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Abstract
Transfer learning is a method where an agent reuses
knowledge learned in a source task to improve
learning on a target task. Recent work has shown
that transfer learning can be extended to the idea of
curriculum learning, where the agent incrementally
accumulates knowledge over a sequence of tasks
(i.e. a curriculum). In most existing work, such
curricula have been constructed manually. Further-
more, they are fixed ahead of time, and do not adapt
to the progress or abilities of the agent. In this pa-
per, we formulate the design of a curriculum as a
Markov Decision Process, which directly models
the accumulation of knowledge as an agent inter-
acts with tasks, and propose a method that approx-
imates an execution of an optimal policy in this
MDP to produce an agent-specific curriculum. We
use our approach to automatically sequence tasks
for 3 agents with varying sensing and action capa-
bilities in an experimental domain, and show that
our method produces curricula customized for each
agent that improve performance relative to learning
from scratch or using a different agent’s curricu-
lum.

1 Introduction
As reinforcement learning (RL) agents are challenged to learn
increasingly complex tasks, some of these tasks may be in-
feasible to learn directly. Various transfer learning meth-
ods and frameworks have been proposed that allow an agent
to better learn a difficult target task by levering knowledge
gained in one or more source tasks [Taylor and Stone, 2009;
Lazaric, 2011]. Recently, these ideas have been extended to
the problem of curriculum learning, where the goal is to de-
sign a curriculum consisting of a sequence of training tasks
that are learned by the agent prior to learning the target task.

There are two main limitations of most methods that em-
ploy curricula in reinforcement learning settings. First, the
sequencing of source tasks is typically done manually by a
domain expert or human users. Second, in cases where the se-
quencing is done automatically, the curriculum created does
not take into account the agent’s abilities or experience. As a
result, the same curriculum is produced even for very differ-
ent agents. This curriculum can be suboptimal when different

agents have not only different learning abilities, but also dif-
ferent perceptions and actions.

To address these limitations, this paper presents a method
for curriculum generation that adapts to the progress and abil-
ities of a particular agent. We formalize the design of a cur-
riculum as a Markov Decision Process (MDP) that explic-
itly models the accumulation of knowledge by the agent as it
learns through a sequence of tasks. As such, it also models
the cost of learning a task relative to the current ability of the
agent. We show how a policy in this curriculum MDP pro-
duces a curriculum, and propose a recursive, Monte-Carlo al-
gorithm that approximates an execution of an optimal policy
in this MDP. The proposed method was evaluated by produc-
ing curricula for 3 heterogeneous agents in a grid-world do-
main. Our experiments show that the resulting curricula en-
abled the agents to reduce the overall training time needed to
learn the target task compared to learning from scratch. More
importantly, the experiments show that the resulting curricula
were each tailored to the sensory and action abilities of each
agent, and that using a curricula designed for one agent to
train another can be detrimental in practice.

2 Background

In this section, we review background material and how it fits
into our curriculum design framework.

2.1 Markov Decision Processes

We model the decision-making process of an agent as an
episodic Markov Decision Process (MDP). MDPs are used at
two different levels in this paper - one for modeling individ-
ual tasks, and one for modeling the task sequencing process.
We introduce the formulation for individual tasks here.

An episodic MDP M is a 6-tuple (S,A, p, r, S0, Sf ),
where S is the set of states, A is the set of actions, p(s, a, s′)
is a transition function that gives the probability of transition-
ing to state s′ after taking action a in state s, and r(s, a) is
a reward function that gives the immediate reward for taking
action a in state s. S0 is the initial state distribution, and Sf

is the set of terminal states.
At each time step t, the agent observes its state and chooses

an action according to its policy π : S 7→ A. The goal of the
agent is to learn an optimal policy π∗, which maximizes its



expected return Gt until the episode ends at timestep T :

Gt =

T−t∑
i=1

Rt+i (1)

One common way to do this is to first learn the optimal
action-value function Q∗(s, a), which gives the expected re-
turn for taking action a in state s and following π∗ there-
after, using an algorithm such as SARSA or Q-learning [Sut-
ton and Barto, 1998]. The optimal policy then selects action
argmaxaQ

∗(s, a) in each state.

