVs’ 100,000-mile battery warrantees and evaluations
of EV batteries (see, e.g., Knipe et al., 2003). Cost for replacement batteries (24 kWh for SAEVs and 60 kWh for LR SAEVs) are
assumed to cost between $380 and $570 per kWh, per estimates from Plotkin and Singh (2009).

For vehicle operation costs, maintenance (including tires) is assumed to cost between 5.5 and 6.6 cents per mile, similar
to non-autonomous vehicles (AAA, 2014). Insurance and registration are assumed to be on the order of two to three times the
Table 4
Vehicle & charging infrastructure cost assumptions.

Low cost Mid cost High cost

Vehicle capital
SAEV (per vehicle) $35,000 $40,000 $55,000
LR SAEV (per vehicle) $45,000 $50,000 $80,000
Replacement battery (per kWh) $240 $405 $570

Vehicle operations
Maintenance (per mile) $0.055 $0.061 $0.066
Insurance & Registration (per vehicle-year) $1280 $1600 $1920
Electricity (per kWh) $0.11 $0.13 $0.26

Charging infrastructure
Level II Charging (per charger) $8000 $12,000 $18,000
Level II Annual Maintenance (per charger) $25 $40 $50
Level III Charging (per charger) $10,000 $45,000 $100,000
Level III Annual Maintenance (per charger) $1000 $1500 $2000
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cost of privately owned vehicles, similar to assumptions in Burns et al. (2013), which translates to $1280–1920 annually
(AAA, 2014). Per-mile fuel costs assume electricity ranges 11–26 cents per kWh, with a mid-range cost of 13 cents per
kWh, the US national residential electricity average (EIA, 2015). The high cost scenario allows flexibility in accommodating
future variable priced electricity, a growing possibility with the introduction of smart metering technology.

For charging infrastructure, Level II chargers are assumed to cost between $8000 and $18,000 each, including costs for
installation, hardware, materials, labor, and administration (Chang et al., 2012; USDOE, 2012). Annual maintenance cost
for Level II chargers are assumed to be minimal at $25–50 per year (USDOE, 2012). Level III chargers are assumed to range
from $10,000 to $100,000, with average cost at $45,000 per station (USDOE, 2012; New York City Taxi & Limousine
Commission, 2013). This cost includes installation, hardware, materials, labor, administration, and transformer upgrades.
Annual maintenance cost for Level III chargers are assumed to range from $1000 to $2000 (New York City Taxi &
Limousine Commission, 2013). To convert charging infrastructure to a per-mile basis, the service life span of charging sta-
tions is assumed to be 10 years (Chang et al., 2012). Table 5 breaks down the cost per occupied mile of travel (costs are
incurred for total miles of travel but allocated to each occupied mile of travel) for each vehicle and charging infrastructure
combination in the mid-cost scenario.

Under the most likely mid-cost scenario, a fleet of SAEVs or LR SAEVs can be operated at an equivalent per-occupied-mile-
traveled cost of $0.42–0.49. The most uncertain component of this operating cost estimate is the AV technology. While
$10,000 per vehicle is assumed in the base results in Table 5, the range of cost estimates of market-ready AV technology
is large. Various sources report the cost of the retrofitted AV technology on current Google self-driving cars to range from
$75,000 to $250,000 (Rogers, 2015; Tannert, 2014). Once the technology is mature, IHS (2014) estimates AV technology will
cost between $3500 and $5000 per vehicle after 5–10 years on the market. Incorporating Table 4’s mid-cost figures for all
other cost components, SAEV operation costs range from $0.392 per mile when AV technology costs are $5000 per vehicle
to $0.867 per mile when AV technology costs are $100,000 per vehicle.

