
RIDM: Reinforced Inverse Dynamics Modeling for Learning
from a Single Observed Demonstration

Brahma S. Pavse 1 Faraz Torabi 1 Josiah Hanna 1 Garrett Warnell 2 Peter Stone 1

Abstract
Imitation learning has long been an approach to al-
leviate the tractability issues that arise in reinforce-
ment learning. However, most literature makes
several assumptions such as access to the expert’s
actions, availability of many expert demonstra-
tions, and injection of task-specific domain knowl-
edge into the learning process. We propose re-
inforced inverse dynamics modeling (RIDM), a
method of combining reinforcement learning and
imitation from observation (IfO) to perform imita-
tion using a single expert demonstration, with no
access to the expert’s actions, and with little task-
specific domain knowledge. Given only a single
set of the expert’s raw states, such as joint an-
gles in a robot control task, at each time-step, we
learn an inverse dynamics model to produce the
necessary low-level actions, such as torques, to
transition from one state to the next such that the
reward from the environment is maximized. We
demonstrate that RIDM outperforms other tech-
niques when we apply the same constraints on
the other methods on six domains of the MuJoCo
simulator and for two different robot soccer tasks
for two experts from the RoboCup 3D simulation
league on the SimSpark simulator.

1. Introduction
Learning from experience, or reinforcement learning (RL)
(Sutton & Barto, 1998), has proven to be an effective ap-
proach for enabling artificial agents to execute new behav-
iors. However, a major limitation is that this learning pro-
cess can be extremely slow and expensive. This limitation
is especially true for physical robots, which must operate in
the real world, in real time, and are prone to wear and tear.

1University of Texas at Austin, Austin, USA 2U.S. Army Re-
search Laboratory. Correspondence to: Brahma S. Pavse <brah-
masp@cs.utexas.edu>.

Appearing in the Proceedings of the ICML Workshop on Imitation,
Intent, and Interaction (I3), Long Beach, California, PMLR 97,
2019. Copyright 2019 by the author(s).

In order to alleviate these issues, imitation learning (Schaal,
1997; Argall et al., 2009) techniques have been employed to
guide a learning agent along an expert’s trajectory to speed
up the learning process.

While imitation learning has proven to be very effective,
it has often operated under three assumptions. First, the
learner often needs access to the expert’s actions. This re-
striction proves to be a very limiting constraint since it pre-
vents us from using many unused resources such as YouTube
videos that may not include expert actions. Second, the
developed methods often require access to many expert
demonstrations. Since expert demonstration collection is
often expensive, we would like to reduce our dependence
on the availability of many demonstrations. Third, domain
knowledge is usually injected in the state space during the
learning process. For instance, in the case of an arm robot,
in a reaching task where the goal is to get the end effec-
tor close to a specific location, the distance from the target
location is usually included in the state space. This infor-
mation is task-specific and often makes the learning process
much simpler. However, in general, acquiring this type of
knowledge may be expensive; therefore, we would like to
distance ourselves from this idealized situation and remove
the task-specific domain knowledge used in the state space
(in the rest of the paper this is referred to as raw state space).

Here, we propose RIDM, a method of combining reinforce-
ment learning and model-based imitation from observa-
tion, to perform imitation of an expert from a single ex-
pert demonstration, with no action information, and with no
task-specific domain knowledge in the state space. More
specifically, given a single set of only the expert’s raw states
at each time-step, our algorithm uses a randomly-initialized
inverse dynamics model to infer actions to transition from
the current state to the next. It then executes these actions in
the environment. It finally uses the generated data to train
the inverse dynamics model such that the cumulative reward
from the environment is maximized. This process repeats
until convergence. The reward is used for the learner to
explore and the state-only expert demonstration is used as
a template for ideal behavior. In our experiments, which
are focused on robot control domains, we model our inverse

RIDM: Reinforced Inverse Dynamics Modeling for Learning from a Single Observed Demonstration

dynamics model as a PID controller1, and are interested in
learning the gains of the PID controller to infer the actions.
To the best of our knowledge, we are the first to use the PID
controller as an inverse dynamics model. We reduce the
task-specific domain knowledge in the state space exposed
to the learner to only joint angle values per time-step. We
use covariance matrix adaptation evolution strategy (CMA-
ES) (Hansen et al., 2003) as our RL algorithm to optimize
the inverse dynamics model parameters.

The remainder of the paper is organized as follows. Section
2 discuses the current literature in imitation from observa-
tion, integrating reinforcement learning and imitation learn-
ing, and robot soccer skill learning. Section 3 outlines the
preliminaries and background necessary for the remaining
content of the paper. Section 4 details our proposed control
algorithm, RIDM. Section 5 discusses our experiments on
the MuJoCo domain and SimSpark robot soccer simulator.
Finally, Section 6 outlines a summary and future work. We
also include a Supplementary Materials in Appendix A
that includes details of the PID controller and additional
experiments.

2. Related Work
This section provides a broad outline of research related
to our work. The section is organized as follows. Section
2.1 details previous work on imitation from observation.
Section 2.2 discusses efforts in integrating reinforcement
learning and imitation learning. Finally, Section 2.3 details
successful efforts of using CMA-ES for robot skill learning.

2.1. Imitation from Observation

The focus of imitation from observation (IfO) (Liu et al.,
2017; Torabi et al., 2019d) is to learn a policy that results
in similar behavior as the expert demonstration with state-
only demonstrations. There are broadly two approaches:
(1) model-based and (2) model-free. In our work, we are
focused on model-based. For details on model-free refer to
the work of Merel et al. (2017), Henderson et al. (2017a),
Torabi et al. (2019b; 2019c), Stadie et al. (2017), Sermanet
et al. (2017), and Dwibedi et al. (2018).

Most model-based IfO algorithms use an inverse dynamics
model, i.e., a mapping from state-transitions to actions. The
most related work to ours may be the work of Nair et al.
(2017a), where they show the learner a single demonstration
of an expert performing some task with the intention of the
learner replicating the task. They do this by allowing the
learner to undergo self-supervision and collect states and
actions, which is then used to train a neural network inverse
dynamics model. The learned model is then applied on

1Refer to the Supplementary Materials section for details about
the PID controller.

the expert demonstration to infer the expert actions. The
actions are then executed to replicate the demonstrated be-
havior. Another method of this type is behavioral cloning
from observation (BCO) by Torabi et al. (2018), which,
similarly, first trains an inverse dynamics model in a self-
supervised fashion, and applies the learned model on the
expert demonstration(s) to infer the expert actions. How-
ever, BCO then trains a policy by behavioral cloning (BC)
(Pomerleau, 1991), which maps the expert states to the in-
ferred actions.

Our work differs from past work in that we reinforce the
learning of an inverse dynamics model by incorporating the
provided environment reward.

