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Abstract

Modern robots collect a wealth of rich sensor data during
their operation. While such data allows interesting anal-
ysis and sophisticated algorithms, it is simply infeasible
to store all the data that is generated. However, collecting
only samples of the data greatly minimizes the usefulness
of the data. We present CC-LOG, a new logging system
built on top of the widely-used Robot Operating Sys-
tem that uses a combination of classification and com-
pression techniques to reduce storage requirements. Ex-
periments using the Building-Wide Intelligence Robot, a
mobile autonomous mobile platform capable of operat-
ing for long periods of time in human-inhabited environ-
ments, showed that our proposed system can reduce stor-
age requirements by more than an order of magnitude.
Our results indicate that there is significant unrealized
potential in optimizing infrastructure commonly used in
robotics applications and research.

1 Introduction

In recent times, we have witnessed an unprecedented
surge in sensors and [oT devices. This has been accom-
panied by an exponential increase in the amount of data
being generated. Sensors often generate small amounts
of data, but at high frequency (e.g., at 100 Hz). Prior re-
search has looked at how to efficiently store and process
these streams of data in sensor networks [1-3].

However, one such source of sensor data has been
largely unexplored: robotics. Modern robotic platforms
seek to understand natural language commands and per-
form a wide variety of tasks. To achieve this, robots in-
clude a large number of sensors. For example, structured
infrared depth sensors (such as the Microsoft Kinect) and
LIDAR scanners are used for localization and naviga-
tion in a number of robots [4]. Other sensors used in-
clude rotary encoders, inertial measurement sensors, and
standard cameras. Such sensors produce data frequently
(e.g., depth sensors produce 30 GB in 15 seconds), and
logging the sensor data allows post-hoc analysis and de-
bugging [5, 6].

However, the dizzying rate of data production poses
a problem for limited storage and short battery life of
robots. Due to these restrictions, logging all data on lo-

cal storage or streaming data as it is produced to a remote
server are not feasible solutions. Sub-sampling the sen-
sor data at a fixed reduced rate runs the risk of missing
data essential for debugging or analysis.

We tackle this problem in the context of the Building-
Wide Intelligence (BWI) project at the University of
Texas at Austin [4]. The robot associated with the
project, the BWIBot, is used for research for human-
robot interaction, multi-robot interaction, and planning
in cohabited environments. The BWIBot has sensors
such as the Kinect and the odometer which produce ten
to hundreds of MB of data per minute.

We present a system, CC-LOG, that combines event
classification and compression to drastically reduce the
storage used for logging (§3). First, instead of logging
all events, we use a Support Vector Machine (SVM) to
classify events as anomalous or not, and only log anoma-
lous events (along with a few events preceding and suc-
ceeding the anomalous event). Second, we leverage the
high inherent redundancy of the JSON format of the logs,
using well-known loseless compression schemes such as
LZMA [7] to reduce the size of the logs significantly.
We use the Gazebo robot simulation framework [8] to
collect data from several runs of the robot (as it is lo-
gistically difficult to collect enough data on the shared
physical robot to evaluate our system). Compression re-
duces the logged data to 10% of its original size, and
our classification scheme our event classification scheme
further reduces the amount of data logged (§4). In our
evaluation, the classifier does not produce any false neg-
atives (i.e., missing data we want to log). CC-L0OG was
developed as a package in the widely-used Robot Op-
erating System [5] to facilitate integration into different
robot platforms.

We believe our work on CC-LOG is a strong indica-
tor of the untapped opportunities in the field of robotics.
Analyzing robotics infrastructure from a systems view-
point can yield significant improvements in efficiency
(86). Sadly, the different areas of research in computer
science have become silos, with very little cross-over of
ideas. By presenting this work in HotStorage, we hope to
alleviate this problem a little by showing there are inter-
esting systems challenges and opportunities for fruitful
collaboration in robotics.