2.2 Transfer Learning
Curriculum learning builds on the assumption that learning
one task can speed up learning on another, a concept that’s
come to be known as transfer learning [Taylor and Stone,
2009; Lazaric, 2011]. In transfer learning, instead of learn-
ing directly on a target task MDP, the agent first trains on
one or more source task MDPs, and transfers the knowledge
gained to the target. In this paper, we transfer information
between MDPs using value function transfer [Taylor et al.,
2007], which uses the parameters of an action-value function
Qs(s, a) learned in a source task to initialize the action-value
function in the target task Qt(s, a).

One way to quantify the benefit of transfer is by the time to
threshold metric [Taylor and Stone, 2009], which computes
how much faster an agent can learn a policy that achieves
return G0 ≥ δ on the target task if it transfers knowledge, as
opposed to learning the target from scratch. In this work, we
will measure time using the number of actions taken.

2.3 Curriculum Learning
Curriculum learning is an extension of tranfer learning, where
the goal is to automatically design and choose a sequence of
tasks (i.e. a curriculum) M1,M2, . . .Mt for an agent to train
on, such that learning speed or performance on a target task
Mt is improved. In this paper, we leverage previous work by
[Narvekar et al., 2016] to dynamically generate source tasks
for use in a curriculum. Narvekar et al. proposed a series of
heuristic functions f : Mt × X 7→ Ms that take as input a
target task Mt and the agent’s current experience trajectories
X on Mt, in order to produce a source task Ms. Each func-
tion does this by varying different aspects of the MDP Mt to
create tasks that are relevant to solving Mt, but are easier to
learn. For example, they reduce the state and action spaces,
alter the transition or reward dynamics, or modify the initial
or terminal state distributions. The focus of this paper will be
on how to select and sequence tasks from this space.

3 Curriculum Generation as an MDP
MDPs are used at two different levels in this work. One is the
standard use, where a learning agent interacts with and tries
to learn a task modeled as an MDP M . Our main contribu-
tion is a second, higher level MDP for the curriculum design
agent, whose goal is to sequence tasks M for the learning
agent. We will refer to MDPs that the learning agent interacts
with as tasks, and the MDP that the curriculum agent interacts
with as the curriculum MDP (CMDP).

3.1 Curriculum MDP (CMDP)
The overall process in a CMDP unfolds as follows: the learn-
ing agent starts with some initial policy π0, which is repre-
sented as the initial state S0 of the CMDP. The curriculum
agent then selects an action A0, where each action corre-
sponds to a different task that can be learned by the learning
agent using learning algorithm L. Learning a task transforms
the learning agent’s policy to a new policy π1, represented in
the CMDP as the next state S1, by means of transfer learn-
ing algorithm T . It also incurs a cost, which is the amount
of time needed by the learning agent to learn the task. This
process repeats until the curriculum agent transitions to a ter-
minal state, which is a state where the policy of the learning
agent can achieve a return G0 ≥ δ on the target task.

We now define this process formally as an MDP. To distin-
guish the curriculum MDP from task MDPs, we will use the
superscript C to refer to elements of the curriculum MDP.

Definition 1: A curriculum MDP MC is a 6-tuple
(SC ,AC , pC , rC , SC

0 , S
C
f ), where:

State Space The set of states SC consist of the set of all poli-
cies the learning agent can represent. Each state repre-
sents a policy π : S 7→ A, which determines how the
learning agent will act in the target task. For example,
the initial state SC

0 could be the uniform random policy.
The terminal states SC

f are defined as states whose poli-
cies achieve a return of at least δ on the target task. In
this section, we leave open how the policy is represented.
Common options are to directly encode a parameterized
policy, or to use a policy derived from a value function.

Action Space The set of actionsAC , are the different tasks a
learning agent can train on. Each action aC ∈ AC maps
to a task M , and taking an action corresponds to train-
ing the learning agent on the corresponding task until
convergence. For example, not using a curriculum and
training directly on the target task corresponds to taking
the target task action from the initial state.