2.2. Integrating Reinforcement Learning and Imitation
Learning

Another area of research related to our work is dealing with
the case when an expert demonstration may be a good start-
ing point, but may be sub-optimal. One way to address this
issue is by combining reinforcement learning and imitation
learning.

There has been significant effort to combine reinforcement
learning and imitation learning. For example, Knox & Stone
(2010; 2012) introduced the TAMER + RL framework that
combines manual feedback with rewards from the MDP.
Lakshminarayanan et al. (2016) uses a hybrid formulation
of reward and expert state-action information in the replay
buffer when training deep Q-network (DQN) to speed-up the
training procedure. Hosu & Rebedea (2016) use deep RL to
learn an Atari game but they use human checkpoint replays
as starting points during the learning process instead of re-
starting the game at the end of the episode. Subramanian
et al. (2016) and Nair et al. (2017b) use IL information to
alleviate the exploration process in RL. Hester et al. (2017)
pre-train a deep neural network by optimizing a loss that in-
cludes a temporal difference (TD) loss as well as supervised
learning loss with the expert actions. Zhu et al. (2018) opti-
mize a linear combination of the imitation reward outputted
by generative adversarial imitation learning (GAIL) (Ho &
Ermon, 2016) and the task reward. However, it is important
to note that these works assume that the learner has access
to the expert’s actions.

Our work is distinct from the current literature in that we
focus on the integration of reinforcement learning and im-
itation from observation where we do not have access to
expert actions.

2.3. Robot Soccer Skill Learning

There has been much success of using covariance matrix
adaptation evolution strategy (CMA-ES) (Hansen et al.,
2003) for derivative-free optimization in reinforcement

RIDM: Reinforced Inverse Dynamics Modeling for Learning from a Single Observed Demonstration

learning. Salimans et al. (2017) have noted the scalability
of evolutionary algorithms for reinforcement learning tasks.
We have also seen much success of applying CMA-ES to
skill learning in robot soccer (Urieli et al., 2011). For ex-
ample, for walking, MacAlpine et al. (2012) have used
CMA-ES to learn an omnidirectional walk engine, which
is currently among the best in the RoboCup 3D simulation
league. For kicking, Depinet et al. (2015) develop a method
called KSOBI (keyframe sampling, optimization, and be-
havior integration) that uses CMA-ES to learn a 20m long
distance kick.

In our work, we make use of CMA-ES to learn and improve
upon the expert’s walking and kicking skills.

3. Preliminaries
This section describes the relevant background needed to
understand the later sections. In particular, Section 3.1 gives
an idea of the machine learning problem we are interested in,
and Section 3.2 discusses the basics of imitation learning.

3.1. Reinforcement Learning (RL)

We model agents interacting in some environment as a
Markov decision process (MDP). An MDP is denoted by the
tuple M = 〈S,A, T,R, γ〉, where S is the state space of the
agent, A is the action space of the agent, T are the transition
probabilities of moving from one state to another given the
agent took a particular action i.e. T : S ×A× S → [0, 1],
R is the scalar reward received by the agent after moving
from one state to another given it took a particular action i.e.
R : S × A × S → R, and γ ∈ [0, 1] is the discount factor
indicating how much the agent values future rewards.

Reinforcement learning (RL) (Sutton & Barto, 1998) is a
type of machine learning that builds upon behavioral psy-
chology, where a learner aims to learn from experience by
sequentially making decisions in some environment. More
specifically, it involves a learning agent transitioning from
one state to another after taking some action in an envi-
ronment, and typically receiving some reward for its tran-
sition and action choice. Ultimately, the agent seeks to
learn a policy that maps states to actions that will max-
imize its (discounted) cumulative reward i.e. it aims to
solve maxπ:S→A

∑∞
i=0 γ

tRt to find a policy π where S is
the state space of the learner, A is the action space of the
learner, γ is the reward discount factor, and Rt is the reward
received at time-step t by the agent after taking action at
when in state st.

3.2. Imitation Learning (IL)

Learning solely from experience can be very expensive. It
can sometimes be intractible for an agent to fully explore
the state space to converge to an optimal policy. This is

especially the case in real-world robotics, where exploration
must be done in real time and can incur large costs due
to safety considerations. A popular solution to alleviate
this problem is for some expert to guide the learner to the
optimal policy through imitation learning (IL).

Conventional IL involves showing a learner an expert
demonstration in the form of state-action pairs, De =
{(set , aet)} where set is the state of the expert and aet is the
action taken by the expert at time t, and the goal is to learn
a policy π that correctly produces a behavior similar to the
expert demonstration.

A major limitation of conventional IL is that the learner
needs access to the expert actions, {aet}. This assumption
is not necessarily practical, since many demonstrations do
not have expert actions, and collecting this data can be
expensive. Moreover, there are a large number of online
demonstration videos that do not contain any expert informa-
tion; it would be tremendously beneficial if we can exploit
this valuable data without dependence on expert action in-
formation.

IL in the absence of expert action information is called
imitation from observation (IfO). That is, we are trying to
learn the same policy mapping π but we do not have access
to expert actions. Here, our expert demonstration is of the
form De = {set} i.e. the learner is shown only the states of
the expert. In this case, we cannot simply apply behavioral
cloning since we do not have any labels; instead, we must
infer the expert actions {aet} to get {ãet} for each state {set}
to retrieve D̃e = {(set , ãet)}. In this work, we focus on
building an IfO control algorithm.

4. Reinforced Inverse Dynamics Modeling
We consider the problem of inferring an expert’s actions,
{aet}, given a single state-only expert demonstration, De =
{set}, where each set is the raw state of the expert per time-
step. We propose RIDM, a method of integrating reinforce-
ment learning and imitation from observation to learn an
inverse dynamics model to perform imitation from a sin-
gle expert demonstration using only raw states. In this
framework, our inverse dynamics model, paramaterized by
θ, maps state-transitions from the imitator’s current state,
st, to the desired expert’s state, set+1, at time-step t, to an
inferred action ãet . Our inverse dynamics model learns this
mapping appropriately such that {ãet} maximizes the cumu-
lative reward from the environment, Renv .

We now provide an overall sketch of RIDM. The algorithm
first randomly initializes θ, the parameters of our inverse
dynamics model. Then if a known exploration policy, πpre,
is available, the algorithm collects πpre’s state-action pairs
{(spret , apret)}, else we use the randomly-initialized param-
eters. The algorithm then applies the inverse dynamics

RIDM: Reinforced Inverse Dynamics Modeling for Learning from a Single Observed Demonstration

model on the state-transition pairs of the agent’s current
state to the desired pre-known policy state, {(s′t, s

pre
t+1)}, to

get the inferred exploration policy actions, {ãpret }. θ is then
optimized such that the distance between the inferred ex-
ploration policy actions, {ãpret }, and true exploration policy
actions, {apret } is reduced by optimizing Equation 1. This
process is repeated until convergence. The pre-trained in-
verse dynamics model is then applied to the state-transition
pairs of the imitator’s current state to the desired expert’s
state, {(st, set+1)}, to get the inferred expert actions, {ãet}.
The learning agent then executes {ãet} in the environment,
and its observed states {st} and cumulative environment
reward, Renv, are collected. Finally, θ is optimized such
that the Renv is maximized according to Equation 2. This
process repeats until convergence.