Using APTA (2013) statistics, for a transit system that serves 2.4 billion annual passenger-miles, general administration
expenses (including facilities and salaries) add approximately $0.184 to per-mile operational costs. Assuming operating mar-
gins of 10% (similar to the transportation industry average) and using mid-cost estimates from Table 4, SAEV service can be
offered at roughly $0.66–0.74 per occupied mile of travel. These costs are on the low end of current manually-driven free-
float carsharing services such as Car2Go, which charges roughly $0.70–1.23 per mile in Austin, Texas (assuming trips are
between 2 and 10 miles and travel speeds are between 15 and 35 mph). Under this pricing assumption, SAEV users would
pay roughly 21–49% of what is currently charged by transportation network companies like Uber and Lyft (whose equivalent
per-mile pricing is $1.50–3.18 in Austin). In fact, these costs are competitive with AAA (2014) estimates of average costs of
private vehicle ownership, which ranges from $0.40 to $0.95 cents per mile depending on annual mileage and vehicle type,
suggesting that availability of a SAEV fleet can have significant impacts on private vehicle use (and ownership), particularly
for low-mileage households.

Cost estimates in Table 5 are derived from fleet size and induced VMT estimates with a demand-based charging strategy
with no maximum range restriction (Table 2). Adding a 75% maximum range restriction (Table 3) on the SAEV base scenario
reduces the cost by $0.020 per mile, yielding the most cost efficient scenario at $0.397 per mile. It is worth noting that cost
estimates are based on traditional, wired charging infrastructure. Currently, a residential Level II wireless (inductive) charger
can deliver similar charge times as traditional corded units while costing approximately $2500 more per unit (Evatran, n.d.).
This translates to a minimal $0.002–0.003 increase in equivalent per-mile costs for the SAEV fleets modeled here. Level III
inductive chargers are not currently commercially available. If wireless charging is not available for the SAEV fleets, an alter-
native would be to install traditional corded charging infrastructure and hire charging station attendants at each of the 1500
some odd charging station sites. Assuming one $15-per-hour-wage attendant per charging station site, per-occupied-mile-
traveled costs in Table 5 would increase $0.077–0.085.

While these per-mile costs are lower than current carsharing services and competitive with private car ownership, their
ability to compete with a fleet of non-electric SAVs depends on the availability of wireless recharging infrastructure and gov-
ernment tax incentives on EV purchase prices. Assuming SAVs utilize existing gasoline stations with no additional infrastruc-
ture investment, a fleet of SAVs can be operated for $0.400 per mile with a 231,000-mile vehicle life span, $30,000 per SAV
purchase cost ($20,000 for vehicle, $10,000 for AV technology), 30 mpg fuel economy, $3.50 per gallon gasoline price, $15 per
hour wage per service attendant per gasoline station, and the same AAA-based costs for maintenance, insurance, and regis-
Table 5
Equivalent cost per occupied mile traveled (mid-cost scenario).

SAEV SAEV fast charge LR SAEV LR SAEV fast charge

Vehicle & Battery $0.249 $0.250 $0.346 $0.346
Vehicle Maintenance $0.071 $0.071 $0.066 $0.066
Insurance & Registration $0.038 $0.026 $0.025 $0.020
Electricity $0.045 $0.045 $0.042 $0.042
Charging Station Capital $0.015 $0.030 $0.007 $0.004
Charging Station Maintenance $0.000 $0.010 $0.000 $0.001

Total $0.417 $0.433 $0.486 $0.479
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tration prescribed to SAEVs. Of course, this per-mile cost is highly sensitive to gasoline prices. With EVs purchased at full
price, SAEVs with wireless recharging are competitive with SAVs on a per mile basis when gasoline is at $3.50 per gallon.
With current federal tax incentives of $7500 per EV, SAEVs become price-competitive with SAVs when gasoline is at
$2.50 per gallon. Without wireless recharging infrastructure (and using station attendants at charging sites), SAEVs pur-
chased with the $7500 federal tax rebate are not price-competitive with SAVs until gasoline reaches $4.69 per gallon. With-
out the federal rebate, this increases to $5.70 per gallon.
6. Austin, Texas case study

While the Poisson-based trip generation process modeled in the simulated monocentric city provides some variation in
each cell’s trip generation rate, actual trip rates in real-city geographies are significantly less ‘‘smooth.” In exurban areas, an
overall low population density is often reflected by pockets of relatively dense residential development among much larger
areas of very sparse population. To offer more realism here, a case study using Austinites’ year-2010 trip patterns with U.S.
departure time choices (varying every 5 min) was performed. The 5-county region’s 1413 traffic analysis zones (TAZs) and
personal trip tables (by origin versus destination zone) were used to appreciate the effects of real-world (spatially and demo-
graphically heterogeneous) trip-making behaviors.