Transition Function Executing an action aC ∈ AC in state
sC ∈ SC transitions the CMDP to a new state s′C ∈ SC
according to the transition function pC(sC , aC , s′C). In
other words, the transition function describes how the
learning agent’s policy changes as a result of learning a
task. Learning a task can lead to different policies de-
pending on the initial policy before learning.

Reward Function The goal of the curriculum agent is to
minimize the amount of time needed by the learning
agent to reach a policy that gives a return of at least δ
on the target task (i.e. minimize the time to threshold,
where we count the total time needed, including time
spent in all source tasks). We can encode this in the
reward function by defining rC(sC , aC) to be the nega-
tive of the expected time needed to learn task aC starting
from policy sC . Thus, rC(sC , aC) is the cost of learning
aC starting from policy sC .

The base learning algorithm L of the learning agent and
the transfer algorithm T are implicitly encoded in the tran-
sition and reward functions of the CMDP, since they affect
the set of states explored and the efficiency with which a task



is solved. As such, they must be specified in any implemen-
tation. In addition, note that the cost of learning a task aC
is dependent on the current policy state sC the agent is in.
Starting with a good policy can make it easier to learn a task,
leading to a low cost, whereas starting from a worse policy
incurs higher cost. Our goal is to find some sequence of tasks
aC0 , a

C
1 , . . . a

C
t such that the total cost

∑t
i=0 r

C(sCi , a
C
i ) to

achieve return δ on the target task is less than the cost in-
curred by learning directly on the target task rC(sC0 , a

C
t ).

A policy πC : SC 7→ AC on a CMDP specifies which task
to train on given a learning agent policy π. Thus, we can ex-
ecute πC for a particular agent to produce a curriculum. Due
to stochasiticity during the learning process, an execution of
πC for a single agent could result in many different curricula.
Learning the optimal policy πC∗

in a curriculum MDP thus
produces execution traces of optimal curricula.

3.2 Discussion
In theory, now that we have posed the curriculum design
problem as an MDP, we could apply any of the standard rein-
forcement learning algorithms to solve for the optimal CMDP
policy πC . For example, in some domains, we may have a
model of the transition dynamics of the CMDP, or be able
to approximate it using heuristics and domain knowledge.
In this case, we could use dynamic programming to directly
solve for the optimal curriculum.

If the model is not known, model-free methods such as
SARSA or Q-learning could be used. However, model free
methods typically suffer from high sample complexity, and
this issue is exacerbated in CMDPs since taking an action
requires solving an entire task MDP. Instead, we propose to
directly find one particular execution of πC that is represen-
tative of what would be expected when drawing a single exe-
cution from an optimal policy πC∗

.

4 Monte Carlo Approximation
In this section, we describe a recursive Monte-Carlo algo-
rithm that iteratively builds an execution trace of πC∗

. The
intuition for our approach is as follows: assume the learn-
ing agent starts with some initial policy π0, corresponding to
initial state SC

0 in the CMDP. Our goal is to learn a policy
πf : S 7→ A that achieves return δ on the target task Mt as
quickly as possible. Although we don’t know what a terminal
state policy πf looks like, we can identify what parts of the
state space S are relevant to an optimal policy for the target
task, because we can sample state trajectories from the tar-
get task by executing the target task action. We can then use
those samples to guide the selection of a source task.

Thus, the main idea behind our algorithm is to incremen-
tally build up the policy using states and experiences the
agent is currently facing. The algorithm samples from the
target task to figure out what the learning agent needs to learn
about. It then creates a set of sources tailored for those ex-
periences using the heuristic functions defined by [Narvekar
et al., 2016], recursively breaking down the tasks if they are
too difficult for the agent to solve. The task which as a re-
sult of learning changes the policy the most according to the
target samples is then selected. Learning the task updates the
learning agent’s policy, corresponding to a new state in the

Algorithm 1 GENERATECURRICULUM(Mt, π, β, δ, ε)

1: C ← ∅
2: while true do
3: size = |C|
4: (π′, C)← RECURSETASKSELECT(Mt, π, β, ε, C)
5: if π′ = null then
6: Increase β
7: POP(C, |C| − size)
8: continue
9: end if

10: π ← π′

11: if EVALUATE(Mt, π) ≥ δ then
12: break
13: end if
14: end while
15: return (π, C)

CMDP. This in turn leads to a different set of samples from
the target task. This process repeats until the agent is able to
solve the target directly. Note that the goal is not necessarily
to learn a policy π for every state in the state space S of a
target task Mt, as some of these states may not be encoun-
tered by the agent, and hence are irrelevant for executing the
optimal policy π∗.

