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Abstract

• Reinforcement learning policies lack performance
guarantees until they are evaluated in the real world.

• High Confidence Off-Policy Evaluation (HCOPE) at-
tempts to place confidence intervals on the value of a
policy using existing off-policy domain data.

• We introduce two approximate HCOPE methods and
demonstrate both increase data-efficiency in compar-
ison to the previous state-of-the-art.

• We present a theoretical bound on the error in model-
based estimates of a policy’s value.

Background

Environment modelled as Markov Decision Process:

M = (S,A, r, P )

In state St at time step t:

• Agent selects action At ∼ π(·|St)

• Environment responds with St+1 ∼ P (·|S,A)

• Reward r(St, At) received after each action.

The policy and environment determine a distribution over
trajectories, H : S1, A1, S2, A2, ..., SL, AL

Policy performance measured by its expected sum of re-
wards:

• V (π) = E

[∑
L

t=1 r(St, At)
∣∣∣H ∼ π

]
is the expected re-

turn of π.

High Confidence Off-Policy Evaluation

Given:

• An evaluation policy πe.

• A data-set of trajectories, D, generated by a known,
behavior policy πb.

• Confidence level δ ∈ [0, 1]

Determine a lower bound, V̂lb(πe,D, πb) such that
V (πe) ≥ V̂lb(πe,D, πb) with probability (1− δ).

Bootstrap Confidence Intervals

Bootstrapping is a non-parametric method of determining
the accuracy of an estimator.
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Off-Policy Evaluation

An off-policy evaluation (OPE) method predicts V (πe) given trajectories sampled from πb.

Different OPE methods trade-off bias and variance differently:

Model-Based OPE

• Use D to estimate unknown transi-
tion probabilities as P̂ .

• Build a model, M̂ = (S,A, r, P̂ )

• Estimate V (πe) as the value of πe
in M̂ .

• MB estimates reduce variance at
the cost of high bias when the
model is poor.

Weighted Doubly Robust OPE[2]

• Combines weighted importance-
sampling with the state and state-
action value functions of an ap-
proximate model.

• Approximate model value func-
tions only serve as control vari-
ate — lowering variance without

adding model bias.

Importance Sampling OPE[1]

• Let ρt =
∏

t

i=1
πe(At|St)
πb(At|St)

• IS(πe,H, πb) := ρL
∑

L

t=1 r(St, At)

• Unbiased estimator for V (πe); po-
tentially high variance.

Contributed Methods

We introduce two novel bootstrap off-policy approximate HCOPE methods:

• MB-BOOTSTRAP with the model-based estimator.

• WDR-BOOTSTRAP with the weighted doubly-robust estimator

Bootstrapping with importance sampling previously proposed by Thomas et al. [3].

Empirical Results

• MB-BOOTSTRAP and WDR-BOOTSTRAP evaluated on Mountain Car and Cliffworld domains.

• For varying n, πb samples n trajectories and each method computes a confidence interval lower bound on V (πe).

• The ideal result is a lower bound that is close to but less than V (πe).

• We compare our proposed methods to bootstrapping with four variants of IS: standard IS, per-decision IS, weighted IS,
and per-decision weighted IS.

Figure 1: Left: the average empirical lower bound found by each method in the Mountain Car do-
main. Right: the average empirical lower bound found by each method in the Cliffworld
domain. Our proposed methods — MB-BOOTSTRAP and WDR-BOOTSTRAP — achieve

tighter lower bounds than other evaluated methods.

Method Summary

• Model-Based Bootstrap:

– Preferable when environment dynamics can be
easily estimated.

• Weighted Doubly Robust Bootstrap:

– Lower bias than MB-BOOTSTRAP in settings
where the MB estimator may have high bias.

• Cases where only MB-BOOTSTRAP is applicable:

– Deterministic policies

– Unknown behavior policies

Future Work

• Apply theoretical bounds on model bias to guide
model estimation for MB-BOOSTRAP and WDR-
BOOTSTRAP.

• Apply MB-BOOTSTRAP and WDR-BOOTSTRAP to
robotics tasks.
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