Austin’s 1413 TAZs were mapped onto the 400-cell by 400-cell gridded region with each TAZ’s trip ends assigned to one
quarter-mile by quarter-mile cells. The TAZ closest to the geographic centroid of the Austin region (as determined by the
mid-point value of all TAZ centroids’ longitude and latitude coordinates) was identified as the simulated region’s center (cell
[200,200]). Then, each of the remaining 1412 TAZs corresponded to a cell in the simulated region by indexing the TAZ cen-
troids’ latitude and longitude coordinates relative to the city center. This process creates a ‘‘spiky” trip generation pattern,
where only 1413 out of the 160,000 cells (less than 0.9%) in the simulated region served as trip origins and destinations,
rather than permitting every cell to generate (and attract trips). In reality, the 1413 TAZs in the 5-county region span across
3918 square miles, or 39.2% of the 100-mile by 100-mile simulated region. The charging strategy of trip rejection plus a max-
imum 75% remaining range was employed here, since this strategy improved fleet performance metrics (in Table 3), as com-
pared to a charging strategy based solely on trip rejection.

Table 6 shows scenario results from the Austin case study. Despite the significantly more concentrated (spatial and tem-
poral) patterns of trip generation in these Austin data, the average daily miles per vehicle are very close to Table 2’s results,
which used much smoother, simulated-trip generation rates. However, because the average trip distance (across all ground
modes, not just those by automobile, as used earlier in this paper) in the Austin case study is only 5 miles (as opposed to the
9–10 mile average trip distances in Table 2’s NHTS-based results, which exclude all non-auto trips and all trips under 1 mile
in distance), the daily trips per vehicle (and corresponding private vehicle replacement rates) are higher. SAEVs with Level II
charging infrastructure are estimated to replace 5 private vehicles in this Austin scenario, while LR SAEVs with Level III
charging infrastructure replace 9 private vehicles. Intrazonal trips are modeled as zero distance trips here, and are thus
excluded from the model. This is an important result: working with trips that average almost twice as long (using the NHTS
trips, which can end far outside the origin region, unlike MPO-based trip tables which end at the boundary of a region) keeps
the vehicles almost twice as ‘‘busy,” resulting in roughly 50% higher vehicle replacement rates.

While the Austin trips cannot go past the 5-county regional edge or border, trips under 1 mile are included here (as long
as their origin and destination zones differ). Restricting trip origins and destinations to less than 1% of the 100-mile by 100-
mile region means higher concentrations of SAEVs in select, trip-active cells, which reduces the number of unserved trips (to
less than 1% across all Austin scenarios), average wait times (to between 2 and 4 min), and ‘‘empty” VMT (to between 3.1 and
4.2%). Those results are partly due to vehicles needing to travel less for next-passenger pickup, due to the heavy concentra-
tions of trip origins and destinations.
Table 6
Fleet performance metrics from austin case study scenario.

Austin scenario SAV SAEV SAEV fast charge LR SAEV LR SAEV fast charge

Range (mi) 400 80 64 200 160
Refuel/Recharge Time (min) 15 240 30 240 30
# of Charging/Fueling Station Sites 21 25 26 23 25
# of Chargers/Fuel Pumpsa 1053 16,334 9889 8852 1080
Fleet Size 14,802 26,758 16,772 21,859 14,750
Avg Daily Miles per Vehicle 253 137 216 171 253
Avg Daily Trips per Vehicle 27.4 15.2 24.2 18.6 27.5
Vehicle Replacement Rate 8.98 5.00 7.95 6.09 9.02
% Trips Unserved 0.52 0.44 0.25 0.48 0.41
Avg Trip Distance (mi) 5.15 5.13 5.14 5.14 5.15
Avg Wait Time Per Trip (min) 3.49 2.86 3.01 3.15 3.25
% Total Unoccupied Travel Distance 3.15 4.03 4.19 3.25 3.38
Max % Concurrent Charging Vehicles 7.11 61.04 58.96 40.50 7.32