In our work, we use CMA-ES to learn the parameters, θ, of
our inverse dynamics model. The psuedo-code for RIDM is
given in Algorithm 1.

Algorithm 1 RIDM
1: Let De = {set} be a single state-only demonstration of

raw states per time-step
2: Let θ be the parameters of the inverse dynamics model
3: Randomly initialize θ
4: if πpre available then
5: Let Dpre = {(spret , apret)} generated by πpre

6: while not converged do
7: Infer actions, {ãpret }, for {(s′t, s

pre
t+1)} using θ

8: Update θ by optimizing Equation 1
9: end while

10: end if
11: while not converged do
12: Infer actions, {ãet}, for {(st, set+1)} using θ
13: Execute {ãet}
14: Collect observed states {st}
15: Collect cumulative episode reward Renv
16: Update θ by optimizing Equation 2
17: end while
18: return θ

4.1. Inverse Dynamics Model Pre-training

Prior to learning the inverse dynamics model parameters, θ,
for imitation, we pre-train θ using a pre-known exploration
policy, if available. The motivation here is that if we have
access to an exploration policy with reasonable level of
performance, we can use this as a starting point instead of
randomly initialized values. Note that we ultimately want
to infer the actions of an expert policy, whose actions are
unknown. In this phase, we pre-train on an exploration
policy, whose actions are known.

RIDM first initializes θ randomly from a uniform distri-

bution. If a known exploration policy, πpre : spret →
apret , is available, the algorithm executes it in the envi-
ronment, and collects the transition-action pairs, T pre =

{(spret , apret , spret+1)}. It then computes {ãpret } for each state-
transition pair of the agent’s current state to the desired pre-
known policy state, {(s′t, s

pre
t+1)}, using θ, and then tunes

θ using CMA-ES by maximizing the fitness f1 given by
Equation 1. This procedure repeats until convergence.

f1 = − 1

T

J∑
j=1

T∑
t=1

|ãpretj − a
pre
tj |

max (aprej)−min (aprej)
(1)

where T is the length of the episode, J is the size of the
expert raw state we are considering, such as the number
of joints angles in a robot control task at given time-step,
apretj and ãpretj are the true and predicted low-level actions,
such as torques in a robot control task, of the exploration
policy corresponding to the jth instance in the raw state,
at time step t, and aprej are all the low-level actions for
the jth instance of the low-level action across all T time
steps. The benefit of Equation 1 is that it will trade-off short
term errors in order to optimize the differences across a full
trajectory. For a robot control task, each j can correspond
to a particular joint angle and aj can correspond to the set
of torques applied to the jth joint across all T time-steps.

We normalize the absolute difference between the actions
to emphasize the range of values that the true actions take
on. For example, if a true value of a low-level action varies
between two large values, a small absolute error may be
insignificant. However, a small absolute error may be very
significant if the true low-level action varies between a small
range.

We use the learned θ as a seed for the inverse dynamics
model reinforcement step of the algorithm detailed in Sec-
tion 4.2. The pre-training step is especially useful when we
have access to an exploration policy that is similar to the
expert’s policy even if it is suboptimal.

4.2. Inverse Dynamics Model Reinforcement

This phase is where we use the expert’s demonstration as a
template to behave in the environment. Depending on the
availability of a reasonably performing exploration policy,
the algorithm initializes θ to either the learned θ from the
pre-training phase or random values. With this as a starting
point, the agent learns to behave in environment as follows.

RIDM first computes {ãet} on the state-transition pairs of
the imitator’s current state to the desired expert’s state,
{(st, set+1)}, using θ, then it executes {ãet} in the environ-
ment, collects the cumulative environment reward, Renv,
and the observed states, {st}, and tunes θ using CMA-ES
by maximizing the fitness f2 given by Equation 2. This

RIDM: Reinforced Inverse Dynamics Modeling for Learning from a Single Observed Demonstration

procedure repeats until convergence.

f2 = Renv (2)

where Renv is the cumulative reward from the environment.
Unlike in the pre-training step, the expert policy is unknown,
so we do not have access to the actions. It is important to
note that while Renv is still used to reinforce the learning
of the inverse dynamics model, the learner is guided by the
expert since the inverse dynamics model is used to transition
from the imitator’s current state to the next expert’s state.

5. Empirical Results
Our experiments focus on robot control tasks in the MuJoCo
simulator and SimSpark robot soccer simulator. Visual
results of our algorithm have been hosted online 2.

For these robot control tasks, we model our inverse dynam-
ics model as a PID controller 3, and are interested in learning
the gains of the controller. Since the PID controller accounts
for the error to get from one setpoint to a desired setpoint
we view the PID controller as an inverse dynamics model.
We consider input and output of Equation 3 to be the raw
states and low-level actions respectively. We consider the
raw state and low-level action of the learner and expert to
be the joint angle value for each joint and the corresponding
torque applied to that joint per time-step respectively. Joint
angles allow us to use the same state formulation for all
considered robot control tasks. Moreover, joint angles of
a robot are reasonable quantities to estimate that are not
necessarily tied to task-specific information to achieve a
particular behavior.

Note that for a given input state-transition and output action,
the PID controller enforces a one-to-one correspondence
between each joint in the raw state, stj , and its torque, atj ,
where the index tj represents the jth joint angle at time-step
t. More concretely, for a given transition of a particular joint
angle, the PID controller will output the torque required to
achieve that joint angle transition.

5.1. Experimental Set-up

We conduct our experiments of our algorithm on the Mu-
JoCo physics engine and the RoboCup SimSpark 3D simu-
lator.

2https://drive.google.com/drive/folders/
1y3TjeYlS2v8JH-ubnGUcxRpyGY6R8McH

3 Refer to the Supplementary Materials section for details about
the PID controller.

5.1.1. MUJOCO SIMULATOR

We elaborate on the specifics of each domain that we have
tested on from the MuJoCo simulator (Todorov et al., 2012).
In all these domains, while the state space provided by the
simulator may be extensive, we make use of a very small
subset of the space i.e. only the joint angles at each time-
step.

• Reacher. The goal is to move a 2D robot arm to a
fixed location. We use a 2 dimensional state and action
space. The original state space is 11 dimensions. Since
we simplify the state space to only joint angles, we fix
the target location. The reward per time-step is given
by the distance of the arm from the target per time-step
and regularization factor of the actions.