The difficulty of a task can be quantified by the amount
of time needed to solve the task (i.e. the cost of learning a
task rC(sC , aC)). As stated in Section 3, the cost depends on
many different factors, such as the policy the learning agent
starts with, the learning algorithm being used, and also as-
pects of the task itself such as the size of its state and action
spaces. The only way to determine the true cost is to solve the
task, which is unbounded and unknown ahead of time. There-
fore, we introduce the idea of a budget or learning capacity β
for the agent, which limits the amount of time an agent will
spend trying to learn a task before it decides the task is too dif-
ficult. This promotes learning easier tasks first, and tackling
harder tasks once the learning agent has accumulated knowl-
edge from these easy tasks. Finally, to prevent unnecessary
tasks from being used in the curriculum, we require tasks to
affect the policy and be relevant to the target task by at least
fraction ε (described in detail in the next section).

4.1 Algorithm Details
We now formalize the intuition given into pseudocode. The
main call is to Algorithm 1, GENERATECURRICULUM,
which takes as input the target task Mt that we want to gen-
erate a curriculum for, the learning agent’s initial policy π
(i.e. SC

0 , typically a uniform random policy), the learning
budget β, the return threshold δ desired on the target task,
and the minimum policy change and relevance parameter ε.
It returns a policy π (i.e. a terminal state SC

f ) that can achieve
a return of δ on Mt, and the curriculum C.

Each iteration of the loop in Algorithm 1 attempts to add
a task to the curriculum by calling RECURSETASKSELECT,
and corresponds to a transition in the CMDP. If a task is found
and added to the curriculum, the updated policy π is evaluated
on the target task. The loop terminates if a return greater than
δ is received. If no tasks are found, the budget β is increased,
any tasks that were added in this phase are cleared, and the
search is repeated.

Algorithm 2, RECURSETASKSELECT, is the core method



Algorithm 2 RECURSETASKSELECT(M,π, β, ε, C)
1: (solved, X,π′) = LEARN(M,π, β)
2: if solved then
3: ENQUEUE(C,M)
4: return (π′, C)
5: end if
6: Ms ← CREATESOURCETASKS(M,X)
7: P ← ∅
8: U ← ∅
9: for Ms ∈Ms do

10: (solvedMs , XMs , πMs) = LEARN(Ms, π, β)
11: if solvedMs then
12: P ← P ∪ {(πMs ,Ms)}
13: else
14: U ← U ∪ {(Ms, XMs)}
15: end if
16: end for
17: if |P| > 0 then
18: (πbest,Mbest, score) = GETBESTPOLICY(P, π,X)
19: if score > ε then
20: ENQUEUE(C,Mbest)
21: return (πbest, C)
22: end if
23: end if
24: SORTBYSAMPLERELEVANCE(U , X, ε)
25: for (Ms, XMs) ∈ U do
26: (π′

s, C)← RECURSETASKSELECT(Ms, π, β, ε, C)
27: if π′

s 6= null then
28: return RECURSETASKSELECT(M,π′

s, β, ε, C)
29: end if
30: end for
31: return ( null, C)

that adds tasks to the curriculum and updates the policy π. It
starts by calling LEARN, which attempts to solve the given
task M starting with initial policy π, using at most β time
steps. LEARN returns a boolean solved indicating whether the
task was solved or not, a set of state-action-reward samplesX
for each trajectory experienced, and the updated policy π′ as
a result of learning M .

We propose two methods for determining whether a task
has been solved. The first is policy convergence, which
checks whether the policy has converged (i.e. not changed)
for the states the agent has visited over the past few
episodes (in our experiments, we checked for stability over 10
episodes). In addition, the episodes must terminate in a goal
state. This is in order to prevent an agent that has learned
to quickly fail a task from being considered as successfully
solving a task. The second is based on the maximum return
possible in a task, where an agent that receives the maximum
return possible on a task can be said to have solved it. The
first method assumes the agent can detect a successful com-
pletion of a task, while the second assumes the max return
(which is task specific) is known.