a As proxied by the maximum number of concurrent charging/refueling vehicles in the day.
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Restricting all trips to travel between these 1413 cells also drastically reduces the number of charging station sites nec-
essary, from 1500 some charging sites down to just 23–25 cells with charging stations. These charging station sites are esti-
mated to have as many as 653 charging pads per station in the 80-mile SAEV with Level II infrastructure scenario, down to 43
charging pads per station in the LR SAEV with Level III infrastructure scenario (in order to meet the charging demand of the
5-min period with the highest number of concurrently charging vehicles per day), and their locations represent just 1.8% of
the 1413 trip-active cells, or just 0.0002% of the 100-mile by 100-mile region’s 160,000 cells. The total number of actual
chargers (charging spaces) needed are approximately 50% of what was simulated in the NHTS-based trip generation simu-
lation. Such results underscore the fact that charging station locations are a function of both the geography of the service
geo-fence and travelers’ trip-making patterns.

Finally, a financial analysis of the Austin SAEV scenarios yields operating costs of $0.386–0.472 per occupied-mile trav-
eled, with the 80-mile range SAEVs and Level II charging infrastructure scenario providing the lowest operating costs, which
is consistent with findings from the simulated-region’s scenarios (as shown in Table 5).
7. Conclusions

Motivated by natural synergies between autonomous driving technology and EVs in a shared setting, this paper employs
an agent-based model to simulate the operations of a fleet of SAEVs serving 10% of all trip demand in a medium-sized
metropolitan area under various vehicle and infrastructure scenarios. Simulation results show that fleet size is highly depen-
dent on charging infrastructure and vehicle range. For the non-electric SAV scenario, each shared vehicle can replace 7.3 pri-
vate vehicles. For a fleet of 80-mile range SAEVs with a 4 h full recharge time, this replacement rate drops to one shared
vehicle for every 3.7 private vehicles, since more than half of the fleet is tied up in charging activities during any time period.
Simulation results also suggest these shared fleets can serve 95.6–97.9% of all trips with average wait times between 7 and
10 min per trip, while producing an additional 7–14% of ‘‘empty” VMT for traveling to passengers, strategic repositioning,
and accessing charging stations. While this induced travel can be reduced slightly with strategic charging, model results also
reveal the inherent tradeoffs between reduction of induced ‘‘empty” travel and improvement of user experience (as mea-
sured by wait times and percent of trips served). These tradeoffs highlight the need for a dynamic pricing scheme for SAEVs
which penalizes trips that incur more relocation miles (and thereby increase subsequent trip wait times) and incentivize
trips that coincide with strategic relocation (and thereby decrease subsequent trip wait times). A case study using Austin,
Texas trip patterns also was used here, to examine the impact of higher concentrations of trips across fewer zones on the
service metrics of the SAEV fleet. With more concentrated trip demand, SAEVs traveled similar daily miles, but were able
to serve a larger share of trips (over 99%) with shorter average wait times, ranging from just 2 to 4 min. In the Austin case
study, ‘‘empty” vehicle-miles constitute only 3–4% of all SAEV travel, and each SAEV could replace 5–9 privately owned vehi-
cles, due to somewhat shorter trip distances, as compared to the original simulation.

Financial analysis reveals that despite requiring the largest fleet and the most charging stations, the base 80-mile range
SAEV fleet with Level II charging stations is the cheapest to operate on a per-mile basis of all the EV scenarios. This is pri-
marily due to the high sensitivity of per-mile operating costs to vehicle purchase price (with SAEVs assumed to cost
$10,000 less per vehicle compared to LR SAEVs in the mid-cost scenarios). While SAEVs with Level II charging infrastructure
is cost effective, the scenario is ineffective in spreading out charge demand, with as much as 53% of the fleet concurrently
charging during the peak charging period of the day. If SAEVs become a widely adopted mode, this type of fleet can create
significant demand on the electric grid and necessitate large parking areas (stations) while charging during peak hours. LR
SAEVs with Level III fast charging infrastructure, while costing 14.9% more per mile compared to SAEVs with Level II charging
stations, is very effective at demand spreading, with only 7.6% of the fleet concurrently charging during the peak charging
period.