• Ant. The goal is to make a 4-legged ant walk as fast
as possible. We use an 8 dimensional state and ac-
tion space. The original state space is 111 dimensions.
The reward per time-step is given by the change in the
global position of the ant, its forward velocity, regular-
ization of its actions, its contact with the surface, and
its survival.

• HalfCheetah. The goal is to make a cheetah walk as
fast as possible. We use a 6 dimensional state and
action space. The original state space is 17 dimensions.
The reward per time-step is given by the cheetah’s
forward velocity and regularization of its actions.

• Swimmer. The goal is to make a snake-like creature
swim as fast as possible in a viscous liquid. We use
a 2 dimensional state and action space. The original
state space is 8 dimensions. The reward per time-step
is given by the swimmer’s forward velocity and regu-
larization of its actions.

• Hopper. The goal is to make a 2D one-legged robot hop
as fast as possible. We use a 3 dimensional state and
action space. The original state space is 11 dimensions.
The reward per time-step is given by the change in
the global position of the hopper, its jump height, its
forward velocity, regularization of its actions, and its
survival.

• Walker2d. The goal is to make a 2D bipedal robot walk
as fast as possible. We use a 6 dimensional state and
action space. The original state space is 17 dimensions.
The reward per time-step is given by the change in
the global position of the walker, its walk height, its
forward velocity, regularization of its actions, and its
survival.

We train the experts for each of these domains using trust
region policy optimization (TRPO) (Schulman et al., 2015)

https://drive.google.com/drive/folders/1y3TjeYlS2v8JH-ubnGUcxRpyGY6R8McH
https://drive.google.com/drive/folders/1y3TjeYlS2v8JH-ubnGUcxRpyGY6R8McH

RIDM: Reinforced Inverse Dynamics Modeling for Learning from a Single Observed Demonstration

(a) Reacher (b) Ant (c) HalfCheetah (d) Swimmer (e) Hopper (f) Walker2d

Figure 1. Representative screenshots of the MuJoCo domains considered in this paper.

Figure 2. Simulated Nao robot in SimSpark

and proximal policy optimization (PPO) (Schulman et al.,
2017), and selected those with the best performance. We
use the hyperparameters specified in Schulman et al. (2015;
2017) and Henderson et al. (2017b). In our case, TRPO
worked best for Reacher-v2, HalfCheetah-v2, Swimmer-
v2, and Hopper-v2 and PPO worked best for Ant-v2 and
Walker2d-v2.

In our experiments, we evaluate the performance of various
benchmark algorithms on the full4 and raw state spaces. Ad-
ditionally, since we do not have a known exploration policy
with competent performance in each of these domains, we
skip the pre-training step outlined in Section 4.1.

5.1.2. SIMSPARK ROBOCUP 3D SIMULATION

The RoboCup 3D simulation domain is supported by two
components - SimSpark (Boedecker & Asada, 2008; Xu
& Vatankhah, 2014) and Open Dynamics Engine (ODE).
SimSpark provides support for simulated physical multia-
gent system research. The ODE library enables realistic
simulation of rigid body dynamics.

The agents considered in this domain are based on the Alde-
baran Nao robot (Figure 2). Each agent has 22 degrees of
freedom: six in each leg, four in each arm, and two in the
neck.

The goal of these experiments is to imitate certain skills of
teams that participate in the yearly RoboCup competition.
The challenge that arises is that these teams do not release
their codebase. So we do not have access to the code or

4In the supplementary section, we show that this extensive state
space is important for other methods to perform well on MuJoCo.

expert policies. After every yearly competition, each partic-
ipating team releases their binary files, a computer readable
but not human readable executable. Using these binary files
we artificially create the expert demonstrations by trigger-
ing desired behaviors by, for example, placing the ball in
specific locations to induce a long distance kick. In order to
retrieve the state space i.e. the joint angles per time-step for
specific tasks, we modify the SimSpark server to output the
joint angles of the agent when performing the task.

In this domain, we use a 20 dimensional state space, where
each dimension is the joint value for the respective degree
of freedom and 20 dimensional action space where each
dimension is the torque applied to the respective joint.

In our experiments, we are interested imitating two tasks:
(1) speed walking and (2) long distance kick-offs. Since
SimSpark does not have built-in reward functions, we design
our own reward function. We note that the true expert may
have not used our reward function.

• Speed walking. The goal of this task is to have the
agent walk as fast as possible while maintaining sta-
bility throughout the episode. To do so, we define the
total reward at the end of the episode to be the cumula-
tive distance travelled per time-step with a −5 penalty
for falling down. The distance is measured in meters.
The reward function focuses on optimizing speed and
stability.

• Long-distance kick-off. The goal of the task is to kick
the ball as far as possible with highest possible eleva-
tion towards the center of the goal. To do so, we define
the reward function to be

Rkick = (1 + xtotal) · exp
(−θ2
180

)
+ xair · 100

with a −5 penalty for slightly bumping the ball, −10
penalty for falling down, where xtotal is the distance
travelled by the ball along the x-axis, θ is the angle of
deviation of the ball’s trajectory from the straight line
between the agent and center of the goal, and xair is
the distance along the x-axis for which the ball was
travelling in the air. xtotal and xair are in meters, and

RIDM: Reinforced Inverse Dynamics Modeling for Learning from a Single Observed Demonstration

Table 1. Comparison of our method with state-of-the-art methods on the MuJoCo domain (v2) on the same single expert demonstration on
the raw state space (exclusively joint angles). Mean and standard deviations are over 100 policy runs. Performance of 0 is random and 1 is
expert. *GAIL is the only method that has access to the expert actions. **Since we use a deterministic policy (fixed PID gains), we do not
report mean or standard deviations of our algorithm. ? Walker2d used global PID gains, unlike other domains that used local PD gains.

Domain

Optimization Reacher Ant HalfCheetah Swimmer Hopper Walker2d

GAIL* 1.00 (0.00) 0.08 (0.07) 0.48 (0.18) 0.34 (0.04) 0.15 (0.09) 0.03 (0.03)
GAIL* + RL 1.00 (0.00) 0.26 (0.04) 0.96 (0.15) 0.85 (0.04) 0.27 (0.03) 0.30 (0.10)
GAIfO 0.60 (0.09) 0.06 (0.08) 0.31 (0.19) 0.07 (0.00) 0.05 (0.02) 0.02 (0.02)
GAIfO + RL 1.00 (0.00) 0.23 (0.06) 0.78 (0.21) 0.44 (0.10) 0.23 (0.08) 0.19 (0.06)
BCO -0.08 (0.16) 0.00 (0.02) 0.08 (0.04) 0.00 (0.03) 0.00 (0.01) 0.00 (0.00)
TRPO/PPO 0.99 (0.00) 0.20 (0.03) 0.37 (0.01) 0.14 (0.01) 0.18 (0.11) 0.11 (0.03)

RIDM (ours)** 1.00 0.55 1.09 1.05 0.41 0.60?