2 Background

We first provide some background on the BWIBot and
the Robot Operating System. The BWIBot version
2 (also called the Segbot) contains a desktop com-
puter powered by an Intel i7-4790T/i7-6700T processor,
placed in HD-Plex H1.S fanless case, with 6 Gigabit
Ethernet Network Interfaces, along with 4 USB3 and 2
USB?2 interfaces. A 20 inch touchscreen is mounted at
a human-operable height to serve as the primary user in-
terface with the robot. The BWIBot is equipped with
several sensors including a PointGrey BlackFly GigE
camera and the Kinect. The BWIBot is built on top of
the Segway RMP 110 mobile base which, coupled with
Simultaneous Localization and Mapping (SLAM), pro-
vides sufficiently accurate odometry estimates for robust
navigation.

The robot is controlled and programmed using the
Robot Operating System (ROS) [S]. ROS is structured as
a group of communicating processes called nodes. While
nodes need to communicate with each other using a com-
mon format, each node can be written in a different lan-
guage. This allows developers to easily extend ROS in
the language of their choice. Nodes and sensors can send
messages to a topic that other nodes can subscribe to.
Typically, ROS processes the raw data from sensors and
publishes a topic with formatted sensor data, which other
nodes consume. For example, the odometry sensor topic
publishes several KB of data every 10 milliseconds (100
Hz). The raw odometry data is processed by ROS and
published in JSON format. The JSON format has a lot of
redundancy that increases the storage requirements.

3 Design

Goal. In this work, we focus on efficiently logging the
BWIBot odometry data (but our techniques are general
and will work for other sensor data as well). We con-
sider that the logging data is used mainly for debugging
and analysis that considers anomalous events to be of in-
terest. We note that sometimes the log data is used to
obtain statistics about the robot (e.g., how many kilome-
ters has the robot covered over the past year?). For such
cases, other techniques (such as statistical sampling) can
be used so that samples are logged to allow statistics ag-
gregation with enough accuracy; we do not handle it in
this work.

We present CC-LOG, a new logging module in the
Robot Operating System [5] that drastically reduces the
storage requirements for logging sensor data. At a high
level, CC-LOG processes data from subscribed topics,
decides whether they are classified as anomalous, and,
if so, they are compressed and logged to storage. CC-

LoG accomplishes this through the use of a unique slid-
ing window structure and a classifier.

Anomalous events typically include the sudden and
extreme acceleration or sudden twisting to a large degree.
Note that both acceleration and twisting are not anoma-
lous in the general case; only when they deviate from
normal behavior. Since anomalous events typically are
not instantaneous, CC-LOG takes recent history into ac-
count when classifying data. Additionally, while anoma-
lous events are interesting in and of themselves, it may
be desirable to save data for a period of time following
the event. Such data can help roboticists see how, and if
the robot recovers from anomalies.

We first describe how anomalies are detected, how
we use windows to log anomalous events, and how log
events are compressed.

Anomaly Detection. To classify feature vectors as
anomalous or nominal, we elected to use a one-class
Support Vector Machine [9] (SVM) with a nonlinear ra-
dial basis function (RBF) kernel [10]. SVMs function by
attempting to find the maximally-separating hyperplane
between two sets of data using linear programming tech-
niques. Since most datasets are not linearly separable,
kernel functions can be used to map data into a high-
dimensional feature space. In our case, we have chosen
to use a Gaussian RBF kernel. One-class SVMs, specif-
ically, are a popular distribution density estimation tech-
nique; largely due to their simplicity and wide applica-
bility to different domains. Within the CC-LOG system,
we use the Scikit-learn library [11] (built atop libsvm) to
provide SVM functionality.

Machine learning classifiers require a feature vector: a
vector of values that have been a meaningful dependence
on the set to be classified. For example, for classification
based on odometry data, the x-component of the robot’s
velocity is a useful feature. Feature selection is impor-
tant in many types of machine learning. A sub-optimal
selection of features can result in an inaccurate classifier.
Feature vectors are constructed as a concatenated array
of recently seen features.

