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Abstract

• Robot learning in simulation is a promising alterna-
tive to the sample cost of real world learning.

• Policies learned in simulation often perform worse
than hand-coded policies on the physical robot.

• We propose the Grounded Action Transformation al-
gorithm for robot learning in simulation.

– Our approach results in a 43.27% improvement

in humanoid bipedal walk velocity compared to
a state-of-the art hand-coded walk.

Problem Definition

Environment E = 〈S,A, c, P 〉

• Robot in state s ∈ S chooses action a ∈ A according to
policy π.

• Environment, E, responds with a new state St+1 ∼
P (·|s, a).

• Cost function c defines a scalar cost for each (s, a).

• Policy performance measured by expected sum of
costs:

J(π) := ES1,A1,...,SL,AL

[

L
∑

t=1

c(St, At)

]

Simulator Esim = 〈S,A, c, Psim〉.

• Identical to E but different transition probabilities.

Goal: Minimize Jsim(π) such that J(π) also decreases.

Grounded Simulation Learning [1]

1. Collect sample trajectories with initial policy on phys-
ical robot.

2. Ground simulation such that the initial policy pro-
duces similar trajectories in simulation.

3. Optimize the policy in simulation to find better pol-
icy parameters.

4. Set the new policy to be the initial policy and repeat.

Grounding Simulation to Reality

• Pφ: Simulator dynamics Psim with parameters φ.

• Given:

– D: a data-set of real world state-action trajecto-
ries.

– d: a measure of similarity between probability
distributions.

Grounding simulation means finding simulation parame-
ters φ⋆ such that:

φ⋆ = argmin
φ

∑

(St,At)∈D

d (P (·|St, At), Pφ(·|St, At))

Grounded Action Transformation

Augment simulation with an action transformation module:

• Replace robot’s action at with an action that produces a
more realistic transition.

• Learn this action as a function g(st,at).

g composed of two functions:

• Robot’s dynamics: f : S × A → S

• Simulator’s inverse dynamics: f−1
sim

: S × S → A.

Replace robot’s action at with ât := f−1
sim

(st, f(st,at)).
Figure 1: The augmented simulator induced by GAT.

GAT Training Procedure

f and f−1
sim

trained with supervised learning.

• Record sequence St, At, ... on robot and in simulation.

• Supervised learning of g:

– f−1
sim

: (St, At) → St+1

– f : (St, St+1) → At

• Neural networks in this work. Figure 2: Neural network architecture used to learn GAT’s
action modification function.

Empirical Study

Applied GAT to learning fast, bipedal walks for the SoftBank NAO robot.

• Task: Walk forward towards a target.

• Initial policy: University of New South Wales Walk Engine [3].

• Policy optimization with CMA-ES stochastic search method [2].

Figure 3: Walk policies learned within the Gazebo Simulator (center) and SimSpark Simulator

(right) were successfully transferred to the SoftBank NAO robot (left). Walk policies
learned within SimSpark were successfully transferred to the Gazebo simulator.

Simulation to Nao:

Method Velocity (cm/s) % Improve

Initial policy 19.52 0.0
SimSpark, first iteration 26.27 34.58
SimSpark, second iteration 27.97 43.27
Gazebo, first iteration 26.89 37.76

SimSpark to Gazebo:

Method % Improve Failures

GAT 22.48 1

No Ground 11.094 7
Noise-Envelope 18.93 5

Discussion

• Demonstrated GAT can optimize policies in simula-
tion and transfer them to physical robots.

• GAT treats simulator as a black-box — requiring no
special knowledge of how to modify simulation.

Future Work

• Extending to other robotics tasks and platforms (e.g.,
manipulation with contacts).

• Characterizing when grounding actions works and
when does it not.
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