θ is in degrees. The reward function values kicks that
travel in the air for a long distance and exponentially
decays the reward for off-target kicks.

We use two teams from the RoboCup 3D simulation league,
FC Portugal (FCP) and FUT-K, as the experts, and we pre-
train according to Section 4.1 on our team’s walks and kicks
since we have access to the actions of these exploration
policies.

For SimSpark we report results using only RIDM since it is
unfeasible to evaluate GAIL, GAIfO, BCO, and TRPO/PPO
on the SimSpark domain due to the inefficiency of the simu-
lator and sequential nature of these algorithms. For example,
by comparing the two most time intensive tasks, we found
that a single episode of the walking task in SimSpark may
take up to 10 times as long as a single episode of Ant-v2.

5.2. Experimental Results

We evaluate RIDM based on the learner’s ability to achieve
the expert’s performance. We show that by allowing the
agent to maximize the cumulative environment reward and
use the expert’s demonstration as a template we outperform
existing methods on the MuJoCo simulator and improve
upon the expert’s behaviors in the SimSpark simulator.

In addition to the core results shown below, we include
and elaborate on additional experiments in Appendix A
when trying to optimize a different fitness function given by
Equation 4.

5.2.1. MUJOCO SIMULATOR

For the MuJoCo domain we compare our imitation perfor-
mance to existing baseline methods, GAIL (Ho & Ermon,
2016), GAIfO (Torabi et al., 2019b;a), and BCO (Torabi
et al., 2018), using scaled performance for a particular do-
main where we consider 0 to be the performance achieved

by a random policy and 1 to be the performance achieved by
the expert policy. Note that the methods we show in Table
1 use the same settings as our algorithm i.e. a single expert
demonstration with only joint angle values per time-step.

When we reduce the task-specific domain knowledge en-
coded in the state space to only the joint angles, we are hid-
ing factors, such as distance from the target in a robot arm
reaching task, that directly tie to high rewards. We see that
the other methods when relying only on the joint angles and
not optimizing for reward perform quite poorly5.However,
ours is able to significantly outperform the other methods
despite using only the joint angles. We also compare our
method to TRPO/PPO (Schulman et al., 2015; 2017) which
focus on maximizing reward. We show that our learner
achieves better performance when it is guided by the ex-
pert’s demonstration instead of starting from scratch as done
in the TRPO/PPO method. Finally, for a fairer compari-
son, we also allow GAIL and GAIfO to undergo RL by
taking a linear combination of the reward outputted by their
discriminators and reward from the environment. In these
experiments, since the number of joints is relatively small,
we use PD gains for each joint for all the domains in our
experiments except Walker2d-v2, where we use global PID
gains common to all joints. The maximum number parame-
ters we are optimizing is for Ant-v2 (16).

It is important to note that GAIL is the only method that
has access to the expert actions. Ours and the remaining
methods do not have access to the expert actions. We used
either TRPO or PPO depending on which one gave better
performance when training the initial experts on the full
state space. Refer to Table 4 in Appendix A to see perfor-
mance of baseline methods using a single demonstration,
but exposed to the full state space.

5It is shown in the supplementary materials that considering
the full state space (instead of the raw states space), improves the
performance of these algorithms significantly.

RIDM: Reinforced Inverse Dynamics Modeling for Learning from a Single Observed Demonstration

Table 3. Performance of randomly initialized PD gains, PD gains after pre-training i.e. optimizing Equation 1, and PD gains after
optimizing Equation 2 (RIDM) when imitating other teams for long-distance kick offs. Performance of the experts is also presented.
Note that we cannot concretely measure the reward, air distance, and angle offset achieved by the experts since we do not have access to
their code. Hence, these are empirical estimates. We measure performance based on our reward definition, the (air) distance traveled, and
angle offset. The units of distances are in meters and angles are in degrees.

Expert Fitness Air Distance Distance Angle Offset Reward

FCP random 0.00 0.00 0.00 -9.00
pre-trained 0.00 2.61 1.07 -11.41
RIDM (ours) 13.78 24.05 3.70 1386.00
Expert 8.00 17.00 – 808.00

FUT-K random 0.00 0.00 0.00 -9.00
pre-trained 0.00 1.98 9.46 -13.19
RIDM (ours) 10.62 16.23 3.65 1064.00
Expert 0.00 10.00 – 1.00

Table 2. Performance of randomly initialized PD gains, PD gains
after pre-training i.e. optimizing Equation 1, and PD gains after
optimizing Equation 2 (RIDM) when imitating other teams for
speed walking. Performance of the experts is also represented.
Note that we cannot concretely measure the reward achieved by
the experts and we do not have access to their code. Hence, these
are empirical estimates. We measure performance based on our
reward definition and the actual speed. The units of speed are in
meter per second.

Expert Fitness Speed Reward

FCP random 0.00 -5.00
pre-trained 0.28 3.35
RIDM (ours) 0.81 9.82
Expert 0.69 8.35

FUT-K random -0.03 -5.42
pre-trained 0.18 2.15
RIDM (ours) 0.89 10.70
Expert 0.70 8.47

5.2.2. SIMSPARK ROBOCUP 3D SIMULATION

For each task, speed walking and long distance kick offs,
we report the results for each expert team. In these exper-
iments, since the number of joints is quite high, we use
global PD gains common to all joints, so we optimize only
2 parameters.

Table 2 and Table 3 show the results of using RIDM.
We report the performance achieved using randomly ini-
tialized PD gains, after pre-training, and after maximizing
the cumulative environment reward (RIDM). We also report
the performance of expert policies we are trying to imitate.
Since we do not have access to the expert’s code, we cannot
concretely report the reward, the air distance, and the angle
offset of these experts. Therefore, the numbers we report

are empirical estimates.

We can see that by combining reinforcement learning with
the expert demonstration, we are able to improve upon per-
formance metrics relevant to the specific task compared to
the expert’s original performance.

6. Discussion and Future Work
In this work, we showed that our proposed algorithm, re-
inforced inverse dynamics modeling (RIDM), can achieve
competent level of performance when a learning agent is
mimicking an expert without access to expert actions, with
only a single expert demonstration, and using the raw state
space on the MuJoCo and SimSpark simulators. In par-
ticular, we showed that on the MuJoCo domain existing
imitation methods heavily rely on reward information to be
encoded in the state space, but our method is able to signifi-
cantly outperform existing imitation techniques without this
encoding in the state space. We also showed that by com-
bining an expert demonstration with reward, we outperform
methods that maximize only reward from scratch. On the
SimSpark robot soccer simulator, we showed that we can
develop a faster walk and longer distance kick than that of
the experts. Finally, we showed a novel use-case of the PID
controller as an effective inverse dynamics model.