CC-LOG uses pose position, pose orientation, linear
twist, and angular twist data for our feature vectors. We
deliberately limited the size of our feature set to reduce
the size of the training and testing datasets. Selecting
feature vectors happens at setup time, even before the
first event has been logged.

Logging Windows. To help in debugging and analysis,
CC-LogG logs the events around each detected anomaly
(i.e., what happened just before and after the anomaly
was detected). To implement this, CC-LOG uses a log-
ging window. Once an anomaly is detected, a fixed set of
past and future samples are included in the current log-
ging window which will be persisted to storage. If an-
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Figure 1: CC-L0G Architecture. Components used dur-
ing smart logging are shown in green. Components such
as building feature vectors and validators are used in
other phases such as learning.

other anomalous event is detected within an active log-
ging window, the window is extended appropriately, so
that events are not redundantly logged in two windows.

Compressing Log Data. Currently, data is stored in an
uncompressed JavaScript Object Notation (JSON) for-
mat for easy consumption. The JSON format results in
unnecessarily large files due to the numerous repeated
keys and punctuation. This quality of JSON lends itself
very well to numerous compression techniques.

We now describe the architecture of the system, and
the different modes in which CC-LOG operates. Fig-
ure 1 shows the different components of CC-LOG in the
context of the Robot Operating System.

Collecting Data. CC-LOG has a basic logging mode
where all subscribed sensor inputs are logged to a file.
This mode is useful for collecting training and testing
datasets. Whenever a message is received from the sen-
sor topics, it is added to the sliding window and a feature
vector is built from its current state. These resultant fea-
ture vectors are what compose the classifiers training and
testing data. Additionally, the received message itself is
filtered and formatted into JSON and saved into a log file,
as in a traditional logging system.

Learning Mode. The classifier is trained and tested
in the learning mode. Training and testing data are
loaded from separate, labeled (i.e., marked as nominal
or anomalous) directories on the file system. Since each
feature vector is contained in its own file, it is easy to
manually change which data is being used for training
and which is being used for testing. Learning happens
completely independently from the rest of ROS. Once
the classifier is trained, a validation pass occurs, where

Total Events 512
True Positives 20
False Positives 183

False Negatives 0
True Negatives | 309
Precision 9.8%
Recall 100%

Table 1: Classification Results

a disjoint set of testing data is passed through the newly
trained classifier, and results are reported.

Smart Logging. After training, the system is run in the
smart logging mode where data is only logged if it is
deemed to be part of an anomalous event. Figure 1 illus-
trates the different components of CC-LOG, along with
the relevant parts of ROS. The BWIBot’s sensors, actua-
tors, and other ROS nodes are active as in the default con-
figuration. Whenever a message is received from a sub-
scribed topic, a callback inserts it into the current win-
dow. A feature vector is composed based on the active
window and used to classify the message. If the message
is classified as anomalous, the current logging window is
formatted, time-stamped, and written to storage.

4 Evaluation

We evaluated CC-LOG using the BWIBot platform [4].
Obtaining training data from physical runs of the BWI-
Bot proved tricky since the robot was shared among sev-
eral project, and anomalies are rare and difficult to iden-
tify. Instead, we used the Gazebo simulation frame-
work [8], a fully-functional simulation environment gen-
erating sensor data similar to an actual BWIBot run.
Gazebo allows us to easily obtain sensor data from a
large number of runs for the BWIBot. In the future, we
plan to evaluate our system on actual runs of BWIBot.

We obtained 1495 events in total. We used 983 events
for training. Training took 35 s and consumed 500 MB of
RAM. There were 492 nominal samples and 20 anoma-
lous samples in the test data. Our testing and training
datasets were disjoint. The small number of anomalous
samples is a result of the difficulty of achieving anoma-
lous behavior in the simulation. Planning failures were
the main anomaly mode reached in simulation.