Financial analysis reveals that under the most likely scenario, a fleet of SAEVs can be operated at $0.41–0.47 per occupied
mile traveled. The competitiveness of SAEVs compared to non-electric SAVs hinges almost singly on the availability of auto-
mated wireless charging. With wireless automated charging, SAEVs can be price-competitive with SAVs when gasoline is
priced at $3.50 per gallon or less. But with attendant serviced charging, SAEVs are only price competitive with SAVs when
gasoline reaches $4.35–5.70 per gallon.

The agent-based model presented here has limitations that merit improvement in future applications of this type. First,
the charging-station generation process mimics the objective of a coverage model (see, e.g., Toregas et al., 1971), thereby
ensuring full coverage of all charging demand, but it does not consider budgetary constraints and allows for an unlimited
number of charging stations. Additionally, the scenarios modeled here assume that SAEVs will serve 10% of a region’s trip
demand and that the temporal and spatial distributions of SAEV trips are the same as the region’s overall trip-making pat-
terns. In reality, an SAEV’s fleet metrics should be sensitive to trip demand density, over space and time. Additionally, SAEV
mode may be more attractive to specific types of trips, rather than be equally appealing for all trips. Chen and Kockelman
(2016) explores pricing and operations of a SAEV fleet when competing against other modes (privately-owned manually-
driven cars and city bus service) and find that with higher SAEV shares, fleet performance improves. When SAEVmode shares
lies between 14 and 39% (as predicted in the study), private vehicle replacement rates increase to one SAEV for every 10–26
vehicles with ‘‘empty” VMT constituting 7–9% of all SAEV travel. That is to say, trips that are more efficiently served by SAEVs
are more likely to choose the SAEV mode, which in turn also contributes to improved fleet performance metrics.



254 T.D. Chen et al. / Transportation Research Part A 94 (2016) 243–254
Acknowledgements

The authors are very grateful for National Science Foundation support for this research (in the form of an IGERT Trainee-
ship for the first author and Graduate Research Fellowship for the third author), anonymous-reviewers’ suggestions, Dr.
Daniel Fagnant’s provision of the starting code, Prateek Bansal’s assembly of Austin’s regional trip data, Dr. Peter Stone’s edi-
torial guidance, and Dave Tuttle’s continued alerts on relevant EV research.

References

AAA, 2014. Your Driving Costs: How Much Are You Really Paying to Drive? <http://publicaffairsresources.aaa.biz/wp-content/uploads/2014/05/Your-
Driving-Costs-2014.pdf>.

Anderman, M., 2014. Tesla Battery Report. Advanced Automotive Batteries, September 2014.
APTA, 2013. 2013 Public Transportation Fact Book. <http://www.cfte.org/content_documents/7/2013-APTA-Fact-Book.pdf>.
Bartlett, J., 2012. Survey: Consumers Express Concerns about Electric, Plug-in Hybrid Cars. Consumer Reports, January 30. <http://news.consumerreports.

org/cars/2012/01/survey-consumers-express-concerns-about-electric-plug-in-hybrid-cars.html>.
Burns, L., William, J., Scarborough, B., 2013. Transforming Personal Mobility. The Earth Institute – Columbia University, New York.
Chang, D., Erstad, D., Lin, E., Rice, A.F., Goh, C.T., Tsao, A.A., Snyder, J., 2012. Financial Viability of Non-Residential Electric Vehicle Charging Stations. Luskin

Center for Innovation Report, University of California at Los Angeles, August 2012.
Chen, T.D., Kockelman, K.M., 2016. Management of a shared, autonomous, electric vehicle fleet: implications of pricing schemes. Transp. Res. Rec. 2572, 37–

46.
Douglas, K.W., 2015. ‘‘Truly” Empty Vehicle Repositioning and Fleet Sizing: Optimal Management of an Autonomous Taxi System in New Jersey on a Typical

Weekday Bachelors Thesis in Science and Engineering. Princeton University.
EIA, 2015. Electric Power Monthly. U.S. Energy Information Administration, March 2015. <http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?

t=epmt_5_6_a>.
Evatran, n.d., Plugless Level 2 EV Charging System (3.3 KW): Overview and Capabilities. <http://www.pluginnow.com/sites/default/files/PluglessL2_Specs.

pdf>.
Fagnant, D., Kockelman, K.M., 2014. The travel and environmental implications of shared autonomous vehicles, using agent-based model scenarios. Transp.