While this lays down a framework for combining reinforce-
ment learning and imitation from observation from a single
demonstration with raw state space, there are several possi-
ble future directions. First, while CMA-ES is tremendously
effective, its sample inefficiency poses a problem when ap-
plied to real robots. We would like to use a more sample
efficient reinforcement learning algorithm. Second, it would
also be interesting to see the performance of RIDM when us-
ing another function approximator such as a neural network
as the inverse dynamics model.

RIDM: Reinforced Inverse Dynamics Modeling for Learning from a Single Observed Demonstration

Acknowledgements
We would like to thank Scott Niekum, Patrick MacAlpine,
Ishan Durugkar, and the anonymous reviewer for their
helpful comments. This work has taken place in the
Learning Agents Research Group (LARG) at UT Austin.
LARG research is supported in part by NSF (IIS-1637736,
IIS-1651089, IIS-1724157), ONR (N00014-18-2243), FLI
(RFP2-000), ARL, DARPA, Intel, Raytheon, and Lockheed
Martin. Peter Stone serves on the Board of Directors of
Cogitai, Inc. The terms of this arrangement have been re-
viewed and approved by the University of Texas at Austin
in accordance with its policy on objectivity in research.

References
Argall, B. D., Chernova, S., Veloso, M., and Browning, B.

A survey of robot learning from demonstration. Robot.
Auton. Syst., 57(5):469–483, May 2009. ISSN 0921-8890.
doi: 10.1016/j.robot.2008.10.024. URL http://dx.
doi.org/10.1016/j.robot.2008.10.024.

Boedecker, J. and Asada, M. Simspark–concepts and ap-
plication in the robocup 3d soccer simulation league. In
SIMPAR-2008 Workshop on the Universe of RoboCup
Simulators, pp. 174–181, 2008.

Depinet, M., MacAlpine, P., and Stone, P. Keyframe sam-
pling, optimization, and behavior integration: Towards
long-distance kicking in the robocup 3d simulation league.
In Bianchi, R. A. C., Akin, H. L., Ramamoorthy, S.,
and Sugiura, K. (eds.), RoboCup-2014: Robot Soccer
World Cup XVIII, Lecture Notes in Artificial Intelligence.
Springer Verlag, Berlin, 2015.

Dwibedi, D., Tompson, J., Lynch, C., and Sermanet, P.
Learning actionable representations from visual obser-
vations. In 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 1577–
1584. IEEE, 2018. URL https://arxiv.org/
abs/1808.00928.

Hansen, N., Müller, S. D., and Koumoutsakos, P. Reducing
the time complexity of the derandomized evolution strat-
egy with covariance matrix adaptation (cma-es). Evol.
Comput., 11(1):1–18, March 2003. ISSN 1063-6560.
doi: 10.1162/106365603321828970. URL http://dx.
doi.org/10.1162/106365603321828970.

Henderson, P., Chang, W., Bacon, P., Meger, D., Pineau, J.,
and Precup, D. Optiongan: Learning joint reward-policy
options using generative adversarial inverse reinforce-
ment learning. CoRR, abs/1709.06683, 2017a. URL
http://arxiv.org/abs/1709.06683.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup,
D., and Meger, D. Deep reinforcement learning that

matters. CoRR, abs/1709.06560, 2017b. URL http:
//arxiv.org/abs/1709.06560.

Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul,
T., Piot, B., Sendonaris, A., Dulac-Arnold, G., Osband,
I., Agapiou, J., Leibo, J. Z., and Gruslys, A. Learn-
ing from demonstrations for real world reinforcement
learning. CoRR, abs/1704.03732, 2017. URL http:
//arxiv.org/abs/1704.03732.

Ho, J. and Ermon, S. Generative adversarial imitation
learning. CoRR, abs/1606.03476, 2016. URL http:
//arxiv.org/abs/1606.03476.

Hosu, I. and Rebedea, T. Playing atari games with deep rein-
forcement learning and human checkpoint replay. CoRR,
abs/1607.05077, 2016. URL http://arxiv.org/
abs/1607.05077.

Knox, W. B. and Stone, P. Combining manual feedback
with subsequent MDP reward signals for reinforcement
learning. In Proc. of 9th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2010), May 2010.

Knox, W. B. and Stone, P. Reinforcement learning from
simultaneous human and MDP reward. In Proceedings of
the 11th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), June 2012.

Lakshminarayanan, A. S., Ozair, S., and Bengio, Y. Rein-
forcement learning with few expert demonstrations. In
NIPS Workshop on Deep Learning for Action and Inter-
action, volume 2016, 2016.

Liu, Y., Gupta, A., Abbeel, P., and Levine, S. Imi-
tation from observation: Learning to imitate behav-
iors from raw video via context translation. CoRR,
abs/1707.03374, 2017. URL http://arxiv.org/
abs/1707.03374.

MacAlpine, P., Barrett, S., Urieli, D., Vu, V., and Stone, P.
Design and optimization of an omnidirectional humanoid
walk: A winning approach at the RoboCup 2011 3D
simulation competition. In Proceedings of the Twenty-
Sixth AAAI Conference on Artificial Intelligence (AAAI),
July 2012.

Merel, J., Tassa, Y., TB, D., Srinivasan, S., Lemmon, J.,
Wang, Z., Wayne, G., and Heess, N. Learning human
behaviors from motion capture by adversarial imitation.
CoRR, abs/1707.02201, 2017. URL http://arxiv.
org/abs/1707.02201.

Nair, A., Chen, D., Agrawal, P., Isola, P., Abbeel, P., Malik,
J., and Levine, S. Combining self-supervised learning
and imitation for vision-based rope manipulation. CoRR,
abs/1703.02018, 2017a. URL http://arxiv.org/
abs/1703.02018.

http://dx.doi.org/10.1016/j.robot.2008.10.024
http://dx.doi.org/10.1016/j.robot.2008.10.024
https://arxiv.org/abs/1808.00928
https://arxiv.org/abs/1808.00928
http://dx.doi.org/10.1162/106365603321828970
http://dx.doi.org/10.1162/106365603321828970
http://arxiv.org/abs/1709.06683
http://arxiv.org/abs/1709.06560
http://arxiv.org/abs/1709.06560
http://arxiv.org/abs/1704.03732
http://arxiv.org/abs/1704.03732
http://arxiv.org/abs/1606.03476
http://arxiv.org/abs/1606.03476
http://arxiv.org/abs/1607.05077
http://arxiv.org/abs/1607.05077
http://arxiv.org/abs/1707.03374
http://arxiv.org/abs/1707.03374
http://arxiv.org/abs/1707.02201
http://arxiv.org/abs/1707.02201
http://arxiv.org/abs/1703.02018
http://arxiv.org/abs/1703.02018

RIDM: Reinforced Inverse Dynamics Modeling for Learning from a Single Observed Demonstration

Nair, A., McGrew, B., Andrychowicz, M., Zaremba,
W., and Abbeel, P. Overcoming exploration in re-
inforcement learning with demonstrations. CoRR,
abs/1709.10089, 2017b. URL http://arxiv.org/
abs/1709.10089.