Classification Accuracy. We used a sliding window size
of 500; as a result, classification takes into account the
last several seconds. We log 100 events before and af-
ter each anomalous event (discarding repeated events).
There are 3250 features in our feature vector. We ex-
perimented with different settings for the support vector
machine that trade-off between generalization and data
fitting. The results in the best configuration are presented
in Table 1. We note that there are no false negatives, but



Scheme File Size | Compression Ratio
None 4.6 MB 100%
Lz4 596 KB 13.0%
LZFSE 479 KB 10.4%
ZIP 463 KB 10.1%
TAR gzip 463 KB 10.1%
LZMA (Level 6) | 329 KB 7.2%

Table 2: Evaluating different compression schemes

about 40% false positives. The high rate of false positives
arises due to the fact that anomalous events are normal
events done in an extreme manner (e.g., too much twist-
ing, abnormal acceleration, efc.); the false positives arise
due to our sensitivity to potentially anomalous events.
We preferred to err on the side of caution and focus on
avoiding false negatives. We believe the false positive
rate can be reduced with more training.

Compression. We evaluated compressing the log data
using a number of different schemes available on Apple
platforms [12]. The results are shown in Table 2. We are
able to achieve a significant reduction in file size through
numerous techniques. Both ZIP and TAR gzip files both
use the DEFLATE compression algorithm, thus provid-
ing similar results. All tested lossless compression tech-
niques result in files approximately one-tenth the size
of the original, uncompressed JSON log file. Notably,
LZFSE is 2-3X faster and more energy efficient than
DEFLATE-based compression schemes while achieving
comparable compression [12].

5 Discussion

We briefly discuss our results and opportunities for future
work in efficiently logging data on the BWIBot.

Evaluating using real runs from the BWIBot. Based
on our promising results from the Gazebo simulation,
we hope to achieve similar results on real data from the
physical BWIBot. We have collected 730.3 MB of nom-
inal data (represented by 17,512 feature vectors) from
the BWIBot. The data was obtained from the robot au-
tonomously navigating throughout a section of the build-
ing without human assistance. Notably, the robot was
in motion for the entire duration of the data collection.
We have also collected runs with anomalies during the
robot’s motion: this data was collected in a large atrium
with many people, frequently rearranged seating, and
poor visibility of the surrounding walls. In this environ-
ment, the robot has significant trouble localizing itself,
leading to peculiar movement. Note that while we have
collected the raw data, there is significant work ahead, in-
cluding sanitizing and labeling the data. We might need
to modify our classification approach to deal with such

large data. Finding good hyper-parameter combinations
will be crucial to getting good classification accuracy.

Lossy Compression. In our current work, we only ex-
plored loss-less compression schemes. However, if the
analysis performed on the logs could handle errors in the
data, we believe lossy compression schemes could com-
press the data even further [13]. We would like to inves-
tigate compressive sampling techniques such as the Ran-
domized Timing Vector (RTV) algorithm [14]. While
RTV may provide lossy compression, a desired level of
compression is specifiable, and there is minimal memory
overhead since compression occurs as data is collected,
rather than in large batches.

Logging different kinds of data. In the future, we hope
to incorporate many other types of data into the logging
system, including point clouds, local cost maps, and vi-
sual data. Efficiently logging these types of data will
throw up interesting challenges, though we believe our
overall approach should still work.

6 Opportunities in Robotics

Logging efficiency is just one of many systems chal-
lenges that are posed by the intelligent robotics commu-
nity’s ongoing long-term research goal of creating au-
tonomous robots capable of robust, long-term operation
in the real world.

Storage for Robotics. Currently, robotics uses general-
purpose file systems to store data. As we have shown
in this work, not all data that is stored has the same
value: for debugging purposes anomalous data is impor-
tant; for analytics, only aggregate information is impor-
tant. Furthermore, file systems for robotic platforms not
need many features of the general-purpose file system
such as directories (flat namespaces would suffice), or
strong durability guarantees (losing recent data is accept-
able [15]). We believe file systems targeted for robotics
platforms can be significantly simpler, and can drasti-
cally reduce storage requirements.