Res. Part C 40, 1–13.
Fagnant, D., Kockelman, K.M., Bansal, P., 2015. Operations of a shared autonomous vehicle fleet for the Austin, Texas market. In: Presented at the 94th

Annual Meeting of the Transportation Research Board, Washington, DC, January 2015.
Federal Highway Administration, 2009. National Household Travel Survey. U.S. Department of Transportation, Washington, DC.
IHS, 2014. Emerging Technologies: Autonomous Cars—Not If, But When. IHS Automotive Report, January 2014.
International Transport Forum, 2015. Urban Mobility System Upgrade: How Shared Self-Driving Cars Could Change City Traffic. OECD Corporate Partnership

Report, May 2015.
Knipe, T.J., Gallac, L., Argueta, J., 2003. 100,000-Mile Evaluation of the Toyota RAV4 EV. Southern California Edison Technical Report. <http://www.

evchargernews.com/miscfiles/sce-rav4ev-100k.pdf>.
Kornhauser, A., 2013. PRT statewide application: conceptual design of a transit system capable of serving essentially all daily trips. Urban Public Transp.

Syst. 2013, 357–368.
Martin, E.W., Shaheen, S.A., 2011. Greenhouse gas emission impacts of carsharing in North America. IEEE Trans. Intell. Transp. Syst. 12 (4), 1074–1086.
New York City Taxi & Limousine Commission, 2013. Take Charge: A Roadmap to Electric New York City Taxis. <http://www.nyc.gov/html/tlc/downloads/

pdf/electric_taxi_task_force_report_20131231.pdf>.
New York City Taxi & Limousine Commission, 2014. 2014 Taxicab Factbook. <http://www.nyc.gov/html/tlc/downloads/pdf/2014_taxicab_fact_book.pdf>.
Plotkin, S., Singh, M., 2009. Multi-Path Transportation Futures Study: Vehicle Characterization and Scenario Analyses. Argonne National Laboratory Report

No. ANL/ESD/09-5. <http://www.osti.gov/energycitations/servlets/purl/968962-2I2Sit/>.
Rogers, C., 2015. Google sees self-driving cars on road within five years. Wall Street J. <http://wwwwsj.com/articles/google-sees-self-drive-car-on-road-

within-five-years-1421267677> (January 14).
Santos, A., McGuckin., N., Nakamoto, Y., Gray, D., Liss, S., 2011. Summary of Travel Trends: 2009 National Household Travel Survey. Federal Highway

Administration Report #FHWA-PL-11-022. Washington, DC.
Schultz, C., 2014. Let the Cars Drive Themselves-The Benefits of Autonomous Vehicles on Socioeconomics Master’s Thesis. University of Gothenberg.
Shaheen, S., Cohen, A., Roberts, J.D., 2006. Carsharing in North America: market growth, current developments, and future potential. Transp. Res. Rec. 1986,

116–124.
Spieser, K., Ballantyne, K., Treleaven, K., Zhang, R., Frazzoli, E., Morton, D., Pavone, M., 2014. Toward a systematic approach to the design and evaluation of

automated mobility-on-demand systems: a case study in Singapore. In: Meyer, G., Beiker, S. (Eds.), Road Vehicle Automation: Lecture Notes in Mobility.
Springer International Publishing, Switzerland, pp. 229–245.

Tannert, C., 2014. Will you ever be able to afford a self-driving car? Fast Company <http://www.fastcompany.com/3025722/will-you-ever-be-able-to-
afford-a-self-driving-car> (January 13).