Pomerleau, D. Efficient Training of Artificial Neural Net-
works for Autonomous Navigation. Neural Computation,
1991.

Salimans, T., Ho, J., Chen, X., and Sutskever, I. Evolu-
tion strategies as a scalable alternative to reinforcement
learning. CoRR, abs/1703.03864, 2017.

Schaal, S. Learning from demonstration. In
Mozer, M. C., Jordan, M. I., and Petsche, T.
(eds.), Advances in Neural Information Process-
ing Systems 9, pp. 1040–1046. MIT Press, 1997.
URL http://papers.nips.cc/paper/
1224-learning-from-demonstration.pdf.

Schulman, J., Levine, S., Moritz, P., Jordan, M. I., and
Abbeel, P. Trust region policy optimization. CoRR,
abs/1502.05477, 2015. URL http://arxiv.org/
abs/1502.05477.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
CoRR, abs/1707.06347, 2017. URL http://arxiv.
org/abs/1707.06347.

Sermanet, P., Lynch, C., Hsu, J., and Levine, S. Time-
contrastive networks: Self-supervised learning from
multi-view observation. CoRR, abs/1704.06888, 2017.
URL http://arxiv.org/abs/1704.06888.

Stadie, B. C., Abbeel, P., and Sutskever, I. Third-person
imitation learning. CoRR, abs/1703.01703, 2017. URL
http://arxiv.org/abs/1703.01703.

Subramanian, K., Isbell, Jr., C. L., and Thomaz, A. L. Ex-
ploration from demonstration for interactive reinforce-
ment learning. In Proceedings of the 2016 Interna-
tional Conference on Autonomous Agents & Mul-
tiagent Systems, AAMAS ’16, pp. 447–456, Richland,
SC, 2016. International Foundation for Autonomous
Agents and Multiagent Systems. ISBN 978-1-4503-4239-
1. URL http://dl.acm.org/citation.cfm?
id=2936924.2936990.

Sutton, R. S. and Barto, A. G. Reinforcement learning i:
Introduction, 1998.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
IROS 2012, Vilamoura, Algarve, Portugal, October 7-12,

2012, pp. 5026–5033. IEEE, 2012. ISBN 978-1-4673-
1737-5. doi: 10.1109/IROS.2012.6386109. URL https:
//doi.org/10.1109/IROS.2012.6386109.

Torabi, F., Warnell, G., and Stone, P. Behavioral cloning
from observation. In Proceedings of the 27th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
July 2018.

Torabi, F., Warnell, G., and Stone, P. Adversarial imitation
learning from state-only demonstrations. In Proceed-
ings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, pp. 2229–2231. Interna-
tional Foundation for Autonomous Agents and Multia-
gent Systems, 2019a.

Torabi, F., Warnell, G., and Stone, P. Generative adversarial
imitation from observation. In International Conference
on Machine Learning Workshop on Imitation, Intent, and
Interaction (I3), 2019b.

Torabi, F., Warnell, G., and Stone, P. Imitation learning from
video by leveraging proprioception. In International Joint
Conference on Artificial Intelligence (IJCAI), 2019c.

Torabi, F., Warnell, G., and Stone, P. Recent advances in
imitation learning from observation. In International
Joint Conference on Artificial Intelligence (IJCAI). AAAI
Press, 2019d.

Urieli, D., MacAlpine, P., Kalyanakrishnan, S., Bentor, Y.,
and Stone, P. On optimizing interdependent skills: A case
study in simulated 3d humanoid robot soccer. In Tumer,
K., Yolum, P., Sonenberg, L., and Stone, P. (eds.), Proc.
of 10th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS), volume 2, pp. 769–776. IFAAMAS,
May 2011. ISBN 978-0-9826571-5-7.

Xu, Y. and Vatankhah, H. Simspark: An open source
robot simulator developed by the robocup community.
In RoboCup 2013: Robot World Cup XVII, pp. 632–
639. Springer, 2014. ISBN 978-3-662-44468-9. doi:
10.1007/978-3-662-44468-9 59.

Zhu, Y., Wang, Z., Merel, J., Rusu, A. A., Erez, T.,
Cabi, S., Tunyasuvunakool, S., Kramár, J., Hadsell, R.,
de Freitas, N., and Heess, N. Reinforcement and im-
itation learning for diverse visuomotor skills. CoRR,
abs/1802.09564, 2018. URL http://arxiv.org/
abs/1802.09564.

http://arxiv.org/abs/1709.10089
http://arxiv.org/abs/1709.10089
http://papers.nips.cc/paper/1224-learning-from-demonstration.pdf
http://papers.nips.cc/paper/1224-learning-from-demonstration.pdf
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1704.06888
http://arxiv.org/abs/1703.01703
http://dl.acm.org/citation.cfm?id=2936924.2936990
http://dl.acm.org/citation.cfm?id=2936924.2936990
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/IROS.2012.6386109
http://arxiv.org/abs/1802.09564
http://arxiv.org/abs/1802.09564

RIDM: Reinforced Inverse Dynamics Modeling for Learning from a Single Observed Demonstration

A. Supplementary Materials
Here we include details of our inverse dynamics model and additional experiments. The section includes the following:
(1) Details of the inverse dynamics model, (2) Table 4 presents performance of the baseline methods when exposed to
only a single expert demonstration using the full state space, and (3) Tables 5, 6, and 7 show the performance of our
algorithm when trying to optimize a different fitness function f3 given by Equation 4 instead of f2 given by Equation 2 on
the MuJoCo and SimSpark simulators.

Proportional–Integral–Derivative (PID) Controller

The PID controller is a popular control loop feedback mechanism used in control systems. Given that we are trying to
adjust some variable, the PID controller will help in accurately applying the necessary correction to reach a desired setpoint.
For example, if we want a robot to move its arm from 10◦ to 30◦ (desired setpoint), the PID controller will appropriately
calculate the necessary torque/force to accomplish this transition. Moreover, the PID controller is also responsive; in other
words, if the force applied to move from 10◦ to 30◦ is less or more than required, it will accordingly respond and adapt.