Processing streaming data on low-power devices.
Robots will need the ability to process increasingly large
streams of sensory data in real time, without sacrificing
the ability to make quick, reactive decisions, also subject
to real-time and power constraints. As a concrete ex-
ample, consider navigation in drones. Recent work has
shown that it is computationally (and in terms of energy)
expensive to use vision algorithms to guide the drone, but
sending data over the network to be processed has a cost
as well [16]. Thus, interesting trade-offs need to be made
regarding what computation is performed on the drone,
what data is saved, and what is sent over the network.



Storage for Continuous Learning. There is a grow-
ing consensus that robots such as the BWIBots will need
to continuously learn from their data as they operate for
long periods of times in human-inhabited environments.
Thus, they would not only need to log data associated
with anomalous events, but would also need to log data
that is useful for various learning tasks. For example, if
a robot is learning to adjust its navigation policy param-
eters when moving around people, it would not need to
store data in situations where people are not present in its
surrounding. Furthermore, data for learning would only
need to be stored if the classifier or reinforcement learn-
ing policy parameters have not yet converged. Therefore,
in future work we plan to extend CC-LOG to enable log-
ging data associated with specific learning tasks that the
robot needs to solve.

Nuanced Scheduling for ROS Nodes. The Robot Oper-
ating System (ROS) currently schedules all nodes simi-
larly. Each data source is represented by a node, and dif-
ferent data sources produce data at different rates. Nodes
for sources that produce data more frequently should be
scheduled more frequently; there is currently no easy
way to do this in ROS. Similarly, the complexity of func-
tions performed by each ROS node also differs widely;
some nodes do large computations, while other nodes do
simple, quick calculations. The scheduling of ROS nodes
need to take such differences into account. We believe
a variant of Lottery Scheduling [17], where the admin
can dynamically hand out tokens to different ROS nodes,
would work well in this setting.

Efficient, Lightweight Processes. We notice that with
time the BWIBot becomes sluggish for interactive use.
We attribute this to the large number of processes that
are running concurrently on the BWIBot. For example,
each ROS node handles a different function like obstacle
avoidance, localization, mapping, etc.; all of these nodes
need to be running concurrently for most workloads. We
believe ROS nodes (each a process) are too heavyweight
for running long-running workloads on the BWIBot.

Finally, many data privacy and security issues arise
as well. And as increasingly sophisticated sensors with
embedded processors are introduced, we will need in-
creasingly robust, and sophisticated operating systems to
manage the computation and data inter-dependencies of
a whole host of on-board processors with differing con-
straints and capabilities.

7 Related Work

We are not aware of prior research which seeks to re-
duce the storage footprint in robotic platforms. The most
closely related work is FlashLogger [18] from Suman
Nath. FlashLogger uses two techniques to reduce the en-

ergy footprint (and storage footprint) of logging: lossy
compression of data, and “aging” old data by recom-
pressing old data in a lower fidelity version. In contrast to
FlashLogger, CC-LOG uses both compression and clas-
sification to reduce storage footprint, and currently uses
only lossless compression techniques.

Prior work in other domains have identified that cer-
tain applications do not need completely accurate infor-
mation. The SEsSAW project [19] at HP identifies simi-
lar (but not duplicate) data and exploits the similarity to
reduce storage requirements and speed up analytics. The
Impression Store [20] exploits the fact that most queries
only require aggregate information to reduce storage re-
quirements using compressive sensing. Wagner et al.
use stratified sampling in their sublog work to acceler-
ate query processing [21].

8 Conclusion

We have presented CC-LOG, a logging system that uses
compression and classification of anomalous events to
reduce the storage requirements for sensor data in robots.
We use a support vector machine to classify odome-
try data. We show that CC-LOG correctly classifies all
anomalous events (no false negatives) and reduces stor-
age requirements by over 10X.

We believe our work is indicative of the interesting
systems challenges in robotics. Robot sensors gener-
ate a large amount of data at a high frequency. There
remain interesting challenges in logging and processing
such sensor data, and in making the rest of the software
infrastructure for robots (such as the Robot Operating
System) more efficient. We hope this paper spurs further
collaboration and exchange of ideas between the robotics
and systems community.
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