If the task M can be solved, it is added to the curriculum
and the updated policy is returned. Note that we only update
the policy if the task can be solved. Otherwise, the learned
policy may not be correct. If the task M cannot be solved,
RECURSETASKSELECT recursively tries to find and solve a
simpler source task.

CREATESOURCETASKS(M,X) creates a set of source
tasks Ms tailored to the agent’s experiences X on M , us-

ing the heuristic functions defined by [Narvekar et al., 2016].
We partition this set into two groups over lines 9 - 16 based on
whether the source can be solved or not. P contains source
tasks that could be solved and their corresponding updated
learning agent policies. U contains tasks that could not be
solved, and experience trajectories from the learning agent’s
attempts on those tasks.

If solvable tasks exist in P , the curriculum design
agent needs to select a task to add. We use a heuris-
tic (GETBESTPOLICY) that selects the policy-task pair
(πMs

,Ms) ∈ P that results in the greatest change in policy
when evaluated on samples X from the target task. Formally,
for each state s encountered in the state sequence from sam-
ples X , we compare the action selected by π(s), the policy
before learning Ms, to πMs(s), the policy after learning Ms,
and count the number of states for which the action changed.
This number is normalized by the number of states in the
sequence X to produce a score. Note that states where the
learning agent spends more time in M occur more often in
X , and hence bias the score towards policies that update these
states. The policy-task pair with the highest score is returned
from GETBESTPOLICY, and if the score meets a minimum
threshold ε, the task is added to the curriculum. The thresh-
old ε is used to prevent tasks that don’t significantly impact
the policy from entering the curriculum.

If no solvable source task is selected, the algorithm instead
finds the most relevant unsolvable source tasks, and attempts
to break them down further. We calculate the relevance of a
source task by computing the overlap between samples from a
sourceXMs and the samples of the targetX . Specifically, for
each task-sample pair (Ms, XMs) ∈ U , we compute the frac-
tion of states s in the target samples X that are also present
in the source XMs

. If function approximation is used, a dis-
tance metric such as that by [Ferns et al., 2011] can be used
to do this. The task-sample pairs in U are sorted by their rel-
evance, dropping any that have relevance less than ε, and are
recursively broken down by calling RECURSETASKSELECT,
which tries to find a sub-source task for the current source
task. If no tasks can be solved, the recursion ends.

Assuming the target task is solvable, Algorithm 1 is guar-
anteed to terminate once β increases enough to solve the tar-
get task directly. In the worst case, no source tasks are useful.
If there are m total source tasks, and it takes n iterations of
increasing β to learn the target task, then the whole process
makes at most O(mn) recursive calls.

5 Experimental Results
We evaluate our curriculum generation algorithm on a grid
world domain, inspired by the lights world domain used by
[Konidaris and Barto, 2007]. The world consists of a room,
which can contain 4 types of objects. Keys are items the agent
can pick up by moving to them and executing a pickup action.
These are used to unlock locks. Each lock in a room is depen-
dent on a set of keys. If the agent is holding the right keys,
then moving to a lock and executing an unlock action opens
the lock. Pits are obstacles placed throughout the domain. If
the agent moves into a pit, the episode is terminated. Finally,
beacons are landmarks that are placed on the corners of pits.
A sample domain is pictured in Figure 1a.

The goal of the learning agent is to traverse the world and



(a) (b)

Figure 1: (a) Grid world target task (b) Sample curricula generated for each of the agents. Each one ends in the target task.

unlock all the locks. At each time step, the learning agent can
move in one of the four cardinal directions, execute a pickup
action, or an unlock action. Moving into a wall causes no
motion. Sucessfully picking up a key gives a reward of +500,
and sucessfully unlocking a lock gives a reward of +1000.
Falling into a pit terminates the episode with a reward of -
200. All other actions receive a constant step penalty of -10.