Mathematically, the PID controller is modeled as follows:

u(t) = Kpe(t) +Ki

∫ t

0

e(t′)dt′ +Kd
de(t)

dt
(3)

where e(t) is the error between the desired setpoint and current point value, Kp, Ki, andKd are the proportionality constants
for the proportional, integral, and derivative terms respectively. Intuitively, each term means the following: the proportional
term signifies that if the desired setpoint is far from our current point, we should apply a larger correction to reach there,
the integral term keeps track of the cumulative error of the point from the desired setpoint at each time step, this helps
in applying a large correction if we have been far from the desired set point for a long time, and finally, the derivative
term represents a damping factor that controls the excessive correction that may result from the proportional and integral
components.

Since the PID controller accounts for the error to get from one state, st, to a desired setpoint, st+1, we view the PID
controller as an inverse dynamics model, a mapping from state-transitions to actions i.e. {(st, st+1)→ at}, which tells us
which action at the agent took to go from state st to state st+1. We consider input and output of Equation 3 to be the raw
states and low-level actions respectively.

Additional Experiments

Table 4 shows the high reliance that existing methods have on task-specific domain knowledge to be encoded in the state
space. However, we see that this may not necessarily be enough, since a single expert demonstration is not enough to fully
imitate the expert. This is understandable for GAIfO and BCO since there is no access to the expert actions. We also see
GAIL perform poorly on Ant-v2, this may be the case since the full state space of Ant-v2 is 111 dimensions, and a single
expert demonstration may not be enough to imitate the expert.

Tables 5, 6, and 7 show the performance when we try to maximize the cumulative reward from the environment and the
negative of the absolute normalized error between the learner and expert states given by f3:

f3 = αRenv −
β

T

J∑
j=1

T∑
t=1

|stj − setj |
max (sej)−min (sej)

(4)

where Renv is the cumulative reward from the environment, T is the length of the episode, J is the size of the expert raw
state we are considering, such as the number of joints angles in a robot control task at given time-step, α is the scalar weight
of Renv, β is the scalar weight on the normalized absolute error between the learner and expert states, st is the learner’s
state, set is the expert’s state, sej are all the values for the jth instance of the raw state across all T time-steps, and the tj index
corresponds to the jth joint at time-step t. We normalize the difference between states for the same reasons we mentioned
for Section 4.1. Here, α and β were accordingly set so that the order of magnitudes of the two operands were similar.

We found that when β 6= 0, we either get performance similar to when β = 0 or degraded performance. This degraded

RIDM: Reinforced Inverse Dynamics Modeling for Learning from a Single Observed Demonstration

performance may be so for the similar reason that methods such as GAIL, GAIFO, and BCO that rely only on the expert
demonstration do not perform well on the raw state space as shown in Table 1.

Table 4. Scaled performances of the baseline imitation learning and from observation algorithms on the MuJoCo domain (v2) using the
full state space and a single expert demonstration. Performance of 0 is random and 1 is expert. *GAIL is the only method that has access
to the true expert actions.

Domain

Optimization Reacher Ant HalfCheetah Swimmer Hopper Walker2d

GAIL* (Ho & Ermon, 2016) 1.00 (0.00) -0.04 (0.11) 0.90 (0.03) 0.88 (0.05) 0.95 (0.03) 0.92 (0.20)
GAIfO (Torabi et al., 2019b) 0.69 (0.05) -0.24 (0.36) 0.58 (0.06) 0.49 (0.04) 0.92 (0.05) 0.88 (0.27)
BCO (Torabi et al., 2018) 0.86 (0.02) 0.10 (0.07) 0.58 (0.33) 0.85 (0.02) 0.02 (0.02) 0.00 (0.00)

RIDM: Reinforced Inverse Dynamics Modeling for Learning from a Single Observed Demonstration

Table 5. Scaled performances of our method on a single expert demonstration on the raw state space (exclusively joint angles) when
optimizing Equation 4 with β 6= 0 using PID architectures that gave us the best results shown in Table 1. Our method uses the
environment reward and demonstration.

Domain Fitness Performance

Reacher-v2 f3(α = 0, β = 1) 0.95
f3(α = 1, β = 20) 1.00
f3(α = 1, β = 40) 1.00
f3(α = 1, β = 60) 1.00

Ant-v2 f3(α = 0, β = 1) 0.22
f3(α = 1, β = 250) 0.51
f3(α = 1, β = 500) 0.52
f3(α = 1, β = 750) 0.50

HalfCheetah-v2 f3(α = 0, β = 1) 0.00
f3(α = 1, β = 250) 1.08
f3(α = 1, β = 500) 0.82
f3(α = 1, β = 750) 1.03

Swimmer-v2 f3(α = 0, β = 1) 0.15
f3(α = 1, β = 75) 1.03
f3(α = 1, β = 150) 1.02
f3(α = 1, β = 225) 1.01

Hopper-v2 f3(α = 0, β = 1) 0.05
f3(α = 1, β = 250) 0.35
f3(α = 1, β = 500) 0.33
f3(α = 1, β = 750) 0.39

Walker2d-v2 f3(α = 0, β = 1) 0.01
f3(α = 1, β = 400) 0.49
f3(α = 1, β = 600) 0.39
f3(α = 1, β = 800) 0.48

Table 6. Performance of our control algorithm when optimizing Equation 4 with β 6= 0 when imitating other teams for speed walking.
We measure performance based on our reward definition and the actual speed. The units of speed are meter per second.

Expert Fitness Speed Reward

FCP f3(α = 0, β = 1) 0.70 8.42
f3(α = 1, β = 0.001) 0.65 7.75
f3(α = 1, β = 0.005) 0.76 9.21
f3(α = 1, β = 0.05) 0.72 8.69

FUT-K f3(α = 0, β = 1) 0.33 3.92
f3(α = 1, β = 0.5) 0.77 9.24
f3(α = 1, β = 1) 0.71 8.55
f3(α = 1, β = 1.5) 0.72 8.71

RIDM: Reinforced Inverse Dynamics Modeling for Learning from a Single Observed Demonstration

Table 7. Performance of our control algorithm when optimizing Equation 4 with β 6= 0 when imitating other teams for long-distance kick
offs. We measure performance based on our reward definition, the (air) distance travelled, and angle offset. The units of distances are
meters and angles are in degrees.

Expert Fitness Air Distance Distance Angle Offset Reward

FCP f3(α = 0, β = 1) 0.00 2.90 12.27 -13.31
f3(α = 1, β = 300) 12.27 20.41 4.80 1230.00
f3(α = 1, β = 600) 7.37 21.18 3.21 742.00
f3(α = 1, β = 900) 7.43 22.35 2.51 750.00

FUT-K f3(α = 0, β = 1) 0.00 2.29 12.65 -13.65
f3(α = 1, β = 250) 6.06 16.41 1.14 608.00
f3(α = 1, β = 500) 5.94 15.69 1.60 595.00
f3(α = 1, β = 750) 6.33 16.27 0.81 635.00