Toregas, C., ReVelle, C., Swain, R., Bergman, L., 1971. The location of emergency service facilities. Oper. Res. 19, 1363–1373.
US Department of Energy, 2012. Plug-in Electric Vehicle Handbook for Public Charging Station Hosts. DOE/GO-102012-3275, April. <http://www.afdc.

energy.gov/pdfs/51227.pdf>.
Wang, F., Yang, M., Yang, R., 2006. Dynamic fleet management for cybercars. In: Proceedings of the IEEE Intelligent Transportation Systems Conference,

Toronto, Canada.

http://publicaffairsresources.aaa.biz/wp-content/uploads/2014/05/Your-Driving-Costs-2014.pdf
http://publicaffairsresources.aaa.biz/wp-content/uploads/2014/05/Your-Driving-Costs-2014.pdf
http://www.cfte.org/content_documents/7/2013-APTA-Fact-Book.pdf
http://news.consumerreports.org/cars/2012/01/survey-consumers-express-concerns-about-electric-plug-in-hybrid-cars.html
http://news.consumerreports.org/cars/2012/01/survey-consumers-express-concerns-about-electric-plug-in-hybrid-cars.html
http://refhub.elsevier.com/S0965-8564(16)30756-X/h0025
http://refhub.elsevier.com/S0965-8564(16)30756-X/h0035
http://refhub.elsevier.com/S0965-8564(16)30756-X/h0035
http://refhub.elsevier.com/S0965-8564(16)30756-X/h0040
http://refhub.elsevier.com/S0965-8564(16)30756-X/h0040
http://refhub.elsevier.com/S0965-8564(16)30756-X/h0040
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_6_a
http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_5_6_a
http://www.pluginnow.com/sites/default/files/PluglessL2_Specs.pdf
http://www.pluginnow.com/sites/default/files/PluglessL2_Specs.pdf
http://refhub.elsevier.com/S0965-8564(16)30756-X/h0055
http://refhub.elsevier.com/S0965-8564(16)30756-X/h0055
http://refhub.elsevier.com/S0965-8564(16)30756-X/h0060
http://refhub.elsevier.com/S0965-8564(16)30756-X/h0060
http://refhub.elsevier.com/S0965-8564(16)30756-X/h0065
http://www.evchargernews.com/miscfiles/sce-rav4ev-100k.pdf
http://www.evchargernews.com/miscfiles/sce-rav4ev-100k.pdf
http://refhub.elsevier.com/S0965-8564(16)30756-X/h0085
http://refhub.elsevier.com/S0965-8564(16)30756-X/h0085
http://refhub.elsevier.com/S0965-8564(16)30756-X/h0095
http://www.nyc.gov/html/tlc/downloads/pdf/electric_taxi_task_force_report_20131231.pdf
http://www.nyc.gov/html/tlc/downloads/pdf/electric_taxi_task_force_report_20131231.pdf
http://www.nyc.gov/html/tlc/downloads/pdf/2014_taxicab_fact_book.pdf
http://www.osti.gov/energycitations/servlets/purl/968962-2I2Sit/
http://www.wsj.com/articles/google-sees-self-drive-car-on-road-within-five-years-1421267677
http://www.wsj.com/articles/google-sees-self-drive-car-on-road-within-five-years-1421267677
http://refhub.elsevier.com/S0965-8564(16)30756-X/h0125
http://refhub.elsevier.com/S0965-8564(16)30756-X/h0130
http://refhub.elsevier.com/S0965-8564(16)30756-X/h0130
http://refhub.elsevier.com/S0965-8564(16)30756-X/h0135
http://refhub.elsevier.com/S0965-8564(16)30756-X/h0135
http://refhub.elsevier.com/S0965-8564(16)30756-X/h0135
http://www.fastcompany.com/3025722/will-you-ever-be-able-to-afford-a-self-driving-car
http://www.fastcompany.com/3025722/will-you-ever-be-able-to-afford-a-self-driving-car
http://refhub.elsevier.com/S0965-8564(16)30756-X/h0145
http://www.afdc.energy.gov/pdfs/51227.pdf
http://www.afdc.energy.gov/pdfs/51227.pdf
http://refhub.elsevier.com/S0965-8564(16)30756-X/h0155
http://refhub.elsevier.com/S0965-8564(16)30756-X/h0155

	Operations of a shared, autonomous, electric vehicle fleet: Implications of vehicle & charging infrastructure decisions
	1 Introduction
	2 Prior research
	3 Methodology
	3.1 Model setup
	3.2 Charging stations generation
	3.3 SAEV fleet generation
	3.4 Waitlist
	3.5 Strategic vehicle relocation

	4 Model scenario results
	5 Financial analysis
	6 Austin, Texas case study
	7 Conclusions
	Acknowledgements
	References