5.1 Learning Agent Descriptions
We created 3 different learning agents that have varied sens-
ing and action capabilities, and show that these different
agents can benefit from curricula customized to their individ-
ual capabilities, even when facing the same target task.

The first agent, the basic agent, has 16 sensors, grouped
into 4 on each side. The first sensor in each quadruple mea-
sures the Euclidean distance to the closest key from that side,
the second measures the distance to the closest lock, the third
the distance to the closest beacon, and the fourth detects
whether there is a pit adjacent to the agent in that direction.
An additional sensor indicates whether all keys in the room
have been picked up, which we refer to as the noKeys sensor.
For example, the perception vector for the agent in Figure 1a
is [7.07, 5.10, 6, 6.32, 3.16, 3.16, 4, 2, 4.24, 3.16, 3.61, 2.83,
0, 0, 0, 0, 0], where the first 4 elements are key features for
the north, south, east, and west side sensor, followed by the 4
for locks, 4 for beacons, 4 for pits, and the noKey.

The agent used Sarsa(λ) with ε-greedy action selection for
the learning algorithm L, value function transfer for trans-
fer learning algorithm T , and CMAC tile coding for function
approximation. Tile coding is a linear function approxima-
tor where the feature space is partitioned into tiles. Each tile
holds a weight, and typically, several overlapping tilings are
used, which control the degree and direction of generaliza-
tion of the approximator (see [Sutton and Barto, 1998] for a
review). For all our agents, the tile widths were 1.

For the basic agent, we created two tilings: one over the 13
percepts from the key, beacon, pit, and noKey sensors, and
another over the 13 percepts from the lock, beacon, pit, and
noKey sensors. Tiling in this way allows the agent to gener-
alize knowledge about keys and locks learned in source tasks
separately. The exploration rate ε was set to 0.1, eligibility
trace parameter λ to 0.9, and learning rate α to 0.1.

The second, action-dependent agent, has the same sensors
as the basic agent, but they are tiled differently: one tile is
over the lock, pit, and noKey features; a second is over the
key, pit, and noKey features; and a third is over the beacon
and pit features. In addition, unlike the basic agent, the state
representation is action-dependent. That is, when considering
the move right action, the agent’s feature vector uses values
only from the right side sensors. For example, the feature
vector for the agent in Figure 1a considering the move right
action is [6, 4, 3.61, 0, 0], where the values correspond to the
key, lock, beacon, pit, and noKey features. The weights in the
tilings are shared, so that the same set of weights is used for
the state in each of the directions. Sharing weights like this
increases the agent’s level of generalization.

Finally, the rope agent is like the basic agent, except that
it has 4 additional actions, which are to use a rope in one of
the four directions. Doing so opens a path across a pit if one
is present, and incurs the step cost of -10. Depending on the
task, this action capability can result in a different optimal
policy, and thus could benefit from a customized curriculum.

5.2 Curriculum Generation and Results
We used the algorithm presented in Section 4 to automati-
cally generate curricula for each of the 3 agents. The target
task Mt was a 10x10 grid world with 1 lock and 1 key sepa-
rated by a 6 tile pit, as shown in Figure 1a. This task requires
agents to learn at least 3 different behaviors: picking up keys,
navigating around pits, and unlocking locks.

Each agent was initialized with a uniform random policy,
and given an initial learning budget β of 500, which was in-
creased by 500 in each iteration of the loop in Algorithm 1.
In order to add a source task, we specified it had to affect
the policy by at least ε = 0.1. Curriculum generation was
terminated when a return δ = 700 was reached.

Tasks were identified as solved using the policy con-
vergence method described in Section 4. We applied the
TaskSimplification and OptionSubGoals heuristics defined in
[Narvekar et al., 2016] to create source tasks. These created
source tasks that varied elements such as the size of the do-
main, the number of pits, or changed the goal of the task to
be picking up certain keys. A total of 15 unique tasks were
considered for use by the curriculum algorithm, and 9 were
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Figure 2: Performance on the target task by the (a) basic agent, (b) action-dependent agent and (c) rope agent, after training
using various curricula. Each curve was averaged over 500 runs, and is offset to reflect time spent training in source tasks.

used to compose curricula for the different agents.
We evaluated the performance of each agent on the tar-

get task using no curriculum, a curriculum tailored for that
specific agent, curricula tailored for each of the other two
agents, and a random curriculum consisting of 3 randomly
selected tasks. Figures 2(a) - 2(c) show the results for the
basic agent, action-dependent agent, and rope agent, respec-
tively. The results clearly show that training via the curricu-
lum customized for an agent provides the best benefit. Using
a different agent’s curriculum was usually suboptimal, and
in some cases even hurt performance. Using a random cur-
riculum generally led to performance quite similar to learning
from scratch, only delayed. The random tasks added training
time without improving learning speed (results are shown for
the rope agent. For the other agents, the shape of the random
curve was similar to the “no curriculum” curve, but the ran-
domly selected tasks led to horizontal offsets greater than the
scale of the graph axes.) Examples of produced curricula for
each agent are shown in Figure 1b.

6 Related Work
A variety of transfer learning methods have been proposed,
enabling RL agents to transfer samples [Lazaric et al., 2008],
options [Soni and Singh, 2006; Perkins et al., 1999], policies
[Fernández et al., 2010], models [Fachantidis et al., 2013],
and value functions [Taylor and Stone, 2005]. Typically,
these methods only consider one-stage transfer (as opposed
to a curriculum), and assume the source tasks are given.

To address cases where source tasks are not specified in
advance, [Narvekar et al., 2016] proposed a set of heuristic
functions for creating tasks that are tailored to the abilities of
a learning agent. The source tasks were then used to manually
construct a multi-step curriculum. In contrast, we address
how multi-step curricula can be automatically constructed.

In the related problem of task selection, the goal is to select
the best source task for a given target. Proposed solutions
typically compute a similarity measure between the MDPs
of the source and target task [Ferns et al., 2012; Ammar et
al., 2014b], or learn a model of transferability that can be
applied to novel source-target task pairs [Sinapov et al., 2015;
Isele et al., 2016]. However, none of these methods have been
successfully applied to a select a full sequence of tasks.

Automatically selecting and sequencing tasks into a cur-
riculum is an open problem that has received relatively lit-

tle attention. In most existing work, the tasks are sequenced
manually, by either a domain expert [Narvekar et al., 2016]
or naive users [Peng et al., 2016]. Most recently, [Svetlik et
al., 2017] proposed an automated method to construct a full
curriculum, which relies on task descriptors and a heuristic
function to estimate the transferability between tasks. The
main limitation of their method is that it does not adjust to
the agent’s unique abilities and learning progress during train-
ing. In contrast, our formulation of the curriculum generation
process as an MDP accounts for and explicitly models the
progress of an agent towards learning a target task.

Finally, curriculum learning has also been explored in the
context of supervised learning [Bengio et al., 2009]. Related
paradigms, such as multi-task reinforcement learning [Wilson
et al., 2007] and lifelong learning [Ammar et al., 2014a] have
also been examined. The distinguishing feature of curriculum
learning compared to these works is that in curriculum learn-
ing, we have full control over the order in which tasks are
selected, and the goal is to optimize performance for a spe-
cific target task, rather than all tasks.

7 Conclusion and Future Work
In this paper, we presented a novel formulation of curricu-
lum generation as a Markov Decision Process, which explic-
itly models the progress of an agent as it learns through a se-
quence of tasks. We described how a policy over a curriculum
MDP could be used to produce a curriculum, and proposed an
algorithm that approximates one trace of an optimal policy in
this MDP. The algorithm was evaluated in a grid world do-
main to produce curricula tailored to the sensing and action
capabilities of 3 different agents. Our results showed that the
curricula produced improved learning compared to learning
without a curriculum, but also that having customized curric-
ula for each agent makes a significant difference.

A limitation of most exisiting automated sequencing ap-
proaches, including ours, is that producing the curriculum re-
quires collecting extensive experience in source tasks. Thus,
generating a curriculum for a single agent is not practical.
We showed that different agents could benefit from different
curricula, but produced a curriculum for each agent indepen-
dently. Thus, an interesting question for future work is: how
can we adapt a curriculum generated for one agent to a new
agent